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Minkowski Spacetime Causal structure

(1, 3) spacetime

Primary unit in special relativity + event
Arena ∀ events in universe + Minkowski spacetime
Events take place in a four dimensional structure that contains
3-dimensional Euclidean space + 1 time dimension
Interval

∆s2 = c∆t2 − ∆x2 − ∆y2 − ∆z2 (1)

invarinat measure for Lorentz-Poincaré transformations
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Minkowski Spacetime Causal structure

Lorentz boosts + rotations
Galilean transformations preserve the usual Pythagorian distance

∆~r 2 = ∆x2 + ∆y2 + ∆z2

which is invariant under rotations and spatial translations

Lorentz transformations (boosts + rotations) preserve interval

∆s2 = c2∆t2 − ∆x2 − ∆y2 − ∆z2

Since interval is defined by differences in coordinates
it is also invariant under translations in spacetime

(Poincare invariance)

(1, 3) spacetime ≡ (1, 1) spacetime ⊕ rotations
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Minkowski Spacetime Causal structure

Trajectory + connected set of events
representing places + times through which particle moves
Worldlines + trajectories of massive particles and observers
At any event on trajectory + slope is inverse of velocity
relative to inertial observer that has x = 0 straight up
and with perpendicular set of simultaneity lines of constant ct
We use ct rather than t so that both scales can have same unit
Particle path forms worldline as particle moves in 1-dimension
At any point + slope of worldline is d(ct)/dx = (cdt)/(vdt) = c/v
Light pulse with ±c speed has slope of ±1

giving angles of 45◦ with the ±x-axes
Since massive particles have speeds less than c

all worldlines are steeper than those 45◦ angle
Nothing known has worldline with slope between −1 and 1
Worldline of particle at rest is vertical and so has infinite slope
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Minkowski Spacetime Causal structure�� ��3 worldlines and 3 lightlines

Topic 14 | Spacetime Diagrams

Graphical representations can make kinematic concepts less abstract and also give
useful information. For example, not only does a v-t graph for one-dimensional
motion show the velocity at any instant, but its slopes give accelerations, and
areas under it give displacements. For relativity the transformations y9 = y and
z9 = z are easy to understand, so we’ll just consider the ±x directions.

The usual convention in relativity is to graph ct on the vertical axis and x on
the horizontal axis. Such a graph provides us with a spacetime diagram. We use
ct rather than t so that both scales can have the same unit and the same scale. The
path of a particle forms a line, called its worldline, as the particle moves in one-
dimensional motion. At any point, the slope of the worldline is d(ct)/dx = (c dt)/(v
dt) = c/v. Thus a light pulse with v = ±c has a slope of ±1 on a spacetime diagram,
giving angles of 45° with the ± x-axes. Since material particles have speeds less
than c, all worldlines for material particles are steeper than those 45° angles. That
is, nothing known has a worldline with a slope between −1 and 1. The worldline
of a particle at rest is vertical and so has infinite slope. Figure T14.1 shows six
worldlines, three of light pulses and three of particles. Can you show that these
six worldlines agree with the statements made in this paragraph about their
slopes?

How does the S 9 reference frame appear on our ct-x spacetime diagram? Recall
that we always set x9 = 0 at x = 0 when t 9 = 0 = t and let S 9 move at a speed u in
the +x-direction. But x9 = 0 all along the ct 9-axis, so x9 = 0 and the ct 9-axis have
a worldline of slope c/u on our ct-x spacetime diagram. For example, if
u = 0.600c, the ct 9-axis is at an angle of arctan(1/0.600) = 59.0° from the x-axis
or 90.0° − 59.0° = 31.0° from the ct-axis.

Surprisingly enough, the x9-axis is not drawn perpendicular to the ct9-axis on
our ct-x spacetime diagram. Since ct 9 = 0 (so t 9 = 0) all along the x 9-axis, the
Lorentz transformation equation for t 9 gives (t − ux/c2) = 0 or ct = (u/c)x for the
x 9-axis. Thus the x9-axis is drawn with a slope of u/c on our ct-x spacetime dia-
gram. For u = 0.600c the x9-axis is at an angle of arctan(0.600) = 31.0° from the
x-axis. That is, the x 9-axis makes the same angle with the x-axis as the ct 9-axis
makes with the ct-axis. Figure T14.2 shows that the worldline of a light pulse
leaving x9 = 0 = x at t 9 = 0 = t with a velocity +c bisects the angle between either
set of axes. 

