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ENTROPY MAXIMUM

When 2 bodies with     and     are brought in thermal contactT1 T2

Total entropy                        in process of equilibration increases

Investigating behavior of total entropy near its maximum

When equilibrium is reached        should attain its maximal value

heat flows from hot to cold body so that temperatures equilibrate

This is ☛ Second Law of thermodynamics that follows from experiment

�S = S1 + S2

�S

is subject of first part of this class
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HEAT EXCHANGE
Consider first simplest case in which two bodies do not exchange mass

Transferred heat is the only source of the energy change  

Since system of two bodies is isolated from rest of the world

Corresponding changes of    up to second order in transferred energy 

similar expression for 

Eliminating               ☛

dU1 = �Q1 dU2 = �Q2

�Q1 + �Q2 = 0 dU1 + dU2 = 0

dU2 = �dU1

dS2

and

and 
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(160)

CP > CV CP

Extremum of   corresponds to            ☛ thermal equilibrium

THERMODYNAMIC STABILITY

Quadratic term in (159) shows that this extremum is a maximum

S T1 = T2

would be unstable with respect to transfer of a small amount of energy 
Small fluctuation would lead to avalanche-like further transfer of energy 
in same direction since temperature on receiving side would decrease

 is condition of thermodynamic stability

State with          would be unstable ☛ heat flow from hot to cold body 

              ☛      is also positive 

CV > 0

CV < 0

T1 = T2CV < 0For              ☛ initial state with  

would lead to increase of             instead of equilibration T2 � T1

(160)provided heat capacities are positive ☛
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(162)

      (162) gives  entropy decrease caused by deviation of system’s temperature

dT

If 2nd body is much larger than 1st one ☛ it can be considered as bath

Using                     and dropping index for bathed system

dS = � CV

2T 2
(dT )2

MORE ON THERMODYNAMIC STABILITY

T by a small amount     from bath temperature

dU1 = CV1dT1

and second fraction in (161) can be neglectedCV2 � CV1

At equilibrium ☛                     (159) becomesT1 = T2 = T

(160) complements condition  (9) of mechanical stability 

CV > 0

(161)dS = � 1

2T 2

✓
1

CV1

+
1

CV2

◆
(dU1)

2

T > 0
☟☟
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(163)

GENERAL CASE OF THERMODYNAMIC EQUILIBRIUM

dS1 =
1

T1
dU1 +

P1

T1
dV1 � µ1

T1
dN1

Exchanging volume means there is a movable membrane between 2 bodies

Resolving (139) for      we obtains to first order

Consider 2 systems in contact that can exchange energy, volume, mass 

Exchanging mass means that this membrane is penetrable by particles
dS

 similar expression for dS2
We could include second-order terms like those in (157)

Constraints

lead to total entropy change
(164)

(165)

dU1 + dU2 = 0 dV1 + dV2 = 0 dN1 + dN2 = 0

dS =

 
1

T1
� 1

T2

!
dU1 +

 
P1

T1
� P2

T2

!
dV1 �

 
µ1

T1
� µ2

T2

!
dN1

so that bodies can do work on each other

to find extended conditions of stability
☟

☟
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Requiring that            in (165) has three consequences:

AL QUE QUIERE CELESTE...QUE LE CUESTE

(i) Energy flows from hotter body to colder body

(ii) Body with a higher pressure expands

(iii) Particles diffuse from body with a higher chemical potential    

The thermodynamic equilibrium is characterized by
to that with the lower 

(166)

(167)

(168)

P1 = P2 (mechanical equilibrium)

T1 = T2 (thermal equilibrium)

µ1 = µ2 (di↵usive equilibrium)

dS � 0

at the expense of body with lower pressure

µ
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Thirdly ☛ diffusive stability condition should exist to the effect that 
adding particles to the system at constant volume and internal energy

Total    must have maximum with respect to all 3 variables at equilibrium

Investigating this requires adding second-order terms to (165)

Analysis is somewhat cumbersome but the results can be figured out 

Firstly ☛ condition of thermal stability (160) should be satisfied 

Secondly ☛ condition of mechanical stability (9) should be satisfied 

COLLATERAL EFFECT

S

should increase its chemical potential
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FIRST ORDER PHASE TRANSITIONS
Results for diffusive equilibrium can be applied to phase transitions

