Luis Anchordoqui Lehman College City University of New York

charged Statistical Me Minimum Boundary ATLAS **Thermodynamics and Statistical Mechanics**

February 26th 2012, December 2014 **Statistical Mechanics VI**

- Fermi-Dirac gas
- White dwarfs

FERMI-DIRAC GAS

ot Fermi gas are ditterent trom those ot Bose gas
because exclusion principle prevents multi-occupancy of quantum states Properties of Fermi gas are different from those of Bose gas

For macroscopic system chemical potential can be found at all temperatures using As a result \blacktriangleright no condensation at ground state occurs at low temperatures

$$
N = \int_0^\infty d\varepsilon \rho(\varepsilon) f(\varepsilon) = \int_0^\infty d\varepsilon \, \frac{\rho(\varepsilon)}{e^{\beta(\varepsilon - \mu)} + 1} \tag{92}
$$

This is a nonlinear equation for μ that in general can be solved only numerically

In limit $T\rightarrow 0$ fermions fill certain number of low-lying energy levels to minimize total energy while obeying exclusion principle

Chemical potential of fermions is positive at low temperatures $\blacktriangleright\quad \mu>0$

For
$$
T \to 0
$$
 (i. $e.\beta \to \infty$) it follows that \leftarrow
$$
\begin{cases} e^{\beta(\varepsilon-\mu)} \to 0 & \text{if } \varepsilon < \mu \\ e^{\beta(\varepsilon-\mu)} \to \infty & \text{if } \varepsilon > \mu \end{cases}
$$
yielding \leftarrow $f(\varepsilon) = \begin{cases} 1, & \varepsilon < \mu \\ 0, & \varepsilon > \mu \end{cases}$

C. B. Anchordoqui
 2 Luis Anchordoqui

FERMI TEMPERATURE

e μ_0 defined $\int_{\ell}^{\mu_0}$ Zero-temperature value μ_0 defined

 $N =$

Fermions are mainly electrons having spin $\frac{1}{2}$ and correspondingly degeneracy 2 $\overline{0}$ because of two states of spin 1 2

 $d\varepsilon \rho(\varepsilon)$

In three dimensions \blacktriangleright using (39) with additional factor 2 for degeneracy \lnot

 \int^{μ_0}

$$
N = \frac{2V}{(2\pi)^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^{\mu_0} d\varepsilon \sqrt{\varepsilon} = \frac{2V}{(2\pi)^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \frac{2}{3}\mu_0^{3/2}
$$

It follows that $\bullet \mu_0 = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3} = \varepsilon_F \frac{E}{\mathcal{F}}$
Convenient to introduce Fermi temperature \bullet $k_B T_F = \varepsilon_F$ (93)
Note that T_F has same structure as T_B defined by (91)
In typical metals $T_F \sim 10^5 K$ so that at room temperatures \bullet $T \ll T_F$
and electron gas is degenerate
Luis Anchordogui

CHEMICAL POTENTIAL OF FERMI-DIRAC GAS

FIG. 13: Chemical potential potential potential Fermi-Dirac gas. Dashed line: High-temperature associated line: High-Dashed-dotted line: Low-temperature asymptote Dashed line: High-temperature asymptote corresponding to Boltzmann statistics

C. B. B. Anchor 22 Anchor Luis Anchor

Thursday, December 4, 14

$f(\varepsilon)$

FERMI-DIRAC DISTRIBUTION FUNCTION

FIG. 13: Chemical potential µ(T) of the ideal Fermi-Dirac gas. Dashed line: High-temperature asymptote corresponding to the

Luis Anchordoqui Exercise Anchordoqui Exercise Anchordoqui From Here one obtains and the obtained by th

INTERNAL ENERGY AND PRESSURE

Convenient to express density of states (39) in terms of \mathcal{E}_F
3

$$
\rho(\varepsilon) = \frac{3}{2} N \frac{\sqrt{\varepsilon}}{\varepsilon_F^{3/2}}
$$
\n(94)