Particle 3,
at rest

x

Particle 2Particle 1 ct

Light
pulse 2,
v = c

Light
pulse 1,
v = -c

Light pulse 3,
v = -c

45º45º

T14.1 A spacetime diagram showing
worldlines of three light pulses and three
particles. Particles 1 and 2 leave x = 0 at
t = 0, accelerating from rest in opposite
directions.

ct
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x!

45º

45º
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ct!2
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ct!

T14.2 The ct9- and x9-axes drawn on our
ct-x spacetime diagram. Notice the two
sets of equal angles.

another dot for event 2 (because x2 > x1). How do we read a value
of a point on a graph? We draw a line through that point parallel to
one axis and measure where it intercepts the other axis. Thus to
measure the times of the two events in Mavis’s S 9 frame, in Fig.
T14.2 we draw dashed lines parallel to the x9-axis that intercept the
ct 9-axis at ct19 and ct29. We see that ct29 < ct19, so t29 < t19. The
events are not simultaneous in S 9, and Mavis measures event 2 to
occur before event 1.

Simultaneity on a spacetime diagram
Example

T14.1

Stanley measures events 1 and 2 to occur simultaneously in S at
positions x1 and x2, where x2 > x1. Use our spacetime diagram to
show that Mavis, who moves in the positive x-direction relative to
Stanley, measures event 2 to occur before event 1.

SOLUTION

Events that are simultaneous in S have the same time t, so in Fig.
T14.2 we draw a dashed line parallel to the x-axis (constant t). We
put a dot on that line for event 1, and farther from the ct-axis we put
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Minkowski Spacetime Causal structure

How does the S′ reference frame appear on a ct-x spacetime diagram?

Recall we always set x′ = 0 at x = 0 when t′ = 0 = t
and let S′ move at speed v in +x-direction

x′ = 0 all along ct′-axis + ct′-axis have worldline of slope c/v

E.g. v = 0.600c + ct′-axis is at tan−1(1/0.600) = 59.0◦ from x-axis

x′-axis is not drawn perpendicular to the ct′-axis

Since ct′ = 0 all along x′-axis + use Lorentz transformation for t′

(t− vx/c2) = 0 or ct = (v/c)x for x′-axis

x′-axis is drawn with slope of v/c on ct-x spacetime diagram

E.g. v = 0.600c + x′-axis is at tan−1(0.600) = 31.0◦ from x-axis

x′-axis makes same angle with x-axis
as ct′-axis makes with ct-axis
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Minkowski Spacetime Causal structure

Simultaneity on a spacetime diagram

Topic 14 | Spacetime Diagrams

Graphical representations can make kinematic concepts less abstract and also give
useful information. For example, not only does a v-t graph for one-dimensional
motion show the velocity at any instant, but its slopes give accelerations, and
areas under it give displacements. For relativity the transformations y9 = y and
z9 = z are easy to understand, so we’ll just consider the ±x directions.

The usual convention in relativity is to graph ct on the vertical axis and x on
the horizontal axis. Such a graph provides us with a spacetime diagram. We use
ct rather than t so that both scales can have the same unit and the same scale. The
path of a particle forms a line, called its worldline, as the particle moves in one-
dimensional motion. At any point, the slope of the worldline is d(ct)/dx = (c dt)/(v
dt) = c/v. Thus a light pulse with v = ±c has a slope of ±1 on a spacetime diagram,
giving angles of 45° with the ± x-axes. Since material particles have speeds less
than c, all worldlines for material particles are steeper than those 45° angles. That
is, nothing known has a worldline with a slope between −1 and 1. The worldline
of a particle at rest is vertical and so has infinite slope. Figure T14.1 shows six
worldlines, three of light pulses and three of particles. Can you show that these
six worldlines agree with the statements made in this paragraph about their
slopes?

