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C. B.-Champagne 2

Overview

Luis Anchordoqui

ENTROPY

Consequence of second law is existence of entropy: 

a state function @ thermodynamic equilibrium whose differential is given by

being a state function ☛ does not change in any reversible cyclic process:S

(79)

Since       is extensive ☛ so is Q S

 Units of entropy are [S] = J/K

I
�Q

T
= 0

�Q = T dS
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C. B.-Champagne 2

Overview

Luis Anchordoqui

CHANGE OF ENTROPY IN IRREVERSIBLE PROCESSES
In non equilibrium states ☛  thermodynamic entropy is undefined
If initial and final states of irreversible process are in equilibrium

�S12 = S2 � S1

We can find always reversible process connecting 1 and 2:

Both processes can be joined into irreversible cyclic process

(80)
Z 2

1

�Q

T
+

Z 1

2

�Qreversible

T
 0

so ☛   entropy change
entropy of these states is defined

equivalent reversible process

for which Clausius inequality applies and takes the form

Since reversible integral is related to change of entropy
Z 2

1

�Qreversible

T
= �S12 �

Z 2

1

�Q

T
(81)

dS � �Q

T (82)
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CHANGE OF ENTROPY ON ISOLATED SYSTEMS

Still ☛              due to irreversible processes inside systems

�Q = �W = 0

dS � 0

Consider isolated system that consists of two subsystems

If system is isolated ☛

e.g. relaxation to equilibrium

each of them at internal equilibrium
 but there is no equilibrium between subsystems

Changes in reservoir entropies are:

(�S)HOT =

Z
�QHOT

T
= �Q2

T2
< 0

T = T2

T = T1

because hot reservoir loses heat        to engine
and cold reservoir gains heat         from engine

Q2

Q1

(�S)COLD =

Z
�Q

COLD

T
=

Q1

T1
= �Q1

T1
> 0
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ENTROPY CHANGES IN CYCLIC PROCESSES

(83)

Then for the whole system follows

Reversible cycle ☛ net change of total entropy of the engine + reservoir is zero

T1 < T2

(�S)
TOTAL

= �
✓
Q1

T1
+

Q2

T2

◆
� 0

According to second law of thermodynamics heat flows from hot to cold body

Irreversible cycle ☛ increase of total entropy due to spontaneous processes
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MAXWELL RELATION
Inserting (17) and (79) into first law of thermodynamics

(84) is a differential of internal energy as a function of two variables

Correspondingly ☛ 

(84)

As second mixed derivative does not depend on order of differentiation

it follows that

(85)

(86)

(87)

dU = TdS � PdV

T =

 
@U

@S

!

V

� P =

 
@U

@V

!

S

 
@T

@V

!

S

= �
 
@P

@S

!

V

@2U

@S@V
=

@2U

@V @S

 main thermodynamic identity
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DISSIPATIVE WORK AS HEAT SUPPLY

(88)

(89)

(90)

It follows that ☛

Then using the first law (25), (84), and (88) we have

�Q = �Qreversible + �Qdissipative

and
�W = �Wreversible + �Wdissipative

�Qreversible = TdS

�Wreversible = PdV

�Q� �W = TdS � PdV = �Qreversible � �Wreversible

�Qdissipative � �Wdissipative = 0

�Q� �Wdissipative = TdS

This shows that dissipative work is equivalent to heat supply

or equivalently ☛
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VOLUME DEPENDENCE OF ENTROPY AND INTERNAL ENERGY

 to obtain differential of entropy as a function of     and 

(91)

(92)

dS =
1

T
dU +

P

T
dV

dS =
1

T

 
@U

@T

!

V

dT +
1

T

" 
@U

@V

!

T

+ P

#
dV

T V

 Use uniqueness of mixed second derivatives of                                                    
U

S

 
@S

@T

!

V

=
1

T

 
@U

@T

!

V

=
CV

T
(93)

and
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@V

!

T

=
1

T
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@V

!

