Luis Anchordoqui Lehman College City University of New York

Thermodynamics and Statistical Mechanics

Statistical Mechanics V November 2014

- Stefan-Boltzmann law
- Blackbody radiation
- Bose-Einstein condensation

CLASSICAL ARGUMENTS FOR PHOTON GAS

A number of thermodynamic properties of photon gas can be determined from purely classical arguments (1) Assume photon gas is confined to rectangular box of dimensions $L_x imes L_u imes L_z$ further assume that dimensions are all expanded by a factor $\lambda^{1/3}$, that is volume is isotropically expanded by a factor of λ Cavity modes of electromagnetic radiation have quantized wave vectors even within classical electromagnetic theory $\mathbf{r} \ \vec{k} = \left(\frac{2\pi n_x}{L_x}, \frac{2\pi n_y}{L_y}, \frac{2\pi n_z}{L_z}\right)$ for a given mode $\varepsilon(\vec{k}) = \hbar c |\vec{k}|$. energy changes by $\lambda^{-1/3}$ under an adiabatic volume expansion $V
ightarrow \lambda V$ It follows that \neg

$$V\left(\frac{\partial U}{\partial V}\right)_{S} = \lambda \left(\frac{\partial U}{\partial \lambda}\right)_{S} = -\frac{1}{3}U \quad \text{and} \quad P = -\left(\frac{\partial U}{\partial V}\right)_{S} = \frac{U}{3V}$$

Since U = U(T, V) is extensive \blacksquare we must have P = P(T) alone

MORE CLASSICAL ARGUMENTS FOR PHOTON GAS

(2) Since P = P(T) alone \neg using Maxwell relation \blacktriangleright $\left(\frac{\partial S}{\partial V}\right)_{D} = \left(\frac{\partial P}{\partial T}\right)_{V}$ after invoking the First Law \blacktriangleright dU = TdS - PdV $\left(\frac{\partial U}{\partial V}\right)_T = \left(\frac{\partial U}{\partial V}\right)_D = 3P$ $= T\left(\frac{\partial P}{\partial T}\right)_{--} - P$ $a \leftarrow constant$ uis Anchordoqui

STEFAN-BOLTZMANN LAW

 ${}^{(3)}$ Given energy density ${}^{U/V}$

differential energy flux emitted in direction $\, heta\,$ relative to surface normal

$$dJ_{\mathcal{E}} = c \; \frac{U}{V} \; \cos\theta \; \frac{d\Omega}{4\pi}$$

 $d\Omega$ - differential solid angle

Power emitted per unit area

$$J_{\mathcal{E}} = \frac{d\mathcal{P}}{dA} = \frac{cU}{4\pi V} \int_{0}^{\pi/2} d\theta \int_{0}^{2\pi} d\phi \sin\theta \cos\theta = \frac{c}{4} \frac{U}{V} = \frac{3}{4} cP(T) \equiv \sigma T^{4}$$
$$\sigma = \frac{3}{4} ca \Rightarrow P(T) = aT^{4}$$
Using quantum statistical mechanical considerations we will show that

$${\rm Stefan's \ constant} ~~ \sigma ~=~ \frac{\pi^2 k_B^4}{60 c^2 \hbar^3} ~=~ 5.67 ~\times ~ 10^{-8} ~ \frac{W}{m^2 K^4}$$

Luis Anchordoqui

SURFACE TEMPERATURE OF EARTH

We'll need three lengths: radius of sun \clubsuit $R_{\odot}=6.96 imes10^8{
m m}$ radius of earth $\blacktriangleright R_\oplus = 6.38 imes 10^6 {
m m}$ radius of earth's orbit $\blacktriangleright d_{\oplus -\odot} = 1.50 \times 10^{11} {
m m}$ Assume that earth has achieved a steady state temperature 🖛 T_\oplus balance total power incident upon earth with power radiated by earth Power incident upon earth $\mathcal{P}_{\text{incident}} = \frac{\pi R_{\oplus}^2}{4\pi d_{\oplus \odot}^2} \cdot \sigma T_{\odot}^4 \cdot 4\pi R_{\odot}^2 = \left(\frac{R_{\oplus}R_{\odot}}{d_{\oplus \odot}}\right)^2 \cdot \pi \sigma T_{\odot}^4$ Power radiated by earth \blacktriangleright $\mathcal{P}_{\text{radiated}} = \sigma T_{\oplus}^4 \cdot 4\pi R_{\oplus}^2$ Setting $\mathcal{P}_{\text{incident}} = \mathcal{P}_{\text{radiated}} \blacktriangleright T_{\oplus} = \left(\frac{R_{\odot}}{2d_{\oplus -\odot}}\right)^{1/2} T_{\odot} = 0.04817 T_{\odot}$ $T_{\odot} = 5780 \text{ K} \Rightarrow T_{\oplus} = 278.4 \text{ K}$ Mean surface temperature of the earth \blacktriangleright $T_{\oplus}=287~{
m K}$ Difference is due to fact that earth is not perfect blackbody (object which absorbs all incident radiation upon it and emits according to Stefan's law) Earth's atmosphere re-traps fraction of emitted radiation **greenhouse effect**

