Luis Anchordoqui Lehman College City University of New York

Thermodynamics and Statistical Mechanics

Thermodynamics II

4 September 2014

- Heat capacity
- Heat machines
- Second Law of Thermodynamics
- Carnot Theorem
- Clausius inequality
- Entropy

HEAT CAPACITY

In most cases adding heat to system leads to increase of its ${\cal T}$

c 0

Heat capacity
$$racking = \frac{\delta Q}{dT}$$
 (28)

Heat capacity is proportional to system size and so is extensive variable

Introduce specific quantities - heat and heat capacity per kilomole

$$q \equiv \frac{Q}{n} \qquad c = \frac{C}{n} = \frac{\delta q}{dT}$$
 (29)

Heat capacity depends on the type of the process

HEAT CAPACITY (isobaric and isochoric processes)

If heat is added to system while volume is kept constant dV = 0we obtain the isochoric heat capacity $C_V = \left(\frac{\delta Q}{dT}\right)_V$ (30) If we keep a constant pressure dP = 0we obtain the isobaric heat capacity $C_P = \left(\frac{\delta Q}{dT}\right)_P$ (31)

In isochoric case no work is done

so heat fully converts into internal energy and temperature increases

In the isobaric case system usually expands upon heating and a negative work is done on it

This leads to smaller increase of U and thus smaller increase of $\ T$

ISOCHORIC HEAT CAPACITY

Let us rewrite first law of thermodynamics (25) with (17) in form

$$\delta Q = dU + PdV \tag{32}$$

Considering energy as a function of $T\,$ and $V\,$

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV$$
 (33)

Combining this with the previous equation

$$\delta Q = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left[\left(\frac{\partial U}{\partial V}\right)_{T} + P\right] dV$$
 (34)

At constant volume this equation yields $\delta Q = (\partial U/\partial T)_V dT$ so

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V$$
(35)

ISOBARIC HEAT CAPACITY

To find isobaric heat capacity C_P we must take into account that at constant $P\,\,$ the $V\,\,$ in (32) changes because of thermal expansion,

$$dV = \left(\frac{\partial V}{\partial T}\right)_P \, dT$$

Inserting this into (34) we obtain

$$\delta Q = \left[C_V + \left(\frac{\partial U}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_P + P \left(\frac{\partial V}{\partial T} \right)_P \right] dT$$
(37)

SO

$$C_P = C_V + \left[\left(\frac{\partial U}{\partial V} \right)_T + P \right] \left(\frac{\partial V}{\partial T} \right)_P$$
(38)

MAYER'S RELATION

Because of of negligibly weak interaction between particles energy of ideal gas depends only on $T + (\partial U/\partial V)_T = 0$

From the equation of state (5) we obtain $racksim (\partial V/\partial T)_V = nR/P$ Substituting these in (38) we obtain Mayer's relation for ideal gas

$$C_P = C_V + nR \tag{39}$$

or $c_P = c_V + R$ for heat capacities per kilomole

In terms of number of particles N Mayer's relation becomes

$$C_P = C_V + N k_B \tag{40}$$

or $c_P = c_V + k_B$ for heat capacities per particle

ADIABATIC PROCESS OF IDEAL GAS

For ideal gas internal energy is a function of temperature only

$$dU = \left(\frac{\partial U}{\partial T}\right)_V dT = C_V dT \tag{44}$$

In adiabatic process $\delta Q = 0$ Substituting these two results in (25) and using (17) we obtain

$$C_V dT = -P dV \tag{45}$$

Either P or V can be eliminated with help of (5)

$$C_V dT = -n RT \frac{dV}{V}$$
(46)

This can be integrated if temperature dependence $C_{V}\left(T
ight)$ is known

PERFECT GAS

For perfect gas
$$racksin C_V = \text{const} > \text{integration of (46) yields}$$

$$\ln T = -\frac{nR}{C_V} \ln V + \text{const}$$
(47)

or equivalently
$$TV^{nR/C_V} = \text{const}$$
 (48)

it is convenient to introduce
$$\gamma \equiv \frac{C_P}{C_V}$$
 (49)

with help of Mayer's relation (39)

$$C_V = \frac{nR}{\gamma - 1} \qquad C_P = \frac{nR\gamma}{\gamma - 1} \tag{50}$$

