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HYPERBOLIC FUNCTIONS

Hyperbolic functions are defined by

derivatives

expansions

(65)
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(67)

(68)
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ELECTRON’S MAGNETIC MOMENT

Angular momentum of point particle in motion  ☛  L = r⇥ p = mr⇥ v

Magnetic moment of point particle in motion ☛   ~µ =
1

2
qr⇥ v

If electron is visualized as classical charged particle rotating about an axis

~µ = � e

2me
L

Classical result is off by  proportionality factor for  spin magnetic moment

~µ = �gµB
S

~
Bohr’s magneton ☛

g ' 2

 magnetic moment ☛ 

vector relating the aligning torque on the object from externally applied    -field to the field vector itself~B

~⌧ = ~µ⇥ ~B

µB = e~/(2me) = 9.27⇥ 10�24 J/T
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SPINS IN MAGNETIC FIELD

Magnetism of solids is due to intrinsic angular momentum of electron ☛ spin

Value of electronic angular momentum ☛                                                         s = 1/2

~

ŝ2 = s(s + 1) = 3/4

ŝz = m m = ± 1/2ŝzEigenvalues of      projection ☛ 

This results in magnetic moment of electron ☛ µ̂ = gµB ŝ

eigenvalue of square of electron’s angular momentum (in units of    ) 

(69)

(70)
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ZEEMAN HAMILTONIAN
 Hamiltonian of electron spin in a magnetic field       has formB

B

B

Ĥ = �gµB ŝ · B
minimum of energy corresponds to spin pointing in       direction 

choose    axis in direction of    Ĥ = �gµB ŝz B

"m = �gµB mB

Ĥ = �gµB Ŝ · B

z

using (69) energy eigenvalues of electronic spin in  magnetic field  become

             for electron m = ± 1/2

For atoms spins of all electrons usually combine in collective spin     

(71) becomes ☛

1/2

S

Eigenvalues of projections of      on direction of      BŜ

m = �S,�S + 1, ..., S � 1, S,
altogether                different energy levels of spin are given by (72)2S + 1

☛

that can be greater than 

(71)

(72)
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PARTITION FUNCTION AND FREE ENERGY
Physical quantities of spin are determined by partition function

(73) can be reduced to a finite geometrical progression

For               ☛ using                                                     (74) becomes

ZS =
SX

m=�S

e��"m =
SX

m=�S

emy y ⌘ � g µB B =
gµBB

kBT

ZS = e�Sy
2SX

k=0

(ey)k = e�yS e
(2S+1)y � 1

ey � 1
=

e(S+1/2)y � e�(S+1/2)y

ey/2 � e�y/2
=

sinh[(S + 1/2)y]

sinh (y/2)

S = 1/2 sinh (2x) = 2 sinh (x) cosh (x)

Z1/2 = 2 cosh (y/2)

☛ (73)

(1� x)
nX

k=0

x

k = (1� x)(x0 + x

1 + x

2 + · · ·+ x

n)

= x

0 + x

1 + x

2 + x

3 + · · ·+ x

n

� x

1 � x

2 � x

3 � · · ·� x

n � x

n+1

= 1� x

n+1

(74)

(75)
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FREE ENERGY & AVERAGE SPIN POLARIZATION

Average spin polarization ☛ 

using (73)  ☛ 

hSzi = hmi =
1

Z

SX

m=�S

me��"m

hSzi =
1

Z

@Z

@y
=

@ lnZ

@y

using (67) and (74) ☛ hSzi = bS(y)

bS(y) =

⇣
S +

1

2

⌘
coth

h⇣
S +

1

2

⌘
y
i
� 1

2

coth

h
1

2

y
i

Partition function being found ☛ easily obtain thermodynamic quantities 
e.g. ☛  free energy     

F = �NkBT lnZS = �NkBT ln
sinh[(S + 1/2)y]

sinh (y/2)

↴

☟
(76)
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BRILLOUIN FUNCTION

For                from (74) S = 1/2

This is immediately seen in (77) but not in (76)

At zero magnetic field              ☛  spin polarization vanishes

to clarify behavior of            at small    ☛  use                                        

hSzi = B1/2(y) =
1

2
tanh

y

2

B1/2(x) = tanh x

bS(±1) = ±S BS(±1) = ± 1and

y = 0

bS(y) y
coth x

⇠
=

1/x + x/3

bS(y) ⇠=
⇣
S +

1

2

⌘ h 1

(S + 1
2 )y

+
⇣
S +

1

2

⌘ y

3

i
� 1

2

h 1
1
2y

+
1

2

y

3

i

=
y

3

h ⇣
S +

1

2

⌘2
�
⇣1
2

⌘2 i
=

S(S + 1)

