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CLASSICAL ARGUMENTS FOR PHOTON GAS

A number of thermodynamic properties of photon gas
can be determined from purely classical arguments

@ Assume photon gas is confined to rectangular box of dimensions L, x L, x L,
further assume that dimensions are all expanded by a factor AL/3 g
that is volume is isotropically expanded by a factor of A

Cavity modes of electromagnetic radiation have quantized wave vectors
o . . - 2mn,  2mn, 2T,
even within classical electromagnetic theory m £ = ( : : )
L, L, L,

for a given mode 8(]2) — hC|IZ| 3
energy changes by )—1/3 under an adiabatic volume expansion V' — AV

It follows that 2
oU oU 1 oU U
V(av)ﬁ(m)f‘glf and - P=s (W)S =3y

Since U = U(T, V) is extensive = we must have P — P(T) alone
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MORE CLASSICAL ARGUMENTS FOR PHOTON GAS
@ Since P = P(T) alone

I 0S5 OP
using Maxwell relation W — 3_T
P 1%

after invoking the First Lawmw dU = T'dS — PdV

4
oU oU

—~ ) =(=) =3P

(o), (av),
—7 (%) _p

orT ),

It follows that w Td—P:4P=>P(T):aT4

dT g

a w constant
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STEFAN-BOLTZMANN LAW
@ Given energy density [J/V

differential energy flux emitted in direction 6 relative to surface normal

dJs = c g cos 6 @ d() = differential solid angle
V A7

Power emitted per unit area

o7 cU 3 4
Je = 47TV d(9 d¢sin f cos O = v = 1° cP(T) =0T
o = an = P(T) = aT?
Using quantum statistical mechanical considerations we will show that 3
21.4
ek < W
Stefan’s constant = 0 — 606223 = 5.67 x 10 S 2 A
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SURFACE TEMPERATURE OF EARTH
We'll need three lengths: radius of sune Rz = 6.96 % 10%m

radius of earthm R4 = 6.38 X 10° m
radius of earth's orbit m dg_ o = 1.50 X 10"t m

Assume that earth has achieved a steady state temperature m [ g

balance total power incident upon earth with power radiated by earth

R2 RoRo\ >
JT@'UTé'“R%:(d@ Q) '7T0‘Té
Tlep—0o T-0O

Power radiated by earth m  Pradiated = 01 - 4TRG,

P 1/2
Seﬂ-ing Pincident — Pradiated L T@ — ( 2 ) T@ = 0.04817 T@

Power incident upon earth  Pincident =

2dg—o

Mean surface temperature of the earth mw Tiny = 287 K
Difference is due to fact that earth is not perfect blackbody
(object which absorbs all incident radiation upon it and emits according to Stefan's law)

Earth's atmosphere re-traps fraction of emitted radiation m greenhouse effect
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QUANTUM WAVES INSIDE A BOX

Wave function for quantum waves in one-dimensional box = W = A sin kx

27T N
— - - _ (85)
k ) 7 n=12,3,

)\ = de Broglie wavelength L = box dimension

2L
substituting ¢ = A\ in(85)m N = —v
C
A
Foracube |/ — L3 ~ ) = . (86)
C

2 _ 2 2 2 +
n®=mn,+n,+n; M Ng,nyn, €

Possible values occupy first octant of sphere of radius 7 = (fnf3 + nz + n§)1/2
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DENSITY OF STATES OF QUANTUM WAVES INSIDE A BOX

g(V) dv = number of possible frequencies in range (V, V —+ dV)

nxXxv = g(V) dv w number of possible set of integers in (n, n + d’fl)
within shell of thickness dn of octant of sphere of radius

1 T

g(v)dv = §47Tn2dn = §n2dn (87)
substituting (86) in (87) w g(v)dv = 47T3V v2dy
C

Luis Anchordoqui

Thursday, December 4, 14 7




PHOTON STATISTICS

Photons are bosons of spin 1 and hence obey Bose-Einstein statistics

N, 1

number of photons per quantum state (e fj — _J _
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PLANCK RADIATION FORMULA

photon gas ™ two polarization states

g(v)dv = il

2 dy

c3
Energy u(u)du in range (V, UV + dV)

number of photons in this range times energy hr of each

4
u(v) dv = N(v)dv x hv

Substituting N (v) = g(v) f(v) 3

Planck's radiation formula me u(V)dy =

87ThV[ V3 dy ]

c3 ehv/ET _ 1
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ULTRAVIOLET CATASTROPHE

Using
hv
hl//kT L 1 —_ O h2
€ o T (h7)
take classical limit h — 0
: STk
Uclass (V) = }lblir%) u(v) =V 5V

In classical electromagnetic theory
total energy integrated over all frequencies diverges

ultraviolet catastrophe pg divergence comes from large I part of integral
which in optical spectrum is ultraviolet portion
Bose-Einstein factor imposes effective ultraviolet cutoff on frequency integral

kT/h
§ 87> (kT)*

u(T) = 3P(T) = s — (56464 x 10~ (T/K)* erg/cm?

total energy is finite

1J =107 erg = 6.24 x 10 GeV
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SPECTRAL DENSITY

Define spectral density
u(v, T) 15 h (hv/kT)?
w(T) — w* kT ehv/FT — 1

pg(va) —

so that pe (v, T) dv is fraction of electromagnetic energy

(under equilibrium conditions) efween frequencie an + d

/ dv pe (v, T) = 1
0

Maximum occurs when s = hv /kpgT satisfies

3

d(s )zo — " 3 = 5= 282144
ds \es — 1
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BLACKBODY RADIATION AT THREE TEMPERATURES
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BOSE-EINSTEIN GAS