Luis Anchordoqui

QUANTUM WAVES INSIDE A BOX

Wave function for quantum waves in one-dimensional box $\blacktriangleright \Psi = A \sin k x$

$$k = \frac{2\pi}{\lambda} = \frac{n\pi}{L} \qquad n = 1, 2, 3, \cdots$$
 (85)

 λ 🖛 de Broglie wavelength

 $L \models box dimension$

substituting
$$c = \lambda \nu$$
 in (85) $rac{}{r} n = \frac{2L}{c} \nu$

For a cube
$$V = L^3$$
 $rackin n = \frac{2V^{1/3}}{c}\nu$

$$n^2 = n_x^2 + n_y^2 + n_z^2$$
 $r = n_x, n_y, n_z \in \mathbb{Z}^+$

Possible values occupy first octant of sphere of radius $n=(n_x^2+n_y^2+n_z^2)^{1/2}$

<u>Luis Anchordoqui</u>

Thursday, December 4, 14

(86)

DENSITY OF STATES OF QUANTUM WAVES INSIDE A BOX

 $g(
u) \; d
u \; \blacktriangleright \;$ number of possible frequencies in range $\; (
u,
u + d
u) \;$

 $n \propto \nu \Rightarrow g(\nu) \ d\nu$ is number of possible set of integers in (n, n + dn) within shell of thickness dn of octant of sphere of radius n

$$g(\nu)d\nu = \frac{1}{8}4\pi n^2 dn = \frac{\pi}{2}n^2 dn \quad (87)$$

substituting (86) in (87) - $g(\nu)d\nu = \frac{4\pi V}{c^3}\nu^2 d\nu$

Luis Anchordoqui

Thursday, December 4, 14

de

PHOTON STATISTICS

PLANCK RADIATION FORMULA photon gas 🖛 two polarization states $g(\nu)d\nu = \frac{8\pi V}{c^3}\nu^2 d\nu$ Energy $u(\nu)d\nu$ in range $(\nu,\nu+d\nu)$ number of photons in this range times energy h u of each $u(\nu) d\nu = N(\nu)d\nu \times h\nu$ Substituting $N(\nu) = g(\nu) f(\nu) \neg$ Planck's radiation formula $rac{}$ $u(\nu)d\nu = \frac{8\pi hV}{c^3} \left| \frac{\nu^3 d\nu}{e^{h\nu/kT} - 1} \right|$

Luis Anchordoqui

ULTRAVIOLET CATASTROPHE

Using

$$e^{h\nu/kT} - 1 = \frac{h\nu}{kT} + \mathcal{O}(h^2)$$

take classical limit ~~h
ightarrow 0

$$u_{\text{class}}(\nu) = \lim_{h \to 0} u(\nu) = V \frac{8\pi kT}{c^3} \nu^2$$

In classical electromagnetic theory

total energy integrated over all frequencies diverges

ultraviolet catastrophe indicates divergence comes from large ν part of integral which in optical spectrum is ultraviolet portion Bose-Einstein factor imposes effective ultraviolet cutoff on frequency integral total energy is finite $\frac{kT/h}{u(T) = 3P(T) = \frac{8\pi^5(kT)^4}{15h^3c^3} = 7.56464 \times 10^{-15}(T/K)^4 \text{ erg/cm}^3$ $1 \text{ J} \equiv 10^7 \text{ erg} = 6.24 \times 10^9 \text{ GeV}$

Luis Anchordoqui

SPECTRAL DENSITY

Define spectral density

$$\rho_{\mathcal{E}}(\nu,T) = \frac{u(\nu,T)}{u(T)} = \frac{15}{\pi^4} \frac{h}{kT} \frac{(h\nu/kT)^3}{e^{h\nu/kT} - 1}$$

so that $rac{}{}
ho_{\varepsilon}(\nu,T) \, d\nu$ is fraction of electromagnetic energy between frequencies ν and $\nu + d\nu$

$$\int_{0}^{\infty} d\nu \, \rho_{\varepsilon} \left(\nu, T\right) \, = \, 1$$

Maximum occurs when $s\,\equiv\,h\nu/k_BT$ satisfies

$$\frac{d}{ds}\left(\frac{s^3}{e^s-1}\right) = 0 \quad \Rightarrow \quad \frac{s}{1-e^{-s}} = 3 \quad \Rightarrow \quad s = 2.82144$$