Internal energy at $T = 0$

$$
U = \int_0^{\mu_0} d\varepsilon \rho(\varepsilon) \varepsilon = \frac{3}{2} \frac{N}{\varepsilon_F^{3/2}} \int_0^{\varepsilon_F} d\varepsilon \varepsilon^{3/2} = \frac{3}{2} \frac{N}{\varepsilon_F^{3/2}} \frac{2}{5} \varepsilon_F^{5/2} = \frac{3}{5} N \varepsilon_F
$$
 (95)

We cannot calculate heat capacity C_V from (95)

We can calculate pressure at low temperatures since S should be small and $\frac{1}{\sqrt{S}}$ as it requires taking into account small temperature- dependent corrections in $\,U\,$ $F = U - TS \cong U$

$$
P = -\left(\frac{\partial F}{\partial V}\right)_{T=0} \approx -\left(\frac{\partial U}{\partial V}\right)_{T=0} = -\frac{3}{5}N\frac{\partial \varepsilon_F}{\partial V}
$$

$$
= -\frac{3}{5}N\left(-\frac{2}{3}\frac{\varepsilon_F}{V}\right) = \frac{2}{5}n\varepsilon_F = \frac{\hbar}{2m}\frac{2}{5}(3\pi^2)^{2/3}n^{5/3}
$$
(96)

C. B. Anchordoqui
 2 Luis Anchordoqui

TO COMPUTE CORRECTIONS...

we will need integral of a general type

$$
M_{\eta} = \int_0^{\infty} d\varepsilon \, \varepsilon^{\eta} \, f(\varepsilon) = \int_0^{\infty} d\varepsilon \, \frac{\varepsilon^{\eta}}{e^{(\varepsilon - \mu)/(k_B T)} + 1}
$$
 (97)

From (93) it follows that

$$
N = \frac{3}{2} \frac{N}{\varepsilon_F^{3/2}} M_{1/2}
$$
 (98)

$$
U = \frac{3}{2} \frac{N}{\varepsilon_H} M_{2/2}
$$
 (99)

$$
U = \frac{3}{2} \frac{N}{\varepsilon_F^{3/2}} M_{3/2}
$$
 (99)

It is easily seen that for $k_{B}T\,\ll\,\mu\,$ $\mathbf{\rightarrow}$

expansion of $M_{\boldsymbol{\eta}}\,$ up to quadratic terms has form

$$
M_{\eta} = \frac{\mu^{\eta+1}}{\eta+1} \left[1 + \frac{\pi^2 \eta(\eta+1)}{6} \left(\frac{k_B T}{\mu} \right)^2 \right]
$$
 (100)

C. B. Anchordoqui
 2 Luis Anchordoqui

CHEMICAL POTENTIAL

(98) becomes

$$
\varepsilon_F^{3/2} \, = \, \mu^{3/2} \left[1 \, + \, \frac{\pi^2}{8} \left(\frac{k_B T}{\mu} \right)^2 \right]
$$

that defines $\mu(T)$ up to terms of order T^2 \rightarrow

$$
\mu = \varepsilon_F \left[1 + \frac{\pi^2}{8} \left(\frac{k_B T}{\mu} \right)^2 \right]^{-2/3} \cong \varepsilon_F \left[1 - \frac{\pi^2}{12} \left(\frac{k_B T}{\mu} \right)^2 \right] \cong \varepsilon_F \left[1 - \frac{\pi^2}{12} \left(\frac{k_B T}{\varepsilon_F} \right)^2 \right]
$$

or using (93) \bullet $\mu = \varepsilon_F \left[1 - \frac{\pi^2}{12} \left(\frac{T}{T_F} \right)^2 \right]$ (101)

It is not surprising that chemical potential decreases with temperature because at high temperatures it takes large negative values

(99) becomes

$$
U = \frac{3}{2} \frac{N}{\varepsilon_F^{3/2}} \frac{\mu^{5/2}}{(5/2)} \left[1 + \frac{5\pi^2}{8} \left(\frac{k_B T}{\mu} \right)^2 \right] \approx \frac{3}{5} N \frac{\mu^{5/2}}{\varepsilon_F^{3/2}} \left[1 + \frac{5\pi^2}{8} \left(\frac{k_B T}{\varepsilon_F} \right)^2 \right]
$$