In macroscopic limit N — o0 and V — oo
so that concentration of particles 7 = N /V is constant
energy levels of system become so finely quantized that become quasi continuous

Bose-Einstein continuum distribution is
N (¢e) 1
f(g) o 9(5) o e(g_lu)/kT 1 (88)

Initial concern is determining how chemical potential varies with temperature

Adopt convention of choosing ground state energy to be zero

At ' = ( all )\ybosons will be in the ground state
Setting € = ( in (88) we see that if f(&“) is to make sense = 1 < ()

Furthermore m (1 = 0 at temperature of absolute zero

and only slightly less than zero at non-zero temperatures
assuming [V to be large number
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HIGH TEMPERATURE LIMIT

At high temperatures w in classical limit of dilute gas MB distribution applies

f(e) = o~ (e—n) /KT

3/2
7 . [ 2mmkT
uw=—kTIn <—) W%" 4 = ( 1 ) v

<27ka’T>3/2 1%

h2 N

For 1 kilomole of a boson gas compr'ising4He atoms at standard 7" and P

[ [2m(6.65 x 10727T)(1.38 x 10-%)(273) 2 924
kT (6.63 x 10—34)2 6.02 x 1026

= —12.43
1= —0.29 eV
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VALIDITY OF DILUTE GAS APPROXIMATION
Average energy of ideal monoatomic gas atom € = (3/2)kT = 0.035 eV

(e — p)/kT = 1.5+ 12.4 = 13.9

substituting this value in (88)
fle)=9x10""

confirming validity of approximatio

T 3 /9
In classical limit R 2ormkT\ 2 Vv
e H/ET _ _
h? N
positive number that increases with temperature
and decreases with particle density N/

It turns out that below some temperature 1’
ideal Bose-Einstein gas undergoes Bose-Einstein condensation
A macroscopic number of particles Ng ~ N falls into ground state

These particles are called Bose-Einstein condensate
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LOW-TEMPERATURE LIMIT
1

e—Br — 1
kgl
Ny

Setting energy of ground state to zerow Ny =
Resolving this for U

1
kTl (14 L)
M Bl 1n +No

12

Since Vo is very large = 1, = 0 below Bose condensation temperature

For ;1 = 0 w easy to calculate number of particles in excited states [Vex

NeX:/ g PE)
0 (&

Total number of particles N = Ny + Nex

In three dimensions = using density of states p(é‘) given by (39)

Vo 2mN\3/2 [ NG VoomN\32 1 [z
o = oo G [ - )t [

o () [ e - s () g [ w2 (89)
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MATHEMATICAL INTERLUDE

/OOO e 2 (s)c(s)

et — 1

F(S) w gamma-function satisfying

I'(n+1) = nl'(n) = n!
['(1/2) = /m, T(3/2) = /m/2
((8) w Riemann zeta function
C(s) = Y Kk
((1) = o0, ((3/2) = 2612 ((5/2) = 1.341

G(5/2)

= 0.9134

¢(3/2)
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BOSE-EINSTEIN CONDENSATE

s () TEG)

(increasing with temperature)

(89) YIeldS " Nex —

At T = Tgone has Nex = N thatis 3
V (kaBTB
2m2 \ B2

and thus condensate disappears m /Ny = (

N = ) rece  ©0)

From equation above follows 3

h? (27)% n 2/3 N
s = o (r(3/2)g(3/2)) nsy o O

thatisw Tg o n?/3

In typical situations m Tz < 0.1
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TEMPERATURE EVOLUTION

/N

0.2 04 0.6 0.8 1.0 12 14 TIT
B

Condensate fraction No(1')/N and fraction of excited particles Nex(1T") /N
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CHEMICAL POTENTIAL

Dashed line: High-temperature asymptote corresponding to Boltzmann statistics
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INTERNAL ENERGY

Since energy of condensate is zero

S SO

65(5_H) — 1

For 1' > I'p w Boltzmann distribution applies > [ s given by (71)
and heat capacity is constant (0 = (3/2) Nkp

For T < T w 1 = 0 >U:/ e P
0 efe — 1

in three dimensions 2

0= arp ()" [ 1 = o G) 621 o2 o

using (90) this can be rewritten as

T )3/2 I'(5/2) ¢(5/2)

U= N’“BT(E [(3/2)¢(3/2) NkBT(E 2 <(5/2)
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HEAT CAPACITY OF IDEAL BOSE-EINSTEIN GAS

3/2
o= (8, = wen (L) B DD e,

20; C/(Nky)

] —

1.0}

00 05 10 15 20 25 30
TIT,
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EQUATION OF STATE

entropy
T

B , Ov(T") T \3/25 ¢(5/2)

S_/O T §CV_NkB(TB) 2c@32) o
free energy 3/2 C( /)

F=U- TS——NkBT( ) T < Ty

1B ¢(3/2)

pressure

__(9FN _ _(oFN (0T _ (3 FN¢ 2Ty F
P__(a—v)T_ (aTB>T(aV> - ( 2TB>( SV)_ 1%

3/2.((5/2)
TB) C3/2) LS

compared to PV = N kg1 at high temperatures

equation of state PV = NkBT(

Pof ideal Bose gas with condensate contains additional factor (7/T5)%/? < 1

This is because particles in condensate are not thermally agitated
and thus they do not contribute into pressure
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