Adiabatic equation (48) becomes $rac{}TV^{\gamma-1} = const$ (51)

Using (5) we can rewrite (51) as
$$PV^{\gamma} = \text{const}$$
 (52)
or else as $TP^{1/\gamma-1} = \text{const}$ (53)

Luis Anchordoqui

WORK DONE IN ADIABATIC PROCESS

Using (52)

$$W_{12} = \int_{V_1}^{V_2} P \ dV = \text{const} \int_{V_1}^{V_2} \frac{dV}{V} = \frac{1}{1 - \gamma} (V_2^{1 - \gamma} - V_1^{1 - \gamma})$$
(54)

Substituting const = $P_1 V_1^{\gamma} = P_2 V_2^{\gamma}$ into (54)

$$W_{12} = \frac{1}{1 - \gamma} (P_2 V_2 - P_1 V_1)$$
(55)

Using (5) and (50) one can simplify this formula to

$$W_{12} = \frac{nR}{1 - \gamma} (T_2 - T_1) = C_V (T_1 - T_2)$$
(56)

ALTERNATIVELY...

HEAT MACHINES

Heat machines were a major application of thermodynamics in XIX century

Basis of their understanding is first law of thermodynamics (25)

Heat machine includes two reservoirs with different temperatures and a system that exchanges heat with two reservoirs and does work in a cyclic process

There are three types of heat machines:

engines, refrigerators and heat pumps

Engines of XIX century used steam as a source of heat (obtained by heating water by fire)

Contemporary motors use fuel that burns and generates heat directly

Refrigerators and heat pumps also use agents other than water

HEAT ENGINE

During one cycle system receives heat $Q_2\,$ from hot reservoir gives heat $\mathcal{Q}_1\,$ to cold reservoir and makes work W

EFFICIENCY OF HEAT ENGINE

Efficiency of engine - ratio of output energy to input energy

 $\eta = \frac{W}{Q_2}$

(
$$\mathcal{Q}_1$$
 is lost energy) (60)

In cyclic processes internal energy of system does not change:

$$\Delta U = \oint dU = 0 \tag{61}$$

Integrating (25) over cycle

$$0 = \oint (\delta Q - \delta W) = Q - W = Q_2 - Q_1 - W$$
 (62)

so that the work done by the system is $\ W = Q_2 - \mathcal{Q}_1$

Inserting this into (60) \blacktriangleright $\eta = 1 - \frac{Q_1}{Q_2}$

Note that $\eta < 1$

To make efficiency η as high as possible we should minimize \mathcal{Q}_1

(63)

CARNOT CYCLE

CARNOT ENGINE

For ideal gas U = U(T) realong isotherms U = const $dU = \delta Q - \delta W = 0$

Using (20):

$$Q_{2} = Q_{AB} = W_{AB} = nRT_{2} \ln \frac{V_{B}}{V_{A}}$$

$$Q_{1} = -Q_{CD} = -W_{CD} = nRT_{2} \ln \frac{V_{C}}{V_{D}} > 0$$
(64)

Using (51):

$$T_2 V_B^{\gamma - 1} = T_1 V_C^{\gamma - 1} \qquad T_2 V_A^{\gamma - 1} = T_1 V_D^{\gamma - 1}$$
 (65)

Dividing these equations by each other $r = V_B/V_A = V_C/V_D$

$$\frac{\mathcal{Q}_1}{\mathcal{Q}_2} = \frac{T_1}{T_2} \tag{66}$$

(63) gives Carnot formula for temperature scale

$$\eta = 1 - \frac{T_1}{T_2}$$

Luis Anchordogui

(67)

EFFICIENCY OF CARNOT ENGINE

Efficiency η becomes close to 1 as $\,T_1 \to 0\,$ practically it is impossible to realize