If different phases of same substance are in contact

Phase with a higher chemical potential recedes

Phase boundary moves across sample

1st-oder phase transitions between phases occur at                      µi(P, T ) = µj(P, T )

P, T

Phases are labeled by discrete variables   i

particles can migrate from one phase to other across phase boundary

and phase with a lower chemical potential grows

until receding phase disappears completely

that describes lines in      diagram

 1 for solid 2 for liquid and 3 for a gas
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THERMODYNAMIC PHASE DIAGRAMS

Typical thermodynamic phase diagram of                system

 Solid lines delineate boundaries between distinct thermodynamic phases 

 and thermodynamic potentials are singular  
Along these lines we have coexistence of 2 phases                                    

triple point ☛ 3 phase coexistence

2.12. PHASE TRANSITIONS AND PHASE EQUILIBRIA 71

Ttemperature

p
pr
es
su
re

generic
substance

3He 4He

(a) (b) (c)

Figure 2.24: (a) Typical thermodynamic phase diagram of a single component p-V -T system, showing triple point
(three phase coexistence) and critical point. (Source: Univ. of Helsinki.) Also shown: phase diagrams for 3He (b)
and 4He (c). What a difference a neutron makes! (Source: Brittanica.)

This may in principle be inverted to yield p = p(v, T ) or v = v(T, p) or T = T (p, v). The single constraint f(p, v, T )
on the three state variables defines a surface in {p, v, T } space. An example of such a surface is shown in Fig. 2.25,
for the ideal gas.

Real p-v-T surfaces are much richer than that for the ideal gas, because real systems undergo phase transitions in
which thermodynamic properties are singular or discontinuous along certain curves on the p-v-T surface. An
example is shown in Fig. 2.26. The high temperature isotherms resemble those of the ideal gas, but as one cools
below the critical temperature Tc, the isotherms become singular. Precisely at T = Tc, the isotherm p = p(v, Tc)
becomes perfectly horizontal at v = vc, which is the critical molar volume. This means that the isothermal com-

pressibility, κT = − 1
v

(
∂v
∂p

)
T

diverges at T = Tc. Below Tc, the isotherms have a flat portion, as shown in Fig. 2.28,
corresponding to a two-phase region where liquid and vapor coexist. In the (p, T ) plane, sketched for H2O in Fig. 2.4
and shown for CO2 in Fig. 2.29, this liquid-vapor phase coexistence occurs along a curve, called the vaporization
(or boiling) curve. The density changes discontinuously across this curve; for H2O, the liquid is approximately
1000 times denser than the vapor at atmospheric pressure. The density discontinuity vanishes at the critical point.
Note that one can continuously transform between liquid and vapor phases, without encountering any phase
transitions, by going around the critical point and avoiding the two-phase region.

In addition to liquid-vapor coexistence, solid-liquid and solid-vapor coexistence also occur, as shown in Fig. 2.26.
The triple point (Tt, pt) lies at the confluence of these three coexistence regions. For H2O, the location of the triple
point and critical point are given by

Tt = 273.16 K Tc = 647 K

pt = 611.7 Pa = 6.037× 10−3 atm pc = 22.06 MPa = 217.7 atm

2.12.2 The Clausius-Clapeyron relation

Recall that the homogeneity of E(S, V, N) guaranteed E = TS−pV +µN , from Euler’s theorem. It also guarantees
a relation between the intensive variables T , p, and µ, according to eqn. 2.148. Let us define g ≡ G/ν = NAµ, the
Gibbs free energy per mole. Then

dg = −s dT + v dp , (2.340)

P � V � T
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Equation of state for single component system may be written as

Single constraint              on 3 state variables 

f(P, V, T ) = 0

P-V-T SURFACES

This may in principle be inverted to yield

P = P (V, T ) V = V (T, P ) T = T (P, V )
f(P, V, T )

2.12. PHASE TRANSITIONS AND PHASE EQUILIBRIA 73

Figure 2.26: A p-v-T surface for a substance which contracts upon freezing. The red dot is the critical point and the
red dashed line is the critical isotherm. The yellow dot is the triple point at which there is three phase coexistence of
solid, liquid, and vapor.

