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ENTROPY

Consequence of second law is existence of entropy:

a state function @ thermodynamic equilibrium whose differential is given by

0Q =1T1dS (79)

S being a state function = does not change in any reversible cyclic process:

fg-

Since () is extensive w so is .S

Units of entropy are [S] — J/K
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CHANGE OF ENTROPY IN IRREVERSIBLE PROCESSES

In non equilibrium states m thermodynamic entropy is undefined

If initial and final states of irreversible process are in equilibrium
entropy of these states is defined

so = enfropy change AS;; = S — 53

We can find always reversible process connecting 1 and 2:
equivalent reversible process

Both processes can be joined into irreversible cyclic process
for which Clausius inequality applies and takes the form

2 1 .
/ 5_@ + / 5Qrever81ble <0 (80)
1 1 2 T
Since reversible integral is related to change of entropy
2 . 2
/ (SQrevermble _ A512 Z / 5_@ (81)
1 T L
0Q)
A5 2 — (82)
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CHANGE OF ENTROPY ON ISOLATED SYSTEMS
If system is isolated @ 0Q) = 0W = 0

Still m dS > 0 due to irreversible processes inside systems
e.g. relaxation to equilibrium

Consider isolated system that consists of two subsystems
each of them at internal equilibrium

but there is no equilibrium between subsystems
Changes in reservoir entropies are:

AS) :/mm Qs

HOT
7T, T T5
0Q) Q1 Q1
(AS)COLD — / %OLD — ? = —? > ()
T2 1 1

because hot reservoir loses heat ()5 to engine
and cold reservoir gains heat Q1 from engine
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ENTROPY CHANGES IN CYCLIC PROCESSES

Then for the whole system follows

(@, @
(AS)TOTAL T (Tl T Tg) Z O (83)

According to second law of thermodynamics heat flows from hot to cold body
T1 < T2

Reversible cycle m net change of total entropy of the engine + reservoir is zero

Irreversible cycle w increase of total entropy due to spontaneous processes
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MAXWELL RELATION

Inserting (17) and (79) into first law of thermodynamics
main thermodynamic identity

dU = TdS — PdV (84)
(84) is a differential of internal energy as a function of two variables
oU oU
' - [ == _p === 85
Correspondingly w T’ (85 ) ) P (8‘/) i (89)

As second mixed derivative does not depend on order of differentiation

02U OU
S0V — VoS (86)

()
oV 5 0S8 . (87)
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DISSIPATIVE WORK AS HEAT SUPPLY

5Q — 5Qreversible =+ 5Qdissipative 5Qreversible =TdS

and (88)
oW = 5Wreversible + 5Wdissipative 5Wreversible = PdV

Then using the first law (25), (84), and (88) we have

5@ — 5W =TdS — PdV = 5Qreversible — 5Wreversible (89)

It follows that 5Qdissipative — 5Wdissipative =0

or equivalenﬂy - 5@ — 5Wdissipative =TdS (90)

This shows that dissipative work is equivalent to heat supply
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VOLUME DEPENDENCE OF ENTROPY AND INTERNAL ENERGY

1 P
dS = —dU + —=dV 1
T " T &b
oU oU
vee @ = (57, 7+ (ov),

to obtain differential of entropy as a function of 1"and V'

1 {0oU 1 oU

Use uniqueness of mixed second derivatives of §
to obtain a relation involving derivatives of U

(92) implies (“) _1 <3U> _Cv (93)
oT T \ 0T T
\% Vv
and
oS 1 oU
(av) =7 (av) -
T T
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INTERNAL ENERGY OF IDEAL GAS
Uniqueness of second mixed derivative of S(1',V') is expressed as

o (o] _foiffa) _,
ov T \ ar “NorT|\ov (99)
viT T 1%
Performing differentiation
2 2
laU:_l ou + P _|_18U_|_18_P (96)
T oVoT 2 (\av ), T oToV ~ T\OT |

Taking into account uniqueness of mixed second derivative of U(T, V)

oU oP
(mJTT<m>VP o7
that is (41)

For the ideal gas from this formula and equation of state follows
(U /OV )p = that is U=U(T)
_—
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MORE ON MAXWELL RELATIONS
Substituting (97) into (94)

(3_*9) _ (a_P> (98)
oV o1l
T V

Maxwell relation (98) allows derivation of (97) in a shorter way

From (84) it follows that

oU 0S
T T

Substituting in (98) yields (97)
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THERMODYNAMIC COEFFICIENTS FOR ADIABATIC PROCESSES

Adiabatic compressibilit
P Y e 1 [0V (100)
ST v \op
To express K. through experimentally measurable quantities consider
0S 0S
dS = (8T> dl" + (W) dVv (101)
1% T
Setting S = () and inserting (93) and (98)
Cy 0P
0 = —dT — | dV (102)
I " <6T> 1%

Combining (102) with (7)

oV oV T (OP
"o <3P>po ) <8T>P Cv <8T>Vdv Ho3)
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EQUIVALENTLY...

