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FERMI-DIRAC GAS

Properties of Fermi gas are different from those of Bose gas
because exclusion principle prevents multi-occupancy of quantum states

As a result = no condensation at ground state occurs at low temperatures
For macroscopic system chemical potential can be found at all temperatures using

N = /OOO dep(e) f(e) = /OOO de eﬂ(effj)Jr 1 (92)

This is a nonlinear equation for 4 that in general can be solved only numerically

In limit 1" — O fermions fill certain number of low-lying energy levels
to minimize total energy while obeying exclusion principle

Chemical potential of fermions is positive at low temperatures m 4 > 0

B(E—/,L) |f e <
For T'— 0 (i.e.0 — 00 )it follows that w { € — 0 H
ePE=H) 00 if E>

I, ¢ <
yielding f(g) — { 0 & > Z
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FERMI TEMPERATURE

Zero-temperature value [t defined

o
N = / dsp

Fermions are mainly electrons having spm — and correspondingly degeneracy 2
because of two states of spin

In three dimensions m using (39) with additional factor 2 for degeneracy -

2V /2mn\3/2 [HO 2V /2m\3/2 2 3/2
V=) ) eE = o ()
(2m)% \ h? /O evVe (2m)2 \ B2 3 Fo
h2

It follows that w (1 = 2— (37T2n)2/3 = EF
™m

2
Fermi energy

Convenient to introduce Fermi temperature mw kpl'r = cp (93)
Note that T’z has same structure as 1B defined by (91)

In typical metals Tx ~ 10° K so that at room temperatures m 1" << Tk
and electron gas is degenerate
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CHEMICAL POTENTIAL OF FERMI-DIRAC GAS

/(k,T
ol wil(kgTy)

Dashed line: High-temperature asymptote corresponding to Boltzmann statistics
Dashed-dotted line: Low-temperature asymptote
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FERMI-DIRAC DISTRIBUTION FUNCTION
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INTERNAL ENERGY AND PRESSURE

Convenient to express density of states (39) in ferms of €F

5!
ple) = §N3£/€2 (94)

¢F
Internal energyat 1T = 0

HO 3 N o 3 N
U = / dep(e)e = = —— deed/? = =
: > 372 , 2
We cannot calculate heat capacity C'y from (95)

as it requires taking into account small temperature- dependent corrections in [/

We can calculate pressure at low temperatures since S should be small and o
F=U-T§S=U

p__(9F L _(9U\ _ _3y%r
oV )y oV )., 5 0V

5 ( 3V> SNEF = 5 5(37‘(’ )“7°n (96)
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TO COMPUTE CORRECTIONS...

we will need integral of a general type

00 00 £
— n —
M, = /0 dee’ f (e) = /0 de /T 1 (97)

From (93) it follows that

N — ——M1/2 (98)

U — = —M3/2 (99)

It is easily seen that for kg1 < u )

expansion of \/,, up fo quadratic terms has form

Mo
M, = 1+
n—+1

Py )
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CHEMICAL POTENTIAL

2 2
el ()
€ 1 + 3 p
that defines ,u(T) up to terms of order T? 3

e BBV T RV o ey

(98) becomes

8 L 12\ pu 12 \ ep
72 T \2
orusing (93)m MU = EF [1 T 15 (TF) ] (101)

It is not surprising that chemical potential decreases with temperature
because at high temperatures it takes large negative values

(99) becomes
5/2

N up/? 2 kT2 2 kT2
o= 3 et e 5 (Y = I e 5 ()
8 v 5 5213?/2 8 \ eF

3/2
2 372 (5/2)
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HEAT CAPACITY
Using (101)
3 72 /T \275/2 572 /T \2
= sNer 1= () | 5 (7))
U= gher 12\ T, T \T,
2

3 52 T \2 ST T\ 2
() T S ()
5) 24 \I'p 8 \Ip
that yields
3 52 s T \ 2
U =g Ner [U+ T2 (7) ]
- EF + Tr

I
|
=
Q)

R

12

At [' = O this formula reduces to (94)

72 T
2 Ty
issmallat 1 < IF
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HEAT CAPACITY OF IDEAL FERMI-DIRAC GAS
1.5+ C /(NkB ) ........................................................................................
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HOW TO GET ONE HUNDRED
Integrating (97) by parts

cNn+1 00 o0 en+1 O f(e)
_ _ 102
R LA Il A e B 22

First term of this formula is zero

At low temperatures
f(e) is close to step function fast changing from 1 to O in vicinity of € = U

Thus )

df(s) 8 1 Befle=H) 3

0z Oe ePle-mw +1 A=+ T 4 cosh?[B (e — p) /2]

has a sharp negative peak at € = U
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MORE ON HOW TO GET ONE HUNDRED

1 is a slow function of € that can be expanded in Taylor series near € = [l

el

Up to second order

O+l 1 9%ent!
n+1 _  n+l . - . 2
= H (98 E=L (E Iu) * 2 682 E=L (8 Iu)
1 _
=p"+ (n+ Dp (e — p) + 51+ 1) Fe = w)?