C. B. Anchordoqui
 2 Luis Anchordoqui

HEAT CAPACITY

Using (101)

ng (101)
\n
$$
U = \frac{3}{5} N \varepsilon_F \left[1 - \frac{\pi^2}{12} \left(\frac{T}{T_F} \right)^2 \right]^{5/2} \left[1 + \frac{5\pi^2}{8} \left(\frac{T}{T_F} \right)^2 \right]
$$
\n
$$
\approx \frac{3}{5} N \varepsilon_F \left[1 - \frac{5\pi^2}{24} \left(\frac{T}{T_F} \right)^2 \right] \left[1 + \frac{5\pi^2}{8} \left(\frac{T}{T_F} \right)^2 \right]
$$

that yields

$$
U = \frac{3}{5} N \varepsilon_F \left[1 + \frac{5\pi^2}{12} \left(\frac{T}{T_F} \right)^2 \right]
$$

At $T=0$ this formula reduces to (94)

$$
\text{Heat capacity} \leftarrow \qquad C_V = \left(\frac{\partial U}{\partial T}\right)_V = Nk_B T \frac{\pi^2}{2} \frac{T}{T_F}
$$
\n
$$
\text{is small at } T \ll T_F
$$

C. B. Anchordoqui
 2 Luis Anchordoqui

HEAT CAPACITY OF IDEAL FERMI-DIRAC GAS

C. B.-Champagners 2 Luis Anchordoqui(24), in the dimensions, Eq. (44), in the e

HOW TO GET ONE HUNDRED

ts and the contract of the con
The contract of the contract o Integrating (97) by parts

$$
M_{\eta} = \frac{\varepsilon^{\eta+1}}{\eta+1} f(\varepsilon) \Big|_0^{\infty} - \int_0^{\infty} d\varepsilon \, \frac{\varepsilon^{\eta+1}}{\eta+1} \frac{\partial f(\varepsilon)}{\partial \varepsilon} \qquad (102)
$$

First term of this formula is zero

At low temperatures Thus $f(\varepsilon)$ is close to step function fast changing from 1 to 0 in vicinity of $\,\varepsilon\,=\,\mu$ ↴

$$
\frac{\partial f(\varepsilon)}{\partial \varepsilon} = \frac{\partial}{\partial \varepsilon} \frac{1}{e^{\beta(\varepsilon - \mu)} + 1} = -\frac{\beta e^{\beta(\varepsilon - \mu)}}{[e^{\beta(\varepsilon - \mu) + 1}]^2} = -\frac{\beta}{4 \cosh^2[\beta(\varepsilon - \mu)/2]}
$$

has a sharp negative peak at $|\varepsilon|=|\mu|$

C. B. Anchordoqui
 2 Luis Anchordoqui

MORE ON HOW TO GET ONE HUNDRED

n of ε that can be $\epsilon^{ \eta+1}$ is a slow function of ϵ that can be expanded in Taylor series near $\, \varepsilon = \mu \,$

Up to second order

$$
\varepsilon^{\eta+1} = \mu^{\eta+1} + \frac{\partial \varepsilon^{\eta+1}}{\partial \varepsilon} \Big|_{\varepsilon=\mu} (\varepsilon - \mu) + \frac{1}{2} \frac{\partial^2 \varepsilon^{\eta+1}}{\partial \varepsilon^2} \Big|_{\varepsilon=\mu} (\varepsilon - \mu)^2
$$

$$
= \mu^{\eta+1} + (\eta + 1)\mu^{\eta} (\varepsilon - \mu) + \frac{1}{2}\eta (\eta + 1)\mu^{\eta-1} (\varepsilon - \mu)^2
$$

Introducing $x\equiv \beta(\varepsilon-\mu)/2$

and formally extending integration in (102) from $~-\infty$ to $~\infty$

$$
M_{\eta} = \frac{\mu^{\eta+1}}{\eta+1} \int_0^{\infty} dx \Big[\frac{1}{2} + \frac{\eta+1}{\beta \mu} x + \frac{\eta(\eta+1)}{\beta^2 \mu^2} x^2 \Big] \frac{1}{\cosh^2(x)}
$$