2.12.3 Liquid-solid line in H2O

Life on planet earth owes much of its existence to a peculiar property of water: the solid is less dense than the
liquid along the coexistence curve. For example at T = 273.1 K and p = 1 atm,

ṽwater = 1.00013 cm3/g , ṽice = 1.0907 cm3/g . (2.346)

The latent heat of the transition is ℓ̃ = 333 J/g = 79.5 cal/g. Thus,

(
dp

dT

)

liq−sol

=
ℓ̃

T ∆ṽ
=

333 J/g

(273.1 K) (−9.05× 10−2 cm3/g)

= −1.35× 108 dyn

cm2 K
= −134

atm
◦C

.

(2.347)

The negative slope of the melting curve is invoked to explain the movement of glaciers: as glaciers slide down
a rocky slope, they generate enormous pressure at obstacles12 Due to this pressure, the story goes, the melting
temperature decreases, and the glacier melts around the obstacle, so it can flow past it, after which it refreezes.
But it is not the case that the bottom of the glacier melts under the pressure, for consider a glacier of height
h = 1 km. The pressure at the bottom is p ∼ gh/ṽ ∼ 107 Pa, which is only about 100 atmospheres. Such a pressure
can produce only a small shift in the melting temperature of about ∆Tmelt = −0.75◦ C.

Does the Clausius-Clapeyron relation explain how we can skate on ice? My seven year old daughter has a mass
of about M = 20 kg. Her ice skates have blades of width about 5 mm and length about 10 cm. Thus, even on one

12The melting curve has a negative slope at relatively low pressures, where the solid has the so-called Ih hexagonal crystal structure. At
pressures above about 2500 atmospheres, the crystal structure changes, and the slope of the melting curve becomes positive.

defines surface in             space {P, V, T}
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72 CHAPTER 2. THERMODYNAMICS

Figure 2.25: The surface p(v, T ) = RT/v corresponding to the ideal gas equation of state, and its projections onto
the (p, T ), (p, v), and (T, v) planes.

where s = S/ν and v = V/ν are the molar entropy and molar volume, respectively. Along a coexistence curve
between phase #1 and phase #2, we must have g1 = g2, since the phases are free to exchange energy and particle
number, i.e. they are in thermal and chemical equilibrium. This means

dg1 = −s1 dT + v1 dp = −s2 dT + v2 dp = dg2 . (2.341)

Therefore, along the coexistence curve we must have
(

dp

dT

)

coex

=
s2 − s1

v2 − v1

=
ℓ

T ∆v
, (2.342)

where
ℓ ≡ T ∆s = T (s2 − s1) (2.343)

is the molar latent heat of transition. A heat ℓ must be supplied in order to change from phase #1 to phase #2, even
without changing p or T . If ℓ is the latent heat per mole, then we write ℓ̃ as the latent heat per gram: ℓ̃ = ℓ/M ,
where M is the molar mass.

Along the liquid-gas coexistence curve, we typically have vgas ≫ vliquid, and assuming the vapor is ideal, we may
write ∆v ≈ vgas ≈ RT/p. Thus, (

dp

dT

)

liq−gas

=
ℓ

T ∆v
≈ p ℓ

RT 2
. (2.344)

If ℓ remains constant throughout a section of the liquid-gas coexistence curve, we may integrate the above equation
to get

dp

p
=

ℓ

R

dT

T 2
=⇒ p(T ) = p(T0) eℓ/RT0 e−ℓ/RT . (2.345)

P-V-T SURFACE OF IDEAL GAS

Surface                       corresponding to ideal gas equation of state

and its projections onto                          planes
P (v, T ) = RT/v

(P, T ), (P, v), (T, v)
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Figure 2.27: Equation of state for a substance which expands upon freezing, projected to the (v, T ) and (v, p) and
(T, p) planes.

foot, she only imparts an additional pressure of

∆p =
Mg

A
≈ 20 kg× 9.8 m/s2

(5× 10−3 m)× (10−1 m)
= 3.9× 105 Pa = 3.9 atm . (2.348)

The change in the melting temperature is thus minuscule: ∆Tmelt ≈ −0.03◦ C.

