
Camille Bélanger-Champagne
McGill University

February 26th 2012,
WNPPC 2012

Charged Particle Correlations in 
Minimum Bias Events at ATLAS

● Physics motivation

● Minbias event and track selection

● Azimuthal correlation results

● Forward-Backward correlation results

     December  2014

Luis Anchordoqui
Lehman College

City University of New York

Thermodynamics and Statistical Mechanics

• Fermi-Dirac gas

• White dwarfs
Statistical Mechanics VI

1Thursday, December 4, 14



C. B.-Champagne 2

Overview

Luis Anchordoqui

FERMI-DIRAC GAS
Properties of Fermi gas are different from those of Bose gas                           

For              (i. e.                ) it follows that ☛                                     

at all temperatures using

This is a nonlinear equation for     that in general can be solved only numerically

In limit              fermions fill certain number of low-lying energy levels

N =

Z 1

0
d"⇢(") f(") =

Z 1

0
d"

⇢(")

e�("�µ) + 1

e�("�µ) ! 1
e�("�µ) ! 0

T ! 0

µ > 0

� ! 1

Chemical potential of fermions is positive at low temperatures ☛

T ! 0
" < µ

" > µ

f(") =
n 1, " < µ

0, " > µ

For macroscopic system chemical potential can be found
As a result ☛ no condensation at ground state occurs at low temperatures 

because exclusion principle prevents multi-occupancy of quantum states  

µ

to minimize total energy while obeying exclusion principle

yielding ☛

if

 if   {

(92)
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FERMI TEMPERATURE
 Zero-temperature value       defined

In three dimensions ☛ using (39) with additional factor 2 for degeneracy

Fermions are mainly electrons having spin     and correspondingly degeneracy 2

It follows that ☛

Convenient to introduce Fermi temperature ☛

Fermi energy 

Note that        has same structure as        defined by (91)

µ0

N =

Z µ0

0
d"⇢(")

N =
2V

(2⇡)2

⇣2m
~2

⌘3/2
Z µ0

0
d"
p
" =

2V

(2⇡)2

⇣2m
~2

⌘3/2 2

3
µ3/2
0

µ0 =
~2
2m

(3⇡2n)2/3 = "F

kBTF = "F
TF TB

because of two states of spin

↴

↴

In typical metals                         so that at room temperatures ☛                   
 and electron gas is degenerate

TF ⇠ 105 K T ⌧ TF

(93)

1

2
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CHEMICAL POTENTIAL OF FERMI-DIRAC GAS

34

)/( FBTkµ

FTT /

FIG. 13: Chemical potential µ(T ) of the ideal Fermi-Dirac gas. Dashed line: High-temperature asymptote corresponding to the
Boltzmann statistics. Dashed-dotted line: Low-temperature asymptote.
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FIG. 14: Fermi-Dirac distribution function at different temperatures.

From here one obtains

µ0 =
!2
2m

(
3π2n

)2/3
= εF , (249)

where we have introduced the Fermi energy εF that coincides with µ0. It is convenient also to introduce the Fermi
temperature as

kBTF = εF . (250)

One can see that TF has the same structure as TB defined by Eq. (231). In typical metals TF ∼ 105 K, so that at
room temperatures T " TF and the electron gas is degenerate. It is convenient to express the density of states in

Dashed line: High-temperature asymptote corresponding to Boltzmann statistics 
Dashed-dotted line: Low-temperature asymptote
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FERMI-DIRAC DISTRIBUTION FUNCTION
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FIG. 13: Chemical potential µ(T ) of the ideal Fermi-Dirac gas. Dashed line: High-temperature asymptote corresponding to the
Boltzmann statistics. Dashed-dotted line: Low-temperature asymptote.
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FIG. 14: Fermi-Dirac distribution function at different temperatures.