Contribution of the linear x term vanishes by symmetry Using integrals

$$
\int_{-\infty}^{\infty} dx \frac{1}{\cosh^2(x)} = 2 \qquad \int_{-\infty}^{\infty} dx \frac{x^2}{\cosh^2(x)} = \frac{\pi^2}{6}
$$

you arrive at (100)

C. B. Anchordoqui
 2 Luis Anchordoqui

WHITE DWARF STARS

 33 g of helium If there are N electrons $\,\textbf{w}\,$ number of α particles (i.e. $^4\mathrm{He}$ nuclei) must be Consider mass $M\sim 10^{33}\,\mathrm g$ of helium at nuclear densities of $\rm \ \rho \sim 10^7 \, g/cm^3$ and temperature $\rm \ \ T \sim 10^7 \, K$ This temperature is much larger than ionization energy of 4 He Mass of $\,\alpha$ particle $\blacktriangleright\! m_\alpha \,\approx\, 4 m_{\rm p}$ 1 2 *N* hence we may safely assume that all helium atoms are ionized

Total stellar mass $\,M$ is almost completely due to $\,\alpha\,$ particle cores

using \blacktriangleright

$$
M = Nm_e + \frac{1}{2}N4m_p
$$

$$
\text{electron density} \, \text{---} \, \quad n = \frac{N}{V} = \frac{2 \; M/(4 m_p)}{V} = \frac{\rho}{2 m_p} \approx 10^{30} \; \text{cm}^{-3}
$$

C. B.-Champagne 2 Luis Anchordoqui

RELATIVISTIC ELECTRON GAS

Since electrons are degenerate we estimate p to be order of uncertainty in momentum Δp Δx is order of average distance between electrons \blacktriangleright approximately $\;n^{-1/3}\;$

$$
\Delta p \; \Delta x \sim \hbar
$$

from number density n we find Fermi momentum of electron gas

Luis Anchordoqui

C. B.-Champagne 2 $mc = (9.1 \times 10^{-28} \text{g})(3 \times 10^{10} \text{m/s}) = 2.7 \times 10^{-17} \text{g cm/s}$ So we need to understand ground state properties of relativistic electron gas Since $p_{\text{F}} \sim mc$ \blacktriangleright electrons are relativistic Fermi temperature will then be $\ T_{\rm F} \, \sim mc^2 \, \sim \, 10^6 \, {\rm eV} \, \sim \, 10^{12} \, {\rm K}$ $T \ll T_F$ \blacktriangleright electron gas is degenerate and considered to be at $\; T \sim 0$ kinetic energy ☛ velocity ☛ $\varepsilon(\vec{p}) = \sqrt{\vec{p}^2 c^2 + m^2 c^4} - mc^2$ $\vec{v} =$ $\partial \varepsilon$ $\partial \bar{p}$ = $\vec{p}c^2$ $\sqrt{p^2c^2 + m^2c^4}$ $p_F = \hbar (3\pi^2 n)^{1/3} \approx 2.26 \times 10^{-17} \text{ g cm/s}$

GROUND STATE PRESSURE

Pressure in ground state is

$$
P_0 = \frac{1}{3} n \langle \vec{v} \cdot \vec{p} \rangle
$$

=
$$
\frac{1}{3\pi^2 \hbar^3} \int_0^{p_F} dp \, p^2 \cdot \frac{p^2 c^2}{\sqrt{p^2 c^2 + m^2 c^4}}
$$

=
$$
\frac{m^4 c^5}{3\pi^2 \hbar^3} \int_0^{\theta_F} d\theta \sinh^4 \theta
$$

=
$$
\frac{m^4 c^5}{96\pi^2 \hbar^3} (\sinh(4\theta_F) - 8 \sinh(2\theta_F) + 12\theta_F)
$$
 (103)

 we used substitution $n =$ *M* $2m_\mathrm{p}V$ \implies $3\pi^2n =$ 9π 8 *M* $R^3\,m_{\rm{p}}$ $p = mc \sinh \theta \quad v = c \tanh \theta \quad \implies \quad \theta =$ 1 2 $\ln\left(\frac{c+v}{c}\right)$ $c - v$ \setminus $p_F = \hbar (3\pi^2 n)^{1/3}$