Luis Anchordoqui

BLACKBODY RADIATION AT THREE TEMPERATURES

Luis Anchordoqui

BOSE-EINSTEIN GAS

In macroscopic limit $\,N \to \infty\,$ and $\,\,V \to \infty$

so that concentration of particles n = N/V is constant energy levels of system become so finely quantized that become quasi continuous Bose-Einstein continuum distribution is

$$f(\varepsilon) = \frac{N(\varepsilon)}{g(\varepsilon)} = \frac{1}{e^{(\varepsilon - \mu)/kT} - 1}$$
 (88)

Initial concern is determining how chemical potential varies with temperature

Adopt convention of choosing ground state energy to be zero

At T = 0 all Nbosons will be in the ground state Setting $\varepsilon = 0$ in (88) we see that if $f(\varepsilon)$ is to make sense $\Rightarrow \mu < 0$ Furthermore $\checkmark \mu = 0$ at temperature of absolute zero and only slightly less than zero at non-zero temperatures assuming N to be large number

HIGH TEMPERATURE LIMIT

At high temperatures **w** in classical limit of dilute gas MB distribution applies

$$f(\varepsilon) = e^{-(\varepsilon - \mu)/kT}$$

$$\mu = -kT \ln\left(\frac{Z}{N}\right) \qquad \text{with} \qquad Z = \left(\frac{2\pi mkT}{h^2}\right)^{3/2} V$$

$$\frac{\mu}{kT} = -\ln\left[\left(\frac{2\pi mkT}{h^2}\right)^{3/2} \frac{V}{N}\right]$$

For 1 kilomole of a boson gas comprising ${}^{4}\mathrm{He}\,$ atoms at standard T and P

$$\begin{aligned} \frac{\mu}{kT} &= -\ln\left\{ \left[\frac{2\pi (6.65 \times 10^{-27})(1.38 \times 10^{-23})(273)}{(6.63 \times 10^{-34})^2} \right]^{3/2} \left(\frac{22.4}{6.02 \times 10^{26}} \right) \right\} \\ &= -12.43 \\ \mu &= -0.29 \text{ eV} \end{aligned}$$

Luis Anchordoqui

VALIDITY OF DILUTE GAS APPROXIMATION

Average energy of ideal monoatomic gas atom $~~arepsilon=(3/2)kT=0.035~{
m eV}$

$$(\varepsilon - \mu)/kT = 1.5 + 12.4 = 13.9$$

substituting this value in (88)

$$f(\varepsilon) = 9 \times 10^{-7}$$

confirming validity of approximation

In classical limit
$$\mathbf{k}_{e}^{-\mu/kT} = \left(\frac{2\pi m kT}{h^2}\right)^{3/2} \frac{V}{N}$$

positive number that increases with temperature and decreases with particle density N/VIt turns out that below some temperature T_B ideal Bose-Einstein gas undergoes **Bose-Einstein condensation** A macroscopic number of particles $N_0 \sim N$ falls into ground state These particles are called **Bose-Einstein condensate**

Luis Anchordoqui

LOW-TEMPERATURE LIMIT

Setting energy of ground state to zero $\sim N_0 = \frac{1}{e^{-\beta\mu} - 1}$ Resolving this for μ $\mu = -k_B T \ln \left(1 + \frac{1}{N_0}\right) \cong -\frac{k_B T}{N_0}$

Since $N_0~$ is very large — $\mu=0$ below Bose condensation temperature For $~\mu=0$ — easy to calculate number of particles in excited states $~N_{\rm ex}~$

$$N_{\rm ex} = \int_0^\infty d\varepsilon \, \frac{\rho(\varepsilon)}{e^{\beta \varepsilon} - 1}$$

Total number of particles \blacktriangleright $N = N_0 + N_{\rm ex}$

In three dimensions – using density of states ho(arepsilon) given by (39)

$$N_{\rm ex} = \frac{V}{(2\pi)^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^\infty d\varepsilon \, \frac{\sqrt{\varepsilon}}{e^{\beta\varepsilon} - 1} = \frac{V}{(2\pi)^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \frac{1}{\beta^{3/2}} \int_0^\infty dx \, \frac{\sqrt{x}}{e^x - 1}$$
(89)

Luis Anchordoqui

MATHEMATICAL INTERLUDE

$$\int_0^\infty dx \, \frac{x^{s-1}}{e^x - 1} \, = \, \Gamma(s) \, \zeta(s)$$

$$\Gamma(s)$$
 = gamma-function satisfying
 $\Gamma(n+1) = n\Gamma(n) = n!$
 $\Gamma(1/2) = \sqrt{\pi}, \quad \Gamma(3/2) = \sqrt{\pi/2}$