So why can my daughter skate so nicely? The answer isn’t so clear!13 There seem to be two relevant issues in play.
First, friction generates heat which can locally melt the surface of the ice. Second, the surface of ice, and of many
solids, is naturally slippery. Indeed, this is the case for ice even if one is standing still, generating no frictional
forces. Why is this so? It turns out that the Gibbs free energy of the ice-air interface is larger than the sum of free
energies of ice-water and water-air interfaces. That is to say, ice, as well as many simple solids, prefers to have a
thin layer of liquid on its surface, even at temperatures well below its bulk melting point. If the intermolecular
interactions are not short-ranged14, theory predicts a surface melt thickness d ∝ (Tm − T )−1/3. In Fig. 2.30 we
show measurements by Gilpin (1980) of the surface melt on ice, down to about −50◦ C. Near 0◦ C the melt layer
thickness is about 40 nm, but this decreases to ∼ 1 nm at T = −35◦ C. At very low temperatures, skates stick
rather than glide. Of course, the skate material is also important, since that will affect the energetics of the second
interface. The 19th century novel, Hans Brinker, or The Silver Skates by Mary Mapes Dodge tells the story of the
poor but stereotypically decent and hardworking Dutch boy Hans Brinker, who dreams of winning an upcoming
ice skating race, along with the top prize: a pair of silver skates. All he has are some lousy wooden skates, which
won’t do him any good in the race. He has money saved to buy steel skates, but of course his father desperately
needs an operation because – I am not making this up – he fell off a dike and lost his mind. The family has no
other way to pay for the doctor. What a story! At this point, I imagine the suspense must be too much for you to
bear, but this isn’t an American Literature class, so you can use Google to find out what happens (or rent the 1958

13For a recent discussion, see R. Rosenberg, Physics Today 58, 50 (2005).
14For example, they could be of the van der Waals form, due to virtual dipole fluctuations, with an attractive 1/r6 tail.

Real               surfaces are much richer than that for ideal gas

P-V-T SURFACE OF REAL GASES
P � v � T

because real systems undergo phase transitions
in which thermodynamic properties are singular 
or discontinuous along certain curves on               surfaceP � v � T

High temperature isotherms 
resemble those of ideal gas
 but as one cools below  
isotherms become singular 

Tc

T = Tc v = vc
which is critical molar volume

P = P (v, Tc)@          isotherm                 becomes perfectly horizontal @              
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Figure 2.28: Projection of the p-v-T surface of Fig. 2.26 onto the (v, p) plane.

movie, directed by Sidney Lumet). My point here is that Hans’ crappy wooden skates can’t compare to the metal
ones, even though the surface melt between the ice and the air is the same. The skate blade material also makes a
difference, both for the interface energy and, perhaps more importantly, for the generation of friction as well.

2.12.4 Slow melting of ice : a quasistatic but irreversible process

Suppose we have an ice cube initially at temperature T0 < Θ ≡ 273.15 K (i.e. Θ = 0◦ C) and we toss it into a pond
of water. We regard the pond as a heat bath at some temperature T1 > Θ. Let the mass of the ice be M . How much
heat Q is absorbed by the ice in order to raise its temperature to T1? Clearly

Q = Mc̃S(Θ − T0) + M ℓ̃+ Mc̃L(T1 −Θ) , (2.349)

where c̃S and c̃L are the specific heats of ice (solid) and water (liquid), respectively15, and ℓ̃ is the latent heat
of melting per unit mass. The pond must give up this much heat to the ice, hence the entropy of the pond,
discounting the new water which will come from the melted ice, must decrease:

∆Spond = −Q

T1

. (2.350)

Now we ask what is the entropy change of the H2O in the ice. We have

∆Sice =

∫
d̄Q

T
=

Θ∫

T0

dT
Mc̃S

T
+

M ℓ̃

Θ
+

T1∫

Θ

dT
Mc̃L

T

= Mc̃S ln

(
Θ

T0

)
+

M ℓ̃

Θ
+ Mc̃L ln

(
T1

Θ

)
.

(2.351)

15We assume c̃S(T ) and c̃L(T ) have no appreciable temperature dependence, and we regard them both as constants.