From here one obtains

µ0 =
!2
2m

(
3π2n

)2/3
= εF , (249)

where we have introduced the Fermi energy εF that coincides with µ0. It is convenient also to introduce the Fermi
temperature as

kBTF = εF . (250)

One can see that TF has the same structure as TB defined by Eq. (231). In typical metals TF ∼ 105 K, so that at
room temperatures T " TF and the electron gas is degenerate. It is convenient to express the density of states in
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INTERNAL ENERGY AND PRESSURE
Convenient to express density of states (39) in terms of "F

⇢(") =
3

2
N

p
"

"3/2FInternal energy at T = 0

U =

Z µ0

0
d"⇢(")" =

3

2

N

"3/2F

Z "F

0
d" "3/2 =

3

2

N

"3/2F

2

5
"5/2F =

3

5
N "F

We cannot calculate heat capacity       from (95)

We can calculate pressure at low temperatures since      should be small and

U
CV

S
F = U � TS ⇠= U

as it requires taking into account small temperature- dependent corrections in

P =�
✓
@F

@V

◆

T=0

' �
✓
@U

@V

◆

T=0

= �3

5
N

@"F
@V

=� 3

5
N

✓
�2

3

"F
V

◆
=

2

5
n"F =

~
2m

2

5
(3⇡2)2/3n5/3

↴

(94)

(95)

(96)
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TO COMPUTE CORRECTIONS...
we will need integral of a general type

From (93) it follows that

It is easily seen that for                    

M⌘ =

Z 1

0
d" "⌘ f (") =

Z 1

0
d"

"⌘

e("�µ)/(kBT ) + 1

N =
3

2

N

"3/2F

M1/2

U =
3

2

N

"3/2F

M3/2

kBT ⌧ µ

M⌘

M⌘ =
µ⌘+1

⌘ + 1

h
1 +

⇡2⌘(⌘ + 1)

6

⇣kBT
µ

⌘2i

expansion of         up to quadratic terms has form

(97)

(98)

(99)

↴

(100)
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CHEMICAL POTENTIAL 
(98) becomes

that defines            up to terms of order 

or using (93) ☛ 

It is not surprising that chemical potential decreases with temperature 

(99) becomes

"3/2F = µ3/2
h
1 +

⇡2

8

⇣kBT
µ

⌘2i

µ = "F
h
1 +

⇡2

8

⇣kBT
µ

⌘2i�2/3 ⇠= "F
h
1 � ⇡2

12

⇣kBT
µ

⌘2i ⇠= "F
h
1 � ⇡2

12

⇣kBT
"F

⌘2i

µ = "F
h
1 � ⇡2

12

⇣ T

TF

⌘2i

µ(T ) T 2

U =
3

2

N

"3/2F

µ5/2

(5/2)

h
1 +

5⇡2

8

⇣kBT
µ

⌘2i ⇠=
3

5
N

µ5/2

"3/2F

h
1 +

5⇡2

8

⇣kBT
"F

⌘2i

↴

because at high temperatures it takes large negative values

(101)
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HEAT CAPACITY
Using (101)

that yields

At              this formula reduces to (94)

U =
3

5
N"F

h
1 � ⇡2

12

⇣ T

TF

⌘2i5/2 h
1 +

5⇡2

8

⇣ T

TF

⌘2i

⇠=
3

5
N"F

h
1 � 5⇡2

24

⇣ T

TF

⌘2i h
1 +

5⇡2

8

⇣ T

TF

⌘2i

U =
3

5
N"F

h
1 +

5⇡2

12

⇣ T

TF

⌘2i

 is small at 

T = 0

T ⌧ TF

CV =
⇣@U
@T

⌘

V
= NkBT

⇡2

2

T

TF
 Heat capacity ☛
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HEAT CAPACITY  OF IDEAL FERMI-DIRAC GAS

35

FTT /

)/( BNkC

FIG. 15: Heat capacity C(T ) of the ideal Fermi-Dirac gas.

three dimensions, Eq. (44), in terms of εF :

ρ(ε) =
3

2
N

√
ε

ε3/2F

. (251)

Let us now calculate the internal energy U at T = 0:

U =

ˆ µ0

0
dερ(ε)ε =

3

2

N

ε3/2F

ˆ εF

0
dε ε3/2 =

3

2

N

ε3/2F

2

5
ε5/2F =

3

5
NεF . (252)

One cannot calculate the heat capacity CV from this formula as it requires taking into account small temperature-
dependent corrections in U. This will be done later. One can calculate the pressure at low temperatures since in this
region the entropy S should be small and F = U − TS ∼= U. One obtains

P = −
(
∂F

∂V

)

T=0

∼= −
(
∂U

∂V

)