T

+ P

#

dU =

✓
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◆

V

dT +

✓
@U

@V

◆

T

dV

to obtain a relation involving derivatives of  

(92) implies

Use
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INTERNAL ENERGY OF IDEAL GAS
Uniqueness of second mixed derivative of                is expressed asS(T, V )

Performing differentiation

Taking into account uniqueness of mixed second derivative of                

that is (41)
For the ideal gas from this formula and equation of state follows 

that is

(95)

(96)

(97)

U = U(T )(@U/@V )T = 0

U(T, V )
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@V
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MORE ON MAXWELL RELATIONS

Substituting in (98) yields (97)

(99)

(98)

Substituting         into (94)

 
@U

@V

!

T

= T

 
@S

@V

!

T

� P

 
@S

@V

!

T

=

 
@P

@T

!

V

(97)

Maxwell relation (98) allows derivation of (97) in a shorter way

From (84) it follows that
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THERMODYNAMIC COEFFICIENTS FOR ADIABATIC PROCESSES

Adiabatic compressibility 
S = � 1

V

 
@V

@P

!

S

To express         through experimentally measurable quantities considerS

(100)

(101)dS =

 
@S

@T

!

V

dT +

 
@S

@V

!

T

dV

Setting                 and inserting (93) and (98)dS = 0

0 =
CV

T
dT +

 
@P

@T

!

V

dV

Combining (102) with (7)

(102)

dV =

 
@V

@P

!

T

dP �
 
@V

@T

!

P

T

CV

 
@P

@T

!

V

dV (103)
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EQUIVALENTLY...

(105) can be simplified with help of (42) to

Adiabatic compressibility ☛

Since                   for all substances                      is universally valid

Adiabatic compression is accompanied by temperature increase

Combining (102) and (105)

(106)

(107)

(105)�dV =

 
@V

@P

!

T

dP

S =
T

�

�CV

T
dT =

 
@P

@T

!

V

CV

CP

 
@V

@P

!

T

dP

CP > CV S < T

(@T/@P )S

"
1 +

 
@V

@T

!

P

T

CV

 
@P

@T

!

V

#
dV =

 
@V

@P

!

T

dP

that is described by thermodynamic coefficient

(104)
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THIS YIELDS...

With  help of (13) this simplifies to

For ideal gas                 and this formula gives

 Adiabat equation of ideal gas in the form of (53) can be rewritten as

Differentiating this equation

(112)

(110)

(109)

(111)

(108)
 
@T

dP

!

S

= � T

CP
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!

V
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CP
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=

V

CP
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!

S

= A

 
1 � 1

�

!
P�1/� =

 
1 � 1

�

!
T

P
=

 
1 � 1

�

!
V

nR

T = AP 1�1/� A = const

T� = 1
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ENTROPY OF IDEAL GAS
Energy of ideal gas depends on temperature only 

(113)

(114)
 Using (98)

Inserting                into (114) ☛

S(T, V ) = CV lnT + f(V )
 
@S

@V

!

T

=
P

T
=

nR

V

U = U(T )
For perfect gas ☛
                             

CV = const T

S(T, V ) df/dV = nR/V

and (93) can be integrated over

Integration yields ☛ f = nR lnV + S0 
Then with help of (50) one obtains

S = CV lnT + nR lnV + S0 = CV ln (TV ��1) + S0

This formula defines entropy up to an arbitrary constant 
                       

and entropy does not change
In adiabatic process of a perfect gas   TV ��1

= const

S0
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THIRD LAW OF THERMODYNAMICS
Analyzing experimental data Walther Nernst concluded that

T ! 0

 
@S

@V

!

T!0

=

 
@S

@P

!