Introducing * = B(e — ) /2
and formally extending integration in (102) from —OC to OO

n+lo oo 1 + 1 + 1 1

S / dw{_ Lntl o 77(772 : )xz} 2
n+1Jo 2 B B2 cosh” (x)

Contribution of the linear I term vanishes by symmetry

Using integrals

o0 1 o0 2 2

/ dx 5 = 2 / dx 332 - L

0  cosh” (x) 0  cosh” (x) 6
you arrive at (100)
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WHITE DWARF STARS

Consider mass M ~ 10°% g of helium
at nuclear densities of p ~ 107 g/cm3 and temperature T ~ 107 K

This temperature is much larger than ionization energy of ‘He
hence we may safely assume that all helium atoms are ionized

If there are [V electrons m number of (¢ particles (i.elee nuclei) must be %N
Mass of q particlem m,, ~ 4m,

Total stellar mass MV is almost completely due to ¢ particle cores

1
using M = Nm, + §N4mp

_ _ ~ 1030 -3
vV 2my, N
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RELATIVISTIC ELECTRON GAS

Since electrons are degenerate we estimate Pto be order of uncertainty in momentum Ap

AZ is order of average distance between electrons m approximately n_1/3

Ap Ax ~ h
from number density 70 we find Fermi momentum of electron gas
pr = h(372n)13 ~ 2.26 x 1077 g cm/s
= (9.1 x 107%g) (3 x 10"°m/s) = 2.7 x 107" gem/s

Since PF ~ MC w electrons are relativistic
Fermi temperature will thenbe 777, ~ me? ~ 10%eV ~ 102K

T' < Tr w electron gas is degenerate and considered to be at T ~ (

So we need to understand ground state properties of relativistic electron gas

kinetic energy = /P22 + m2c* — mc?
S 85 pe?
vV — — —

velocity op \/]92 2 1+ m2ch
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GROUND STATE PRESSURE

Pressure in ground state is

1
Py = §n<v - D) (103)

1 PF 5 p262
T 3r2p3 / dpp” 2.2 P
T 0 \/p cc + m=-c
mAcd OF
— df sinh* 6

m*e?

= o623 (sinh(40r) — 8sinh (26r) + 120p)
-

we used substitution

1
p = mc sinh 6 v = ctanh § — 9:§1n(c+v)

c— v
pr = h(3n%n)t/3

M — 372
n = TN =
2mpV

Or M
8 R3m,
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BALANCE EQUATION

In equilibrium pressure m  dUy = —PydV = —Py(R) - ArR*dR

GM?
is balanced by gravitational pressure dUg =7 R2
4

depends on radial mass distribution

2
Equilibrium then implies m  Py(R) = 47 Gf]{\f
70

To find relation R = R(M ) we must solve

y gM2 m4c5

Ar RY  96m2h3

dR

Note that % 9% bp — 0
sinh(40g) — 8 sinh(20r) + 120 = { (104)
% e10F O — o
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CHANDRASEKHAR LIMIT

We may write

h° or M 5/3
~ gM2 157T2m( 8 R3mp) op — 0
P p— p—
O(R) Ar R4 { i ; y 4/3
ez (8 R3mp) Op — o0
Inlimit 0 — 0 w= we solve for R(M)and find
3 h
R = — (9m)*/° 573 x M~Y3
40 Gmyp ~ mM1/3

In limit 0p — 0o = R(M) factors divide out and we obtain

9 /3w\1/2 shc\3/2 1
= B () ()
" 64 ~3 G m3

To find “Pdependence w we must go beyond lowest order expansion of (104)

O \1/3 / B\ s MA1/3 M 28]
we obtain R = (—) (—) (—) 1 — (—)
8 mec/ \my My

Value M is limiting size for a white dwarf

It is called Chandrasekhar limit
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MASS-RADIUS RELATIONSHIP FOR WHITE DWARF STARS
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non-relativistic calculation follows from (96) instead of (103)
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