How does the S 9 reference frame appear on our ct-x spacetime diagram? Recall
that we always set x9 = 0 at x = 0 when t 9 = 0 = t and let S 9 move at a speed u in
the +x-direction. But x9 = 0 all along the ct 9-axis, so x9 = 0 and the ct 9-axis have
a worldline of slope c/u on our ct-x spacetime diagram. For example, if
u = 0.600c, the ct 9-axis is at an angle of arctan(1/0.600) = 59.0° from the x-axis
or 90.0° − 59.0° = 31.0° from the ct-axis.

Surprisingly enough, the x9-axis is not drawn perpendicular to the ct9-axis on
our ct-x spacetime diagram. Since ct 9 = 0 (so t 9 = 0) all along the x 9-axis, the
Lorentz transformation equation for t 9 gives (t − ux/c2) = 0 or ct = (u/c)x for the
x9-axis. Thus the x9-axis is drawn with a slope of u/c on our ct-x spacetime dia-
gram. For u = 0.600c the x9-axis is at an angle of arctan(0.600) = 31.0° from the
x-axis. That is, the x 9-axis makes the same angle with the x-axis as the ct 9-axis
makes with the ct-axis. Figure T14.2 shows that the worldline of a light pulse
leaving x9 = 0 = x at t 9 = 0 = t with a velocity +c bisects the angle between either
set of axes. 
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at rest
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Light
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v = c

Light
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v = -c

Light pulse 3,
v = -c

45º45º

T14.1 A spacetime diagram showing
worldlines of three light pulses and three
particles. Particles 1 and 2 leave x = 0 at
t = 0, accelerating from rest in opposite
directions.
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T14.2 The ct9- and x9-axes drawn on our
ct-x spacetime diagram. Notice the two
sets of equal angles.

another dot for event 2 (because x2 > x1). How do we read a value
of a point on a graph? We draw a line through that point parallel to
one axis and measure where it intercepts the other axis. Thus to
measure the times of the two events in Mavis’s S 9 frame, in Fig.
T14.2 we draw dashed lines parallel to the x9-axis that intercept the
ct 9-axis at ct19 and ct29. We see that ct29 < ct19, so t29 < t19. The
events are not simultaneous in S 9, and Mavis measures event 2 to
occur before event 1.

Simultaneity on a spacetime diagram
Example

T14.1

Stanley measures events 1 and 2 to occur simultaneously in S at
positions x1 and x2, where x2 > x1. Use our spacetime diagram to
show that Mavis, who moves in the positive x-direction relative to
Stanley, measures event 2 to occur before event 1.

SOLUTION

Events that are simultaneous in S have the same time t, so in Fig.
T14.2 we draw a dashed line parallel to the x-axis (constant t). We
put a dot on that line for event 1, and farther from the ct-axis we put
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Minkowski Spacetime Causal structure

Length contraction on a spacetime diagram

On our spacetime diagram, the scale for the S 9 axes is not the same as the scale
for the S axes. For example, consider the dashed line x9 = 1 in Fig. T14.3, which
must be drawn parallel to the ct 9-axis. (We have left off the unit for generality; it
could be x9 = 1 meter, x9 = 1 light year, or whatever is convenient.) This dashed
line intercepts the x-axis at ct = 0. Substituting t = 0 in the Lorentz transformation
x 9 = g (x − ut) gives x = 1/g for the x9 = 1 line. In Fig. T14.3, u = 0.60c and this
intercept is at x = 0.80. We can see that the symmetry of our spacetime diagram
gives us the same scaling ratio for the ct9- and ct-axes. To summarize, in compar-
ison to the ct- and x-axes, the ct 9- and x9-axes are rotated through an angle arctan
u/c toward the common v = c = v9 line at 45° and are stretched in scale so that the
x9 = 1 line intercepts the x-axis at x = 1/g .