T=0

= −3

5
N

∂εF
∂V

= −3

5
N

(
−2

3

εF
V

)
=

2

5
nεF =

!2
2m

2

5

(
3π2

)2/3
n5/3. (253)

To calculate the heat capacity at low temperatures, one has to find temperature-dependent corrections to Eq. (252).
We will need the integral of a general type

Mη =

ˆ ∞

0
dε εηf(ε) =

ˆ ∞

0
dε

εη

e(ε−µ)/(kBT ) + 1
(254)

that enters Eq. (245) for N and the similar equation for U. With the use of Eq. (251) one can write

N =
3

2

N

ε3/2F

M1/2, (255)

U =
3

2

N

ε3/2F

.M3/2 (256)

If can be shown that for kBT $ µ the expansion of Mη up to quadratic terms has the form

Mη =
µη+1

η + 1

[
1 +

π2η (η + 1)

6

(
kBT

µ

)2
]
. (257)

10Thursday, December 4, 14



C. B.-Champagne 2

Overview

Luis Anchordoqui

HOW TO GET ONE HUNDRED
Integrating (97) by parts

At low temperatures          
First term of this formula is zero

Thus

has a sharp negative peak at

M⌘ =
"⌘+1

⌘ + 1
f(")

���
1

0
�

Z 1

0
d"

"⌘+1

⌘ + 1

@ f (")

@"

f(") " = µ

" = µ

@ f (")

@"
=

@

@"

1

e�("�µ)
+ 1

= � �e�("�µ)

[e�("�µ)+1]2
= � �

4 cosh

2
[� ("� µ) /2]

is close to step function fast changing from 1 to 0 in vicinity of 

↴

(102)

11Thursday, December 4, 14



C. B.-Champagne 2

Overview

Luis Anchordoqui

MORE ON HOW TO GET ONE HUNDRED

Introducing                                 

Contribution of the linear      term vanishes by symmetry

you arrive at (100)

            is a slow function of    that can be expanded in Taylor series near

Up to second order

" = µ"

"⌘+1 = µ⌘+1 +
@"⌘+1

@"

���
"=µ

("� µ) +
1

2

@2"⌘+1

@"2

���
"=µ

("� µ)2

= µ⌘+1 + (⌘ + 1)µ⌘ (" � µ) +
1

2
⌘ (⌘ + 1)µ⌘�1 (" � µ)2

M⌘ =

µ

⌘+1

⌘ + 1

Z 1

0
dx

h
1

2

+

⌘ + 1

�µ

x +

⌘(⌘ + 1)

�

2
µ

2
x

2
i

1

cosh

2
(x)

x

Using integrals

x ⌘ �("� µ)/2
�1 to        1

Z 1

�1
dx

1

cosh

2
(x)

= 2

Z 1

�1
dx

x

2

cosh

2
(x)

=

⇡

2

6

"⌘+1

and formally extending integration in (102) from  
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WHITE DWARF STARS

If there are     electrons  ☛  number of     particles (i.e.       nuclei) must be 

Consider mass                       of helium
and temperature                       T ⇠ 107 K

This temperature is much larger than ionization energy of       ,4He

4He↵

↵

N

M

1

2
N

↵

m↵ ⇡ 4mp

⇢ ⇠ 107 g/cm3
M ⇠ 1033 g

using ☛

electron density ☛ 

Total stellar mass       is almost completely due to       particle cores

Mass of       particle ☛

safely assume that all helium atoms are ionized

at nuclear densities of

hence we may

n =
N

V
=

2 M/(4mp)

V
=

⇢

2mp
⇡ 1030 cm�3

M = Nme +
1

2
N4mp
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RELATIVISTIC ELECTRON GAS

from number density      we find Fermi momentum of electron gasn

mc = (9.1 ⇥ 10�28g) (3 ⇥ 1010 m/s) = 2.7 ⇥ 10�17 g cm/s

So we need to understand ground state properties of relativistic electron gas

Since                    ☛ electrons are relativistic
Fermi temperature will then be

 ☛  electron gas is degenerate and considered to be at

pF ⇠ mc

TF ⇠ mc2 ⇠ 106 eV ⇠ 1012 K

T ⇠ 0

kinetic energy ☛

velocity ☛

"(~p) =
p

~p 2c2 + m2c4 � mc2

~v =
@"