1+ oV T (0P
oT Cy \ 0T
P 1%

oV
(105) can be simplified with help of (42) to vdV = <8P> dpP (105)
T

oV
AV = ((9P>T dP (104)

RT
Adiabatic compressibility m  Kg = —

g (106)

SinceC'p > C'y for all substances ks < K7 is universally valid

Adiabatic compression is accompanied by temperature increase
that is described by thermodynamic coefficient (07T /OP)g

Combining (102) and (105)
Cy .. (0P\ Cyv [0V
A= <8T>V Cp <8P>po (107)
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THIS YIELDS...

<8T> T <ap> (av) (108)
dp) — Cp \OT OP
S |4 T

With help of (13) this simplifies to

(g) -z (g;) - VI8 (109)
s P
For ideal gas 1’3 = land this formula gives
oT T'nR V (110)
dP . ~ Cp P Cp

Adiabat equation of ideal gas in the form of (53) can be rewritten as
T = AP/ A = const (111)
Differentiating this equation

oT 1 —1/v __ 1 T_ 1 |4
() (- e
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ENTROPY OF IDEAL GAS
Energy of ideal gas depends on temperature only U = U(T)
For perfect gas m (yy = const and (93) can be integrated over T

S(T,V) = CyInT + f(V) (113)
Using (98) S P nR
ov) T V (114)

Inserting S(T,V)into (114)m Jf /dV = nR/V
Integrationyieldsm f = nRInV + S

Then with help of (50) one obtains
S =CyInT + nRlnV + Sy = CyIn(TV'™1) + Sy

This formula defines entropy up to an arbitrary constant S

In adiabatic process of a perfect gas TVY~! = const
and entropy does not change

Luis Anchordoqui

Saturday, September 13, 14 15




THIRD LAW OF THERMODYNAMICS
Analyzing experimental data Walther Nernst concluded that

n the Limit 1" — O entropy becomes constant
independent of other thermodynamic parameters such as volume and pressure

05 _ (95 _ 0 (117)
oV 0P
T—0 T—0
Since in thermodynamics entropy is defined up to a constant
Planck has suggested to define  S(7"— 0) = 0 (118)

Explanation of these results is possible only within statistical physics
It turns out that statistically defined entropy always satisfies (117)

whereas (118) holds for most substances

Some materials have a degenerate ground state
and in this case entropy tends to a finite constant at 7" — ()
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CONSEQUENCES OF THE THIRD LAW

T
Integrating (93) one obtains = & — / % d1T + Sop

0
If C'vis finite at 7' — (O entropy logarithmically diverges

Same condition for Cpcan be proved in a similar way
Note that divergence of entropy of ideal gas (115) at 1" — 0

where gases become liquid and solid

oP
V I T—0

oV
P 1T—0

(119)

only proves that concept of ideal gas breaks down at low temperatures

From (98) m= pressure thermal coefficient vanishes at absolute zero

(121)

INext class we will see that thermal expansion coefficient also vanishes:

(122)

contradicting third law = Cy (1" — 0) = 0 (120)
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THE STIRLING CYCLE

Consists of two isotherms and two isochores

STIRLING CYCLE

pressure p

volume V

Isothermal ideal gas equation of state m d(pV) =0

PsVi = PpVs and PpVi = PcVs

Ps _ Pc _ Vi
PA Pp Vo
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THE STIRLING CYCLE 11

AB : This isothermal expansion is the power stroke

For n moles of ideal gas throughout

V-
2 RT:
PV:nRT2:P1V1:>WAB:/ dvnvz
Vi

U
— nRT,1n (ﬁ

Since ABis isotherm e Ugp = Up w AUap =0 Qap = Wap

BC' : isochoric cooling

dV =0= W =0

T
AUBCZUc—UBZ/ CvdTZCV(Tl—T2)<O
1o
Since Wpe =0= Qpc = AUpc

)
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THE STIRLING CYCLE III
CD : Isothermal compression

V-
1 nRT1 ‘/2
Wep /V2 V— nRT In (Vl)