3
y

bS(y) = SBS(Sy)

BS(x) =

✓
1 +

1

2S

◆
coth

✓
1 +

1

2S

◆
x

�
� 1

2S

coth

h
x

2S

i

☛ (77)
☟

☟

↴

(78)
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BRILLOUIN FUNCTION            FOR VARIOUS 

21

x

BS(x)

S = ∞

S = 1/2

5/21

FIG. 5: Brillouin function BS(x) for different S.

With the use of Eq. (157) and the derivatives

sinh(x)′ = cosh(x), cosh(x)′ = sinh(x) (162)

one obtains

〈Sz〉 = bS(y), (163)

where

bS(y) =

(
S +

1

2

)
coth

[(
S +

1

2

)
y

]
− 1

2
coth

[
1

2
y

]
. (164)

Usually the function bS(y) is represented in the form bS(y) = SBS(Sy), where BS(x) is the Brillouin function

BS(x) =

(
1 +

1

2S

)
coth

[(
1 +

1

2S

)
x

]
− 1

2S
coth

[
1

2S
x

]
. (165)

For S = 1/2 from Eq. (158) one obtains

〈Sz〉 = b1/2(y) =
1

2
tanh

y

2
(166)

and B1/2(x) = tanhx. One can see that bS(±∞) = ±S and BS(±∞) = ±1. At zero magnetic field, y = 0, the spin
polarization should vanish. It is immediately seen in Eq. (166) but not in Eq. (163). To clarify the behavior of bS(y)
at small y, one can use cothx ∼= 1/x+ x/3 that yields

bS(y) ∼=
(
S +

1

2

)[
1(

S + 1
2

)
y
+

(
S +

1

2

)
y

3

]
− 1

2

[
1
1
2y

+
1

2

y

3

]

=
y

3

[(
S +

1

2

)2

−
(
1

2

)2
]
=

S(S + 1)

3
y. (167)

In physical units, this means

〈Sz〉 ∼=
S(S + 1)

3

gµBB

kBT
, gµBB & kBT. (168)

BS(x) S
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MAGNETIZATION

In physical units hSzi ⇠=
S(S + 1)

3

gµBB

kBT
gµBB ⌧ kBT

Average magnetic moment of spin can be obtained from (70)

Magnetization of sample       is defined as magnetic moment per unit volume

 unit-cell volume

hµzi = gµB hSzi

M =
hµzi
v0

=
gµB

v0
hSzi

M

If there is 1 magnetic atom per unit cell and all of them are uniformly magnetized

☛

☟

(79)
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INTERNAL ENERGY

at low magnetic fields (or high temperatures)

U ⇠= �N
S(S + 1)

3

(gµBB)2

kBT

Internal energy     of a system of      spins 

U = N h"mi = �N gµBB hmi = �N gµBBhSzi = �N gµBBbs (y) = �NkBTybS (y)

Calculation can be however avoided since from (72) simply follows

U N

U = �N
@ lnZ

@�

(80)
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MAGNETIC SUSCEPTIBILITY

Magnetic susceptibility per spin ☛

From (76) and (79) ☛  � =
(gµB)2

kBT
b0S(y)

� =
@hµzi
@B

b0S (y) ⌘ dbS(y)

dy
= �

⇣ S + 1/2

sinh [(S + 1/2)y]

⌘2
+

⇣ 1/2

sinh [y/2]

⌘2

For                from (76) ☛S = 1/2 b01/2 (y) =

1

4 cosh

2
(y/2)

From (77) follows                                    thus one obtains high-temperature limitb0S(0) = S(S + 1)/3

� =
S(S + 1)

3

(gµB)2

kBT
kBT � gµBB

In opposite limit             function           and thus susceptibility becomes smally � 1 b0S(y)

Physical reason for this is that at low temperatures ☛                                                                                                                          kBT ⌧ gµBB

so that          becomes hardly sensitive to small changes of BhSzi
spins are already strongly aligned by magnetic field ☛ hSzi ⇠= S

(81)
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HEAT CAPACITY

(81) and (82) imply a simple relation between     and

that does not depend on spin value 

At high temperatures     decreases as           

S = 1

C ⇠= N kB
S(S + 1)

3

⇣gµBB

kBT

⌘2

C

C

1/T 2

At low temperatures      becomes exponentially small  

� C

S

Heat capacity      can be obtained from (80) asC

C =
@U

@T
= �N gµB Bb0S (y)

@y

@T
= N kBb

0
S (y)y2

has a maximum at intermediate temperatures  ☛C y ⇠ 1

(82)

 except for case

N�

C
=

T

B2
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TEMPERATURE DEPENDENCE OF HEAT CAPACITY
23

)/( BNkC

)/( BSgTk BB µ

S = ∞

S = 1/2

5/2

1

FIG. 6: Temperature dependence of the heat capacity of spins in a magnetic fields with different values of S.