C. B.-Champagne 2 Luis Anchordoqui

BALANCE EQUATION

In equilibrium pressure $\blacktriangleright\;\;\; dU_0=-P_0$ To find relation $R \, = \, R(M)$ we must solve Note that depends on radial mass distribution Equilibrium then implies $\blacktriangleright P_0(R) = \frac{\gamma}{4\pi}$ γ 4π gM^2 *R*⁴ = m^4c^5 $\frac{1}{96\pi^2\hbar^3}$ (sinh(4 θ_F) – 8 sinh(2 θ_F) + 12 θ_F) $\sinh(4\theta_F)$ - 8 $\sinh(2\theta_F)$ + $12\theta_F$ = \int $\frac{96}{15} \theta_{\rm F}^5$ $\theta_{\rm F} \rightarrow 0$ $\frac{1}{2} e^{4\theta_{\rm F}}$ $\theta_{\rm F}$ $\rightarrow \infty$ \mid is balanced by gravitational pressure $\bullet\hspace{0.2cm}\bullet\hspace{0.2cm} dU_g=\gamma\cdot\hspace{0.2cm}$ $dU_0 = -P_0 dV = -P_0(R) \cdot 4\pi R^2 dR$ *GM*² $\frac{R^2}{R^2}$ *dR* 4π GM^2 *R*⁴ ☟ (104)

C. B.-Champagne 2 Luis Anchordoqui

CHANDRASEKHAR LIMIT

We may write

$$
P_0(R) = \frac{\gamma}{4\pi} \frac{gM^2}{R^4} = \begin{cases} \frac{\hbar^2}{15\pi^2 m} \left(\frac{9\pi}{8} \frac{M}{R^3 m_{\rm p}}\right)^{5/3} & \theta_{\rm F} \to 0 \\ \frac{\hbar c}{12\pi^2} \left(\frac{9\pi}{8} \frac{M}{R^3 m_{\rm p}}\right)^{4/3} & \theta_{\rm F} \to \infty \end{cases}
$$

In limit $\theta_{\text{F}} \rightarrow 0$ \blacktriangleright we solve for $R(M)$ and find $R =$ 3 $\frac{1}{40\gamma}\left(9\pi\right)$ $\frac{2}{3}$ $\frac{\hbar^2}{2}$ $G\, m_\mathrm{p}^{5/3}\, mM^{1/3}$ $\propto M^{-1/3}$

In limit $\theta_{\rm F} \rightarrow \infty$ \blacktriangleright $R(M)$ factors divide out and we obtain $M \, = \, M_0 \, = \,$ 9 64 $\sqrt{3\pi}$ γ^3 $\bigwedge^{1/2}$ ($\hbar c$ *G* $\sqrt{\frac{3}{2}}$ 1 $m_{\rm p}^2$

To find *R*dependence ► we must go beyond lowest order expansion of (104)

$$
\text{we obtain} \quad R = \left(\frac{9\pi}{8}\right)^{1/3} \left(\frac{\hbar}{mc}\right) \left(\frac{M}{m_{\rm p}}\right)^{1/3} \left[1 - \left(\frac{M}{M_0}\right)^{2/3}\right]^{1/2}
$$

Value $M_0\;$ is limiting size for a white dwarf

It is called **Chandrasekhar limit**

Thursday, December 4, 14

C. B. Anchordoqui
 2 Luis Anchordoqui

MASS-RADIUS RELATIONSHIP FOR WHITE DWARF STARS

c − v

 \mathbf{w} where the substitution \mathbf{w} non-relativistic calculation follows from (96) instead of (103)

C. B. Anchordoqui
 2 Luis Anchordoqui

<u>Notes Anthol and all the second of the </u>