PROJECTION OF THE P-V-T SURFACE

lim
T!TC

T = lim
T!Tc

�1

v

✓
@v

@P

◆

T

= 1

Below    isotherms have a flat portion
corresponding to a two-phase region where liquid and vapor coexist
Tc
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Figure 2.24: (a) Typical thermodynamic phase diagram of a single component p-V -T system, showing triple point
(three phase coexistence) and critical point. (Source: Univ. of Helsinki.) Also shown: phase diagrams for 3He (b)
and 4He (c). What a difference a neutron makes! (Source: Brittanica.)

This may in principle be inverted to yield p = p(v, T ) or v = v(T, p) or T = T (p, v). The single constraint f(p, v, T )
on the three state variables defines a surface in {p, v, T } space. An example of such a surface is shown in Fig. 2.25,
for the ideal gas.

Real p-v-T surfaces are much richer than that for the ideal gas, because real systems undergo phase transitions in
which thermodynamic properties are singular or discontinuous along certain curves on the p-v-T surface. An
example is shown in Fig. 2.26. The high temperature isotherms resemble those of the ideal gas, but as one cools
below the critical temperature Tc, the isotherms become singular. Precisely at T = Tc, the isotherm p = p(v, Tc)
becomes perfectly horizontal at v = vc, which is the critical molar volume. This means that the isothermal com-

pressibility, κT = − 1
v

(
∂v
∂p

)
T

diverges at T = Tc. Below Tc, the isotherms have a flat portion, as shown in Fig. 2.28,
corresponding to a two-phase region where liquid and vapor coexist. In the (p, T ) plane, sketched for H2O in Fig. 2.4
and shown for CO2 in Fig. 2.29, this liquid-vapor phase coexistence occurs along a curve, called the vaporization
(or boiling) curve. The density changes discontinuously across this curve; for H2O, the liquid is approximately
1000 times denser than the vapor at atmospheric pressure. The density discontinuity vanishes at the critical point.
Note that one can continuously transform between liquid and vapor phases, without encountering any phase
transitions, by going around the critical point and avoiding the two-phase region.

In addition to liquid-vapor coexistence, solid-liquid and solid-vapor coexistence also occur, as shown in Fig. 2.26.
The triple point (Tt, pt) lies at the confluence of these three coexistence regions. For H2O, the location of the triple
point and critical point are given by

Tt = 273.16 K Tc = 647 K

pt = 611.7 Pa = 6.037× 10−3 atm pc = 22.06 MPa = 217.7 atm

2.12.2 The Clausius-Clapeyron relation

Recall that the homogeneity of E(S, V, N) guaranteed E = TS−pV +µN , from Euler’s theorem. It also guarantees
a relation between the intensive variables T , p, and µ, according to eqn. 2.148. Let us define g ≡ G/ν = NAµ, the
Gibbs free energy per mole. Then

dg = −s dT + v dp , (2.340)

WHAT A DIFFERENCE A NEUTRON MAKES!

Phase diagrams for 3He and 4He 

As we shall learn when we study mechanical statistics 
this extra neutron makes all the difference 

because 3He is a fermion while 4He is a boson

(2p + 1n + 2e) in 3He versus (2p + 2n + 2e) in 4He 
Only difference between these two atoms is a neutron: 
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SECOND ORDER PHASE TRANSITIONS 

⌘

⌘ = 0

⌘ _ (Tc � T )� � > 0

Phases are described by order parameter  
that is zero in one of phases and nonzero in other phase

Most of second-order transitions are controlled by temperature
High-temperature (symmetric) phase ☛

For     T < Tc ☛ with

For chemical potential in form      
there are boundaries between regions with different values of     

µ(⌘)

which are associated to different values of   
⌘

µ

Particles migrate from phase with higher    to that with lower     
spatial boundary between phases moves to reach equilibrium state 

µ µ

Since    can change continuously                                                 
it can adjust in uniform way without any phase boundaries 

decreasing its chemical potential everywhere

⌘
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SMART MATERIALS
Tetragonal phase expands more rapidly in 2 directions than the 3rd one                  
becomes cubic phase that expands uniformly in 3 directions as    is raised       
There is no rearrangement of atoms at transition temperature