XIV. PHASE TRANSITIONS AND THE MEAN-FIELD APPROXIMATION

As explained in thermodynamics, with changing thermodynamic parameters such as temperature, pressure, etc.,
the system can undergo phase transitions. In the first-order phase transitions, the chemical potentials µ of the two
competing phases become equal at the phase transition line, while on each side of this line they are unequal and only
one of the phases is thermodynamically stable. The first-order trqansitions are thus abrupt. To the contrast, second-
order transitions are gradual: The so-called order parameter continuously grows from zero as the phase-transition line
is crossed. Thermodynamic quantities are singular at second-order transitions.

Phase transitions are complicated phenomena that arise due to interaction between particles in many-particle
systems in the thermodynamic limit N → ∞. It can be shown that thermodynamic quantities of finite systems are
non-singular and, in particular, there are no second-order phase transitions. Up to now in this course we studied
systems without interaction. Including the latter requires an extension of the formalism of statistical mechanics that
is done in Sec. XV. In such an extended formalism, one has to calculate partition functions over the energy levels of
the whole system that, in general, depend on the interaction. In some cases these energy levels are known exactly but
they are parametrized by many quantum numbers over which summation has to be carried out. In most of the cases,
however, the energy levels are not known analytically and their calculation is a huge quantum-mechanical problem. In
both cases calculation of the partition function is a very serious task. There are some models for which thermodynamic
quantities had been calculated exactly, including models that possess second-order phase transitions. For other models,
approximate numerical methods had been developed that allow calculating phase transition temperatures and critical
indices. It was shown that there are no phase transitions in one-dimensional systems with short-range interactions.

It is most convenient to illustrate the physics of phase transitions considering magnetic systems, or the systems of
spins introduced in Sec. XIII. The simplest forms of interaction between different spins are Ising interaction −JijŜizŜjz

including only z components of the spins and Heisenberg interaction −JijŜi · Ŝj . The exchange interaction Jij follows
from quantum mechanics of atoms and is of electrostatic origin. In most cases practically there is only interaction J
between spins of the neighboring atoms in a crystal lattice, because Jij decreases exponentially with distance. For
the Ising model, all energy levels of the whole system are known exactly while for the Heisenberg model they are not.
In the case J > 0 neighboring spins have the lowest interaction energy when they are collinear, and the state with
all spins pointing in the same direction is the exact ground state of the system. For the Ising model, all spins in the
ground state are parallel or antiparallel with the z axis, that is, it is double-degenerate. For the Heisenberg model the
spins can point in any direction in the ground state, so that the ground state has a continuous degeneracy. In both
cases, Ising and Heisenberg, the ground state for J > 0 is ferromagnetic.

The nature of the interaction between spins considered above suggests that at T → 0 the system should fall into its

ground state, so that thermodynamic averages of all spins approach their maximal values,
∣∣∣
〈
Ŝi

〉∣∣∣ → S. With increasing
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PHASE TRANSITIONS

To contrast ☛ 2nd-order transitions are gradual:                                                  
order parameter continuously grows from zero as phase-transition line is crossed 

We have seen that with changing thermodynamic parameters such as 

 1st-order phase transitions chemical potentials     of two competing phases                       

1st-order transitions are thus abrupt

Thermodynamic quantities are singular at second-order transitions

Phase transitions are complicated phenomena 

N ! 1

system can undergo phase transitions

while on each side of this line they are unequal
and only one of phases is thermodynamically stable

become equal at phase transition line
µ

in many-particle systems in thermodynamic limit 
that arise due to interaction between particles 

T, P, · · ·
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SPIN INTERACTION