@~p
=

~pc2p
p2c2 + m2c4

pF = ~(3⇡2n)1/3 ⇡ 2.26⇥ 10�17 g cm/s

T ⌧ TF

Since electrons are degenerate we estimate    to be order of uncertainty in momentum p �p

       is order of average distance between electrons ☛  approximately

�p �x ⇠ ~
�x n�1/3
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Pressure in ground state is

 we used substitution

GROUND STATE PRESSURE

=
1

3⇡2~3

Z pF

0
dp p2 · p2c2p

p2c2 + m2c4

=
m4c5

3⇡2~3

Z ✓F

0
d✓ sinh4 ✓

=
m4c5

96⇡2~3 (sinh(4 ✓F) � 8 sinh (2 ✓F) + 12 ✓F)

n =
M

2mpV
=) 3⇡2n =

9⇡

8

M

R3 mp

p = mc sinh ✓ v = c tanh ✓ =) ✓ =
1

2
ln
⇣c + v

c � v

⌘

pF = ~(3⇡2n)1/3

P0 =
1

3
nh~v · ~pi (103)
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To find relation                       we must solve

Note that

In equilibrium pressure ☛

BALANCE EQUATION

    depends on radial mass distribution

Equilibrium then implies ☛

R = R(M)

�

4⇡

gM2

R4
=

m4c5

96⇡2~3 (sinh(4✓F ) � 8 sinh(2✓F) + 12 ✓F)

sinh(4✓F) � 8 sinh(2✓F) + 12✓F =
n 96

15 ✓
5
F ✓F ! 0

1
2 e

4✓F ✓F ! 1

  is balanced by gravitational pressure ☛

dU0 = �P0dV = �P0(R) · 4⇡R2dR

dUg = � · GM2

R2
dR

P0(R) =
�

4⇡

GM2

R4

☟

(104)
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To find      dependence  ☛ we must go beyond lowest order expansion of (104)

Value          is limiting size for a white dwarf
It is called Chandrasekhar limit

We may write

In limit                 ☛  we solve for            and find

In  limit                     ☛              factors divide out and we obtain

✓F ! 0 R(M)

✓F ! 1 R(M)

M0

R

R =
3

40�
(9⇡)2/3

~2

Gm5/3
p mM1/3

/ M�1/3

M = M0 =
9

64

⇣3⇡
�3

⌘1/2 ⇣~c
G

⌘3/2 1

m2
p

R =
⇣9⇡

8

⌘1/3 ⇣ ~
mc

⌘⇣ M

mp

⌘1/3
"
1 �

⇣ M

M0

⌘2/3
#1/2

p0(R) =
�

4⇡

gM2

R4
=

( ~2

15⇡2m

�
9⇡
8

M
R3mp

⌘5/3
✓F ! 0

~c
12⇡2

�
9⇡
8

M
R3mp

⌘4/3
✓F ! 1
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5.8. THE IDEAL FERMI GAS 231

Figure 5.16: Mass-radius relationship for white dwarf stars. (Source: Wikipedia).

where we use the substitution

p = mc sinh θ , v = c tanh θ =⇒ θ = 1
2 ln

(
c + v

c − v

)
. (5.277)

Note that pF = !kF = !(3π2n)1/3, and that

n =
M

2mpV
=⇒ 3π2n =

9π

8

M

R3 mp
. (5.278)

Now in equilibrium the pressure p is balanced by gravitational pressure. We have

dE0 = −p0 dV = −p0(R) · 4πR2 dR . (5.279)

This must be balanced by gravity:

dEg = γ · GM2

R2
dR , (5.280)

where γ depends on the radial mass distribution. Equilibrium then implies

p0(R) =
γ

4π

GM2

R4
. (5.281)

To find the relation R = R(M), we must solve

γ

4π

gM2

R4
=

m4c5

96π2!3

(
sinh(4θF) − 8 sinh(2θF) + 12 θF

)
. (5.282)

Note that

sinh(4θF) − 8 sinh(2θF) + 12θF =






96
15 θ5

F θF → 0

1
2 e4θF θF → ∞ .

(5.283)

MASS-RADIUS RELATIONSHIP FOR WHITE DWARF STARS

non-relativistic calculation follows from (96) instead of (103) 
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