T!0

= 0 (117)

(118)
Since in thermodynamics entropy is defined up to a constant        
Planck has suggested to define S(T ! 0) = 0

Some materials have a degenerate ground state                                     

Explanation of these results is possible only within statistical physics
It turns out that statistically defined entropy always satisfies (117) 
whereas (118) holds for most substances

T ! 0

independent of other thermodynamic parameters such as volume and pressure
In the limit                 entropy becomes constant

and in this case entropy tends to a finite constant at
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CONSEQUENCES OF THE THIRD LAW

Integrating (93) one obtains ☛ (119)

(120)

S =

Z T

0

CV

T
dT + S0

CV (T ! 0) = 0
If    is finite at           entropy logarithmically divergesT ! 0CV

(121)

Same condition for     can be proved in a similar way
Note that divergence of entropy of ideal gas (115) at                           
only proves that concept of ideal gas breaks down at low temperatures               
where gases become liquid and solid

CP

T ! 0

From (98) ☛ pressure thermal coefficient vanishes at absolute zero 
@P

@T

!

V

?????
T!0

= 0

Next class we will see that thermal expansion coefficient also vanishes:

(122)

 
@V

@T

!

P

?????
T!0

= 0

contradicting third law ☛
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THE STIRLING CYCLE 

Consists of two isotherms and two isochores

2.6. HEAT ENGINES AND THE SECOND LAW OF THERMODYNAMICS 39

Figure 2.15: A Stirling cycle consists of two isotherms (blue) and two isochores (green).

AB: This isothermal expansion is the power stroke. Assuming ν moles of ideal gas throughout, we have pV =
νRT2 = p1V1, hence

WAB =

V2∫

V1

dV
νRT2

V
= νRT2 ln

(
V2

V1

)
. (2.89)

Since AB is an isotherm, we have EA = EB, and from ∆EAB = 0 we conclude QAB = WAB.

BC: Isochoric cooling. Since dV = 0 we have WBC = 0. The energy change is given by

∆EBC = EC − EB =
νR(T1 − T2)

γ − 1
, (2.90)

which is negative. Since WBC = 0, we have QBC = ∆EBC.

CD: Isothermal compression. Clearly

WCD =

V1∫

V2

dV
νRT1

V
= −νRT1 ln

(
V2

V1

)
. (2.91)

Since CD is an isotherm, we have EC = ED, and from ∆ECD = 0 we conclude QCD = WCD.

DA: Isochoric heating. Since dV = 0 we have WDA = 0. The energy change is given by

∆EDA = EA − ED =
νR(T2 − T1)

γ − 1
, (2.92)

which is positive, and opposite to ∆EBC. Since WDA = 0, we have QDA = ∆EDA.

We now add up all the work contributions to obtain

W = WAB + WBC + WCD + WDA

= νR(T2 − T1) ln

(
V2

V1

)
.

(2.93)

Isothermal ideal gas equation of state ☛    d(pV ) = 0

PAV1 = PBV2 PDV1 = PCV2

PB

pA
=

PC

PD
=

V1

V2

and
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THE STIRLING CYCLE II

For    moles of ideal gas throughout 

PV = nRT2 = P1V1 ) WAB =

Z V2

V1

dV
nRT2

V
= nRT2 ln

✓
V2

V1

◆

Since      is isotherm ☛              ☛                ☛

n

AB : This isothermal expansion is the power stroke  

AB UA = UB �UAB = 0 QAB = WAB

BC : isochoric cooling 

Since WBC = 0 ) QBC = �UBC

dV = 0 ) WBC = 0

�UBC = UC � UB =

Z T1

T2

CV dT = CV (T1 � T2) < 0
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WCD =

Z V1

V2

dV
nRT1

V
= �nRT1 ln

✓
V2

V1

◆CD :  Isothermal compression  

Since       is isothermCD UC = UD �UCD = 0 QCD = WCD☛ ☛ ☛

THE STIRLING CYCLE III

Isochoric heating DA :
dV = 0 ) WDA = 0

WDA = 0 ) QDA = �UDASince

We now add up all work contributions to obtain

W = WAB +WBC +WCD +WDA = nR(T2 � T1) ln

✓
V2

V1

◆

Cycle efficiency ☛

�UDA = UA � UD = CV (T2 � T1) > 0

⌘ =
W

QAB +QDA
=

T2 � T1

T2 + CV (T2 � T1)/[nR ln(VB/VA)]