Simplest forms of interaction between different spins are:

including only    components of spins 

Exchange interaction ☛ 

For Heisenberg model ☛ spins can point in any direction in ground state

�Jij Ŝi · Ŝj

�Jij Ŝiz Ŝjz z

Jij

z

Heisenberg interaction  ☛

Ising interaction ☛

For Ising model ☛ all spins in ground state are parallel or antiparallel with      axis
that is  ☛ it is double-degenerate

so that ground state has a continuous degeneracy

In most cases there is only interaction     between spins of neighboring atoms
because       decreases exponentially with distance

J
Jij

follows from quantum mechanical properties of crystal lattice
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AVERAGE SPIN VALUE AS ORDER PARAMETER
Nature of interaction between spins suggests that at

With increasing temperature ☛ excited levels of system become populated

T ! 0

|hŜii| ! S

and average spin value decreases |hŜii| < S

At high temperatures ☛  all energy levels become populated so that   

If there is no external magnetic field acting on spins

If now temperature is lowered there should be a phase transition temperature 

This is why high-temperature state is called symmetric state

TC

below which order parameter (average spin value) becomes nonzero

Below        symmetry of state is spontaneously broken ☛  ordered state TC

thermodynamic averages of all spins approach their maximal values  
system should fall into its ground state so that

neighboring spins can have all possible orientations with respect to each other

because there as many spins pointing in one direction
as there are spins pointing in other direction

average spin value should be exactly zero
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MEAN-FIELD APPROXIMATION 

�Jij Ŝi · Ŝj ) �Jij Ŝi · hŜji

Idea is to reduce original many-spin problem 
to effective self-consistent one-spin problem  

by only considering spin i
by their average thermodynamic valuesand replacing other spins in interaction

Effective one-spin Hamiltonian

  number of nearest neighbors for spin in latticez  ☛
z = 6 for simple cubic lattice

Same mean-field      is valid for Ising model if     field is applied along      axisĤ B z

For Heisenberg model ☛ if weak    -field is applied B
ordering will occur in direction of B

Ĥ = �Ŝ · (gµBB+ JzhŜi) + 1

2
JzhŜi2

Choosing      axis in this directionz

Ĥ = �(gµBB + Jz hŜzi) Ŝz +
1

2
Jz hŜzi2 (83)
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FREE ENERGY PER SPIN

Within MFA  Ising and Heisenberg models are equivalent (but not in general!)

Energy levels corresponding to (83) are

Straightforward calculation of partition function (73) leads to free energy per spin

"m = �(gµBB + JzhŜzi)m +
1

2
Jz hŜzi2 m = �S, �S + 1, ..., S � 1, S

F = �kBT lnZ =
1

2
Jz hŜzi2 � kBT ln

sinh[(S + 1/2)y]

sinh (y/2)

y ⌘ gµBB + Jz hŜzi
kBT

To find actual value of order parameter        at any     and     

 minimize      with respect      
T BhŜzi

hŜziF

19Thursday, November 13, 14



C. B.-Champagne 2

Overview

Luis Anchordoqui

Rearranging terms one arrives at transcendental Curie-Weiss equation

0 =
@F

@hŜzi
= JzhŜzi � JzbS(y)

 CURIE-WEISS EQUATION

hŜzi = bS
⇣gµBB + JzhŜzi

kBT

⌘

For                  ☛   (84) has only solution                   at high temperaturesB = 0 hŜzi = 0

As             has maximal slope at                                                                                   
it is sufficient that this slope (with respect to         ) becomes smaller than 1

to exclude any solution other than

bS(y) y = 0
hŜzi

hŜzi = 0

Using (78) ☛  only solution                       is realized for                 hŜzi = 0 T � TC

TC =
S (S + 1)

3

Jz

kB
☛  Curie temperature within mean-field approximation

(84)
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Below        slope of           with respect to          exceeds 1TC bS(y) hŜzi

One solution                    and two symmetric solutions                  

hŜzi

hŜzi = 0 hŜzi 6= 0

so that there are three solutions for  
25

zŜ zŜ

T = 0.5TC

T = TC

T = 2TC

•

•

•

S = 1/2

FIG. 7: Graphic solution of the Curie-Weiss equation.

To find the actual value of the order parameter
〈
Ŝz

〉
at any temperature T and magnetic field B, one has to minimize

F with respect to
〈
Ŝz

〉
, as explained in thermodynamics. One obtains the equation

0 =
∂F

∂
〈
Ŝz

〉 = Jz
〈
Ŝz

〉
− JzbS(y), (186)

where bS(y) is defined by Eq. (164). Rearranging terms one arrives at the transcedental Curie-Weiss equation

〈
Ŝz

〉
= bS




gµBB + Jz

〈
Ŝz

〉

kBT



 (187)

that defines
〈
Ŝz

〉
. In fact, this equation could be obtained in a shorter way by using the modified argument, Eq.