In standard engines T_1 is temperature at normal conditions $T_1 = 300 K$ T_2 of hot reservoir must essentially exceed T_1

e.g. for
$$T_2 = 600 \, K \blacktriangleright \eta = 0.5$$

In practice - processes in heat engines deviate from Carnot cycle

this leads to further decrease of efficiency η

Friday, September 5, 14

EFFICIENCY OF REFRIGERATOR

Efficiency of refrigerator

$$c = \frac{\text{output}}{\text{input}} = \frac{Q_1}{\mathcal{W}} = \frac{Q_1}{\mathcal{Q}_2 - Q_1}$$
(68)

For Carnot refrigerator with help of (66)

$$c = \frac{T_1}{T_2 - T_1}$$
(69)

Efficiency of a refrigerator can be very high if T_1 and $T_2\;$ are close

This is the situation when the refrigerator starts to work

As T_1 decreases well below T_2 (environmental $300\,K$) efficiency becomes small

HEAT PUMP

Similar to refrigerator but interpretation of reservoirs 1 and 2 changes

1 is the environment from where heat is being pumped whereas 2 is the reservoir that is being heated (e.g. a house)

Friday, September 5, 14

EFFICIENCY OF HEAT PUMP

Efficiency

$$c = \frac{\text{output}}{\text{input}} = \frac{Q_2}{W} = \frac{Q_2}{Q_2 - Q_1}$$
 (70)

For Carnot heat pump efficiency becomes inverse of that of Carnot engine

$$d = \frac{T_2}{T_2 - T_1}$$
(71)

Efficiency of heat pump is always greater than 1 If T_1 and T_2 are close to each other -d becomes large This characterizes the initial stage of the work of a heat pump After T_2 increases well above T_1- efficiency becomes close to 1 Heating a house in winter involves $T_1 \approx 270 K$ while $T_2 \approx 300 K$ $- d \approx 10$

In reality there are losses that lower heat pump efficiency

THE SECOND LAW OF THERMODYNAMICS

Postulate of Lord Kelvin:

A transformation whose only final result is to extract heat from a source at fixed temperature and transform that heat into work is impossible

Postulate of Clausius:

A transformation whose only result is to transfer heat from a body at a given temperature to a body at a higher temperature is impossible

CARNOT'S THEOREM

Efficiency of any reversible heat engine operating between heat reservoirs with temperatures T_1 and T_2 is equal to the efficiency of Carnot engine $\eta\,=\,1\,-\,T_1/T_2$

while the efficiency of any irreversible heat engine is lower than this

To prove Carnot's theorem - assume that wicked awesome wonder engine has an efficiency greater than Carnot engine

Key feature of Carnot engine is its reversibility

we can go around its cycle in opposite direction 🖛 creating a Carnot refrigerator

Envision wonder engine to driving a Carnot refrigerator

INFINITESIMALLY CARNOT CYCLE

Rewrite (74) using (63) for (arbitrary body) and (67) for (ideal gas)

$$\eta' - \eta = 1 + \frac{Q_1}{Q_2} - 1 + \frac{T_1}{T_2} = \frac{Q_1}{Q_2} + \frac{T_1}{T_2} \le 0$$
(75)
Since $Q_2 > 0 = \frac{Q_1}{T_1} + \frac{Q_2}{T_2} \le 0$ (76)
For an infinitesimally narrow Carnot cycle $\frac{\delta Q_1}{T_1} + \frac{\delta Q_2}{T_2} \le 0$ (77)
Luis Anchordoqui

Friday, September 5, 14

ENTROPY

Consequence of second law is existence of entropy:

a state function @ thermodynamic equilibrium whose differential is given by

$$\delta Q = T \, dS \tag{79}$$

S being a state function \blacktriangleright does not change in any reversible cyclic process:

$$\oint \frac{\delta Q}{T} = 0$$

Since Q is extensive $rac{}{}$ so is S

Units of entropy are [S] = J/K