 Because of the additional positive term on the denominator 
efficiency is smaller than the efficiency of the Carnot cycle
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THE OTTO AND DIESEL CYCLES 

Otto cycle is rough approximation to physics of gasoline engine

Consists of two adiabats and two isochores

40 CHAPTER 2. THERMODYNAMICS

Figure 2.16: An Otto cycle consists of two adiabats (dark red) and two isochores (green).

The cycle efficiency is once again

η =
W

QAB

= 1− T1

T2

. (2.94)

2.6.6 The Otto and Diesel cycles

The Otto cycle is a rough approximation to the physics of a gasoline engine. It consists of two adiabats and two
isochores, and is depicted in Fig. 2.16. Assuming an ideal gas, along the adiabats we have d(pV γ) = 0. Thus,

pA V γ
1 = pB V γ

2 , pD V γ
1 = pC V γ

2 , (2.95)

which says
pB

pA

=
pC

pD

=

(
V1

V2

)γ

. (2.96)

AB: Adiabatic expansion, the power stroke. The heat transfer is QAB = 0, so from the First Law we have WAB =
−∆EAB = EA − EB, thus

WAB =
pAV1 − pBV2

γ − 1
=

pAV1

γ − 1

[

1−
(

V1

V2

)γ−1
]

. (2.97)

Note that this result can also be obtained from the adiabatic equation of state pV γ = pAV γ
1 :

WAB =

V2∫

V1

p dV = pAV γ
1

V2∫

V1

dV V −γ =
pAV1

γ − 1

[

1−
(

V1

V2

)γ−1
]

. (2.98)

BC: Isochoric cooling (exhaust); dV = 0 hence WBC = 0. The heat QBC absorbed is then

QBC = EC − EB =
V2

γ − 1
(pC − pB) . (2.99)

In a realistic engine, this is the stage in which the old burned gas is ejected and new gas is inserted.

�Q = 0

�Q = 0

Assuming ideal gas along adiabats ☛ d(pV �) = 0

PAV
�
1 = PBV

�
2 PDV �

1 = PCV
�
2

PB

PA
=

PC

PD
=

✓
V1

V2

◆�

and
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THE OTTO AND DIESEL CYCLES II 

AB : Adiabatic expansion (power stroke)

QAB = 0 ) WAB = ��UAB = UA � UB

WAB =
PAV1 � PBV2

� � 1
=

PAV1

� � 1

"
1�

✓
V1

V2

◆��1
#

Equivalently ☛ using adiabatic equation of state 

WAB =

Z V2

V1

PdV = PAV
�
1

Z V2

V1

dV v�� =
PAV1

� � 1

"
1�

✓
V1

V2

◆��1
#

Isochoric cooling (exhaust)

In realistic engine  
this is stage in which old burned gas is ejected and new gas is inserted

BC :

heat absorbed ☛ QBC = UC � UB = CV (T2 � T1) =
V2

� � 1
(PC � PB)

dV = 0 ) WBC = 0
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WCD =
PCV2 � PDV1

� � 1
= �PDV1

� � 1

"
1�

✓
V1

V2

◆��1
#

   adiabatic compression QCD = 0 ) WCD = UC � UDCD :

DA : isochoric heating (combustion of the gas)

dV = 0 ) WDA = 0

THE OTTO AND DIESEL CYCLES III 

heat abosrbed by gas 

QDA = UA � UD =
V1

� � 1
(PA � PD)

W = WAB +WBC +WCD +WDA =
(PA � PD)V1

� � 1

"
1�

✓
V1

V2

◆��1
#

⌘ ⌘ W

QDA
= 1�

✓
V1

V2

◆��1

total work done per cycle

efficiency
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THE OTTO AND DIESEL CYCLES IV 