 $\zeta(s)$ 🖛 Riemann zeta function

$$\zeta(s) = \sum_{k=1}^{\infty} k^{-s}$$

$$\zeta(1) = \infty, \quad \zeta(3/2) = 2.612 \quad \zeta(5/2) = 1.341$$

$$\frac{\zeta(5/2)}{\zeta(3/2)} = 0.5134$$

Luis Anchordoqui

BOSE-EINSTEIN CONDENSATE

(89) yields
$$\blacksquare N_{\text{ex}} = \frac{V}{(2\pi)^2} \left(\frac{2mk_BT}{\hbar^2}\right)^{3/2} \Gamma(3/2) \zeta(3/2)$$

(increasing with temperature)

At $T=T_B$ one has $N_{\mathrm{ex}}=N$ that is \neg

$$N = \frac{V}{(2\pi)^2} \left(\frac{2mk_B T_B}{\hbar^2}\right)^{3/2} \Gamma(3/2) \zeta(3/2)$$
 (90)

and thus condensate disappears ${f
ightarrow} N_0=0$

From equation above follows \neg

$$k_B T_B = \frac{\hbar^2}{2m} \left(\frac{(2\pi)^2 n}{\Gamma(3/2) \zeta(3/2)} \right)^{2/3} \qquad n = \frac{N}{V}$$
(91)

that is 🖛 $T_B \, \propto \, n^{2/3}$

In typical situations $rac{}$ $T_B < 0.1$

Luis Anchordoqui

TEMPERATURE EVOLUTION

Condensate fraction $N_0(T)/N$ and fraction of excited particles $N_{
m ex}(T)/N$

Luis Anchordoqui

CHEMICAL POTENTIAL

Dashed line: High-temperature asymptote corresponding to Boltzmann statistics

INTERNAL ENERGY

Since energy of condensate is zero

$$U = \int_0^\infty d\varepsilon \, \frac{\varepsilon \rho(\varepsilon)}{e^{\beta(\varepsilon - \mu)} - 1}$$

For $T \gg T_B =$ Boltzmann distribution applies > U is given by (71) and heat capacity is constant $C = (3/2) Nk_B$ For $T < T_B = \mu = 0 > U = \int_0^\infty d\varepsilon \frac{\varepsilon \rho(\varepsilon)}{e^{\beta \varepsilon} - 1}$

in three dimensions -

$$U = \frac{V}{(2\pi)^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_0^\infty d\varepsilon \, \frac{\varepsilon^{3/2}}{e^{\beta\varepsilon} - 1} = \frac{V}{(2\pi)^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \Gamma\left(5/2\right) \zeta(5/2) \, (k_B T)^{5/2}$$

using (90) this can be rewritten as

$$U = Nk_B T \left(\frac{T}{T_B}\right)^{3/2} \frac{\Gamma(5/2)\,\zeta(5/2)}{\Gamma(3/2)\,\zeta(3/2)} = Nk_B T \left(\frac{T}{T_B}\right)^{3/2} \frac{3}{2} \frac{\zeta(5/2)}{\zeta(3/2)} \quad T \le T_B$$

Luis Anchordoqui

μ

I GAS

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V = Nk_B \left(\frac{T}{T_B}\right)^{3/2} \frac{15}{4} \frac{\zeta(5/2)}{\zeta(3/2)} \quad T \le T_B$$

Luis Anchordoqui

EQUATION OF STATE

entropy

$$S = \int_0^T dT' \frac{C_V(T')}{T'} = \frac{2}{3}C_V = Nk_B \left(\frac{T}{T_B}\right)^{3/2} \frac{5}{2} \frac{\zeta(5/2)}{\zeta(3/2)} \quad T \le T_B$$

free energy

$$F = U - TS = -Nk_B T \left(\frac{T}{T_B}\right)^{3/2} \frac{\zeta(5/2)}{\zeta(3/2)} \quad T \le T_B$$

pressure

$$P = -\left(\frac{\partial F}{\partial V}\right)_T = -\left(\frac{\partial F}{\partial T_B}\right)_T \left(\frac{\partial T_B}{\partial V}\right)_T = -\left(-\frac{3}{2}\frac{F}{T_B}\right)\left(-\frac{2}{3}\frac{T_B}{V}\right) = -\frac{F}{V}$$

equation of state
$$PV = Nk_B T \left(\frac{T}{T_B}\right)^{3/2} \frac{\zeta(5/2)}{\zeta(3/2)} \quad T \le T_B$$

compared to $PV = Nk_BT$ at high temperatures

P of ideal Bose gas with condensate contains additional factor $(T/T_B)^{3/2} < 1$ This is because particles in condensate are not thermally agitated and thus they do not contribute into pressure

Luis Anchordoqui

Thursday, December 4, 14