Let’s finish this discussion with a simple example of length contraction. Mavis,
at rest in frame S 9, holds a meter stick with its left end at x9 = 0 and its right end
at x9 = 1 m. Thus in Fig. T14.3 the units are meters. At any time t 9 measured in
frame S9, the left end is at x9 = 0 (on the ct 9-axis) and the right end is on the x 9 = 1
dashed line. In frame S the positions of both ends of the meter stick are measured
at the same time t, then subtracted to find the length. For instance, at t = 0 (on the
x-axis) we see from Fig. T14.3 that the left end of her stick is at x = 0 and the right
end is at x = (1 m)/g . Thus in S the meter stick has a contracted length of (1 m)/g .

O
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0.5

0.
5

1.
0
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0.5 1.0 1.5

1.0

1.5

x! = 1

ct!

1/g

T14.3 A spacetime diagram for
The dashed line inter-

cepts the x-axis at The
scale of the -axes is greater than that of
the S-axes.

S r
x 5 1/g 5 0.800.

x r 5 1u 5 0.600c.
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Minkowski Spacetime Causal structure

Future, past, and elsewhere
Spacetime around any one event is divided into regions
separated by trajectories of light rays emanating from that event
Separation of events is same for all Lorentz observers
since light rays are unchanged by Lorentz transformations
All events in upper light cone are future of event in question
From origin event and any event in future + there exists inertial
observer for whom interval between events is a pure time (τ,~0)
and time of other event is after the now of our original event τ > 0.
Events in backward light cone from original event are in the past
There exists inertial observer
for whom second event is pure time (τ,~0) + but in this case τ < 0
All future and past events relative to original event
with intervals in any inertial coordinate system have ∆s2 > 0.
For any elsewhere event ∆s2 < 0 + there exists Lorentz observer
for whom events are separated by spatial interval (0,~r)
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Minkowski Spacetime Causal structure
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Minkowski Spacetime Lorentz invariance

4-vectors
Event + a place and a time
Set of 4 numbers (t,~x) specifies event in coordinate system
Designate coordinates with index xµ

x0 = ct, x1 = x, x2 = y, x3 = z
In this notation + a Lorentz transformations is expressed by

x′µ =
3

∑
ν=0

Λµ
ν xν (2)

Λ0
0 = γ Λi

0 = γvi/c Λi
j = δi

j + (γ− 1)
vi vj

v2 Λ0
j = γvj/c

Einstein summation convention:
eliminates summation symbol if same index appears up and down

x′µ = Λµ
ν xν (3)
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Minkowski Spacetime Lorentz invariance

Spacetime interval
Given two events + there is 4 vector

∆xµ = (c(t2 − t1), (x2 − x1), (y2 − y1), (z2 − z1)) (4)

Invariant interval is now expressed by

∆s2 = gµν ∆xµ ∆xν

= c2∆t2 − ∆x2 − ∆y2 − ∆z2 (5)

Metric of Minkowski spacetime:

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (6)
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Minkowski Spacetime Lorentz invariance

Metric tensor
Metric arises directly from physics of spacetime
It can be used to lower indices + xµ = gµν xν

Inverse metric gµν is defined so that gµνgνζ = δµ
ζ

Inverse metric raises indices +

gµν xν = gµν(gνζ xζ) = (gµνgνζ)xζ = δµ
ζ xζ = xµ

Invariance of interval ∆s2 = ∆s′2 places constraint on form of Λµ
ν

gµνx′µx′ν = gµν Λµ
α Λν

β xαxβ = gαβxαxβ (7)

which implies

gαβ = gµνΛµ
αΛν

β (8)
(8) can be used to define Lorentz transformation
Since gµν is symmetric there are only ten independent equations
Only 6 free parameters: 3 to label velocity and 3 to label rotations
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Minkowski Spacetime Lorentz invariance

Proper time

Consider time-like (or light-like) interval + ∆s2 = gµν∆xµ∆xν

in any Lorentz frame separating points on particle’s trajectory

Same interval can be expressed in coordinates
such that at each moment particle is at rest

Such a frame is called + instantaneous rest frame

Since in instantaneous rest frame particle is at rest
using interval invariance

∆s2 = c2 ∆τ2 (9)