Ratio                      ☛   compression ratio                                                                                         

and pressure will jump up before point      in cycle is reached 

it will spontaneously ‘preignite‘  

r = V2/V1

Problem with this scheme is that   

Otto cycle becomes more efficient simply by increasing compression ratio

if fuel mixture becomes too hot ☛      

D

when air temperature is sufficient for fuel ignition 

Diesel engine avoids preignition by compressing air only
and then later spraying fuel into cylinder 

Rate at which fuel is injected is adjusted 
so that the ignition process takes place at constant pressure 

Diesel engine ☛ step           is isobararic DA
24Saturday, September 13, 14



JOULE-BRAYTON CYCLE 

2.6. HEAT ENGINES AND THE SECOND LAW OF THERMODYNAMICS 43

Figure 2.18: A Joule-Brayton cycle consists of two adiabats (dark red) and two isobars (light blue).

CD: Isobaric compression at p = p1.

WCD =

VD∫

VC

dV p1 = p1 (VD − VC) = −p2 (VB − VA)

(
p1

p2

)1−γ−1

(2.114)

∆ECD = ED − EC =
p1 (VD − VC)

γ − 1
(2.115)

QCD = ∆ECD + WCD = − γ p2

γ − 1
(VB − VA)

(
p1

p2

)1−γ−1

. (2.116)

DA: Adiabatic expansion; QDA = 0 and WDA = ED − EA. The work done by the gas is

WDA =
p1VD − p2VA

γ − 1
= − p2VA

γ − 1

(
1− p1

p2

· VD

VA

)

= −p2 VA

γ − 1

[

1−
(

p1

p2

)1−γ−1]

.

(2.117)

The total work done per cycle is then

W = WAB + WBC + WCD + WDA

=
γ p2 (VB − VA)

γ − 1

[

1−
(

p1

p2

)1−γ−1]
(2.118)

and the efficiency is defined to be

η ≡ W

QAB

= 1−
(

p1

p2

)1−γ−1

. (2.119)

�Q = 0
�Q = 0

Consists of two adiabats and two isobars

Along adiabats we have

P2V
�
A = P1V

�
D

P2V
�
B = P1V

�
C

VD

VA
=

VC

VB
=

✓
P2

P1

◆ 1
�

and
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JOULE-BRAYTON CYCLE II
AB : Isobaric expansion

WAB =

Z VB

VA

P2 dV = P2(VB � VA)

�UAB = UB � UA =
P2(VB � VA)

� � 1

QAB = �UAB +WAB =
�P2(VB � VA)

� � 1

BC :

WBC =
P2VB � P1VC

� � 1
=

P2VB

� � 1

✓
1� P1VC

p2VB

◆
=

P2VB

� � 1

"
1�

✓
P1

P2

◆1���1#

Adiabatic expansion

QBC = 0 ) WBC = UB � UC

work done by the gas is:
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JOULE-BRAYTON CYCLE III

CD :

WCD =

Z VD

VC

P1 dV = P1(VD � VC) = �P2(VB � VA)

✓
P1

P2

◆1���1

�UCD = UD � UC =
P1(VD � VC)

� � 1

QCD = �UCD +WCD = � �P2

� � 1
(VB � VA)

✓
P1

P2

◆1���1

QDA = 0 ) WDA = UD � UA

DA :

WDA =
P1VD � P2VA

� � 1
= �P2VA

� � 1

✓
1� P1VD

P2VA

◆
= �P2VA

� � 1

"
1�

✓
P1

P2

◆1���1#

Isobaric compression

Adiabatic compression
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JOULE-BRAYTON CYCLE IV

W = WAB +WBC +WCD +WDA = ��P2(VB � VA)

� � 1

"
1�

✓
P1

P2

◆1���1#

⌘ ⌘ W

QAB
= 1�

✓
P1

P2

◆1���1

Total work done per cycle:

Cycle efficiency ☛
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