(185), in Eq. (163).

For B = 0, Eq. (187) has the only solution
〈
Ŝz

〉
= 0 at high temperatures. As bS(y) has the maximal slope at

y = 0, it is sufficient that this slope (with respect to
〈
Ŝz

〉
) becomes smaller than 1 to exclude any solution other than

〈
Ŝz

〉
= 0. Using Eq. (167), one obtains that the only solution

〈
Ŝz

〉
= 0 is realized for T ≥ TC , where

TC =
S(S + 1)

3

Jz

kB
(188)

is the Curie temperature within the mean-field approximation. Below TC the slope of bS(y) with respect to
〈
Ŝz

〉

exceeds 1, so that there are three solutions for
〈
Ŝz

〉
: One solution

〈
Ŝz

〉
= 0 and two symmetric solutions

〈
Ŝz

〉
#= 0 (see

Fig. 7). The latter correspond to the lower free energy than the solution
〈
Ŝz

〉
= 0 thus they are thermodynamically

stable (see Fig. 8).. These solutions describe the ordered state below TC .

Slightly below TC the value of
〈
Ŝz

〉
is still small and can be found by expanding bS(y) up to y3. In particular,

b1/2(y) =
1

2
tanh

y

2
∼=

1

4
y − 1

48
y3. (189)

GRAPHIC SOLUTION OF CURIE-WEISS EQUATION

lhs and rhs of (84) 
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FREE ENERGY WITHIN MEAN FIELD APPROXIMATION

26

zŜ

T = 0.5TC

T = TC

T = 2TC

S = 1/2

T = 0.8TC

2F/(Jz)

FIG. 8: Free energy of a ferromagnet vs
〈
Ŝz

〉
within the MFA. (Arbitrary vertical shift.)

Using TC = (1/4)Jz/kB and thus Jz = 4kBTC for S = 1/2, one can rewrite Eq. (187) with B = 0 in the form

〈
Ŝz

〉
=

TC

T

〈
Ŝz

〉
− 4

3

(
TC

T

)3 〈
Ŝz

〉3
. (190)

One of the solutions is
〈
Ŝz

〉
= 0 while the other two solutions are

〈
Ŝz

〉

S
= ±

√

3

(
1− T

TC

)
, S =

1

2
, (191)

where the factor T/TC was replaced by 1 near TC . Although obtained near TC , in this form the result is only by the
factor

√
3 off at T = 0. The singularity of the order parameter near TC is square root, so that for the magnetization

critical index one has β = 1/2. Results of the numerical solution of the Curie-Weiss equation with B = 0 for different
S are shown in Fig. 9. Note that the magnetization is related to the spin average by Eq. (170).

Let us now consider the magnetic susceptibility per spin χ defined by Eq. (173) above TC . Linearizing Eq. (187)
with the use of Eq. (167), one obtains

〈
Ŝz

〉
=

S(S + 1)

3

gµBB + Jz
〈
Ŝz

〉

kBT
=

S(S + 1)

3

gµBB

kBT
+

TC

T

〈
Ŝz

〉
. (192)

Here from one obtains

χ =
∂ 〈µz〉
∂B

= gµB

∂
〈
Ŝz

〉

∂B
=

S(S + 1)

3

(gµB)
2

kB (T − TC)
. (193)

In contrast to non-interacting spins, Eq. (177), the susceptibility diverges at T = TC rather than at T = 0. The inverse
susceptivility χ−1 is a straight line crossing the T axis at TC . In the theory of phase transitions the critcal index for
the susceptibility γ is defined as χ ∝ (T − TC)

−γ . One can see that γ = 1 within the MFA.
More precise methods than the MFA yield smaller values of β and larger values of γ that depend on the details of the

model such as the number of interacting spin components (1 for the Ising and 3 for the Heisenberg) and the dimension
of the lattice. On the other hand, critical indices are insensitive to such factors as lattice structure and the value of
the spin S. On the other hand, the value of TC does not possess such universality and depends on all parameters of
the problem. Accurate values of TC are by up to 25% lower than their mean-field values in three dimensions.

 (arbitrary vertical shift)

solutions                     lower free energy than solution                    hŜi = 0
thus they are thermodynamically stable 

These solutions describe ordered state below 

hŜzi 6= 0

TC
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