Since CD is isotherm UC — UD 'AUCD =0 w™ QCD — WCD

DA : Isochoric heating IV — 0=V 0

AUDA:UA—UDZCV(TQ—Tl) > ()

We now add up all work contributions to obtain

v
W =Wap+Wpoc+Wep+Wpa = nR(TQ — Tl) In (2>

Vi
W Ty — Ty
Qap+Qpa To+Cy(Ty —T1)/[nRIn(Vg/Va)]

Cycle efficiency » 1 =

Because of the additional positive term on the denominator
efficiency is smaller than the efficiency of the Carnot cycle
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THE OTTO AND DIESEL CYCLES

Otto cycle is rough approximation to physics of gasoline engine

Consists of two adiabats and two isochores

OTTO CYCLE

pressure p

volume V

Assuming ideal gas along adiabats = d(pV"7) = 0

P _Po _ (Vi)
Ps Pp \Vs
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THE OTTO AND DIESEL CYCLES 11

AB : Adiabatic expansion (power stroke)
Qap=0= Wap =—-AUap=Us —Up

PsV; — P P 71
Wap — LAV B Vo _ A Vi - (E)
v —1 v —1

Equivalently w= using adiabatic equation of state

% V. y—1
2 2 P
‘VAB _ / PdV = PAVR/ AV~ = AVl 1 (Vl)

Vi Vi v -1

BC : Isochoric cooling (exhaust)

dV =0= Wpc =0

heat absorbed w (Q)pc =Uc —Up =Cy (12 — 1Y) = = 1
N —

(Pc — Pp)

In realistic engine
this is stage in which old burned gas is ejected and new gas is inserted
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THE OTTO AND DIESEL CYCLES III

C'D : adiabatic compression Qc-p = 0= Wep = Us — Up

PcVo — PpVy PpVy _ Vi e
Wep = = — 1 — | —=
v—1 v—1 Vs

DA : isochoric heating (combustion of the gas)
dV =0= Wpa =0

heat abosrbed by gas

Vi
&pa=Uas—Up= 7_1(PA_PD)
total work done per cycle )
Py — Pp)V. i\
W:WAB—FWBc—l—WCD—l—WDA:(AW f)l 1—(%)
— 2

efficiency
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THE OTTO AND DIESEL CYCLES IV

Ratio r =V, /V, w compression ratio
Otto cycle becomes more efficient simply by increasing compression ratio
Problem with this scheme is that

if fuel mixture becomes too hot m it will spontaneously ‘preignite’

and pressure will jump up before point [) in cycle is reached

Diesel engine avoids preignition by compressing air only
and then later spraying fuel into cylinder
when air femperature is sufficient for fuel ignition

Rate at which fuel is injected is adjusted
so that the ignition process takes place at constant pressure

Diesel engine m step [) A is isobararic
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JOULE-BRAYTON CYCLE

Consists of two adiabats and two isobars

_ JOULE—BRAYTON
PO S I CYCLE

0,

]

.

=

7))

0 5Q = 0

5| s0=0 -

D P=P, C
volume V
Along adiabats we have
v _ g

PV) =PV} and PyVp =PVg

Vb

Va

Ve _ (2
Ve \ P

2|~
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JOULE-BRAYTON CYCLE 11

AB : Isobaric expansion

VB
Wap :/ Py dV = P,(Vg — Vy)

Va
PV — V.
AUap = Up — Ua = 220VEZVa)
v —1
VP (Vg — Va)

Qap =AUap + Wap =

v —1

BC : Adiabatic expansion
Qpc =0= Wpc=Up —Uc
work done by the gas is:

PVy — PiVe  PiVp PVe\ PV P\
v—1 y—1 Ve ) 4 —1 P,
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JOULE-BRAYTON CYCLE III

CD : Isobaric compression

Vp Pl 1—~
WCD:/ P dV = P,(Vp — Vo) = —Py(Vig — V) (F)
Vo 2
P(Vp — V.
AUep = Up — Up — D2VD = V)
v —1
P P\
Qop = AUcp + Wep = -2 (Vg — Va) [ =
v—1 Py

DA : Adiabatic compression
Qpa=0= Wpa=Up —Ujax

- PVa
v—1

PiVp — PyVy PoVa - P Vp
PoVa

()
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JOULE-BRAYTON CYCLE IV

Total work done per cycle:

Py(Vg -V,
W:WAB‘FWBC—FWCD-FWDA:—W 2(73_1 4)
Cycle efficiency w n= ﬂ — 1 — (i

QAB Ps
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