Ferromagnetic ordering below the Curie point

T

17Thursday, October 2, 14
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 Kinetic Theory of Gases  

i 
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BASIC ASSUMPTIONS OF THE MOLECULAR THEORY

Because of large number of particles

Characteristic distance between molecules largely exceeds molecular size

This assumption allows to consider gas as ideal

1019 1 cm3

In describing equilibrium properties of ideal gas

There are about         molecules in            at normal conditions

impacts of individual particles on walls merge into time-independent pressure

and typical radius of intermolecular forces

with internal energy dominated by  kinetic energy of molecules

collisions between molecules can be neglected

Molecules are uniformly distributed within container

Directions of velocities of molecules are also uniformly distributed
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CHARACTERISTIC LENGTHS OF GAS
Concentration of molecules     is defined byn

n ⌘ N

V

r0 =
1

n
1
3

Characteristic distance       between molecules can be estimated as

volume of container

total number of molecules

There are also long-range attractive forces between molecules

Let     be radius of molecule ☛  assumption (2) requires

r0

a a ⌧ r0

(1)

(2)

but they are weak and do not essentially deviate molecular trajectories
if temperature is high enough and gas is ideal
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MEAN FREE PATH

 molecule under consideration will hit (on average)  other molecules

 mean free path ☛  typical distance   travel by molecules before colliding l

� = ⇡(2a)2l

Volume        of this cylinder ☛  volume per molecule �l 1/n

l =
1

�n
⇠ 1

a2n
=

✓
r0
a

◆2

r0 � r0 � a (3)

Considering other molecules as non-moving ☛

that are within cylinder of height     and cross-section 
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VELOCITY DISTRIBUTION FUNCTIONS 

Distribution of molecules in space is practically uniform,

Introduce the distribution function                             via

(v
x

, v
y

, v
z

)

G (v
x

, v
y

, v
z

)

         number of molecules with velocities within elementary volume

(4)dN = NG(v
x

, v
y

, v
z

) dv
x

dv
y

dv
z

dv
x

dv
y

dv
z

⌘ d3v ⌘ dv (5)

around velocity vector specified by its components

Integration over the whole velocity space gives total number of molecules      

(v
x

, v
y

, v
z

)

                              ☛    satisfies normalization conditionG (v
x

, v
y

, v
z

)

N

(6)

Distribution in space of velocities                        is nontrivial

☟
☟

☛

1 =

Z +1

�1

Z +1

�1

Z +1

�1
dv

x

dv
y

dv
z

G(v
x

, v
y

, v
z

)

☟
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(7)

DISTRIBUTION FUNCTION OF MOLECULAR SPEEDS
Since directions of molecular velocities are distributed uniformly                          
G (vz, vy, vz)                              depends only on absolute value of the velocity ☛ the speed

v =
q

v2z + v2y + v2z

Using expression for elementary volume in spherical coordinates
d3v = dv ⇥ vd✓ ⇥ v sin ✓d' = v2 dv sin ✓d✓d' (8)

(4) becomes  ☛ dN = N G (v)v2 dvd⌦

d⌦ ⌘ sin ✓d✓d' (10)
(9)☟

Using area of a sphere of unit radius
Z

sphere
d⌦ =

Z ⇡

0
d✓ sin ✓

Z 2⇡

0
d' = 2⇡

Z 1

�1
dx = 4⇡

  number of molecules within spherical shell becomes

dN = NG(v) 4⇡v2dv = N f(v)dv

(11)

(12)

f(v) = 4⇡v2G(v)

normalization ☛ 1 =

Z 1

0
dv f(v)

distribution function over molecular speeds ☛

(x ⌘ cos ✓)

☟

(13)

(14)
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AVERAGE, MEAN SQUARE AND RMS SPEEDS
 (9) can be rewritten in terms of          asf(v)

 average speed

 mean square speed

root mean square or rms speed

(15) 

(16) 

(17) 

(18) vrms =
p

v̄2

v̄2 =

Z 1

0
dv v2 f(v)

v̄ =

Z 1

0
dv v f(v)

dN = N f(v)dv
d⌦

4⇡
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