Because interval is assumed time-like (or light-like)
we may take square root of (9) to define proper time interval

∆τ =
1
c

∆s (10)
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Minkowski Spacetime Lorentz invariance

Proper time (cont’d)
If curved trajectory is time-like + each segment must be time-like
Cumulative time is assigned to time-like trajectory (t0, x0; t f , x f )

τ[traj] =
f−1

∑
i=0

[
(ti+1 − ti)

2 − 1
c2 (xi+1 − xi)

2

− 1
c2 (yi+1 − yi)

2 − 1
c2 (zi+1 − zi)

2
]1/2

(11)

In limit of small segments + proper time over the trajectory

τ[traj] =
∫ (t f ,x f )

(t0,x0)

1
c

ds (12)

Wordline can be specified by xi(t) in particular inertial frame
Alternatively + worldline specified by xµ = xµ(τ)
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Minkowski Spacetime Lorentz invariance

3-velocity vector ~u
Trajectory + connected set of events

coordinatized by some inertial observer as (t,~x(t))
can be parametrized by proper time of trajectory + (t(τ),~x(τ))

τ[traj] =
∫ (t f ,x f )

(t0,x0)

√
1− 1

c2
d~x
dt
· d~x

dt
dt

=
∫ (t f ,x f )

(t0,x0)

√
1− ~u · ~u

c2 dt (13)

Elapsed proper time + functional of the trajectory
but function of labels of events at end points of the integral
Since it is a function of time on trajectory

we can derive a differential form of (13)

dτ

dt
=

√
1− ~u · ~u

c2 (14)
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Minkowski Spacetime Lorentz invariance

4-velocity vector U
For a time-like trajectory + define a four vector velocity

U ≡ Uµ =
dxµ

dτ
=

dxµ/dt
dτ/dt

(15)

4-velocity U is tangent to world line at each point
because displacement is given by ∆xµ = Uµ∆τ

4-components of 4-velocity vector U
can be expressed in terms of 3-velocity ~u

dx0

dτ
= U0 = c

dt
dτ

=
c

(1− u2/c2)1/2 (16)

~U =
1

(1− u2/c2)1/2
d~x
dt

=
1

(1− u2/c2)1/2 ~u (17)
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Minkowski Spacetime Lorentz invariance

Since +

U ≡ Uµ = (γc, γ~u) (18)

4-velocity is always time-like and future-pointing 4-vector

U ·U = gµνUµUν = gµν
(dxµ/dt)(dxν/dt)

(dτ/dt)2 = c2 (19)

U

U

U

U
@ any point along curve xµ(τ)

Uµ time-like tangent 4-vector
U lies inside lightcone of point
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Minkowski Spacetime Lorentz invariance

Relation between the 4-acceleration vector

A =
dU
dτ
≡ d2xµ

dτ2 (20)

and 3-aceleration vector

~a =
d2xi

dt2 (21)

is more complicated

A =
dU
dτ

= γ
dU
dt

= γ
d
dt
(γc, γ~u)

= γ

(
dγ

dt
c,

dγ

dt
~u + γ~a

)
(22)
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Minkowski Spacetime Lorentz invariance

Note that since
dγ

dt
=

~u · d~u/dt
c2 (1− u2/c2)3/2 (23)

in instantaneous rest frame of particle (~u = 0) + A = (0,~a)

A = 0⇔ |~a| = α = 0
For A2 being an invariant + evaluate it in rest frame

A · A = −α2 (24)

From (24) we see that A is space-like vector

By same articfice + from (18) and (22)

U · A = 0 (25)

4-acceleration vector is always orthogonal to 4-velocity
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Minkowski Spacetime Lorentz invariance

Thought-provoking observation

Consider Lorentz transformation + new frame (prime coordinates)
moves with velocity v along z axis of original frame

(unprimed coordinates)
Take + cosh(ϑ) = (1− v2/c2)−1/2

ct′ = cosh(ϑ) ct− sinh(ϑ) z
z′ = − sinh(ϑ) ct + cosh(ϑ) z
x′ = x
y′ = y (26)

Because cos(iϑ) = cosh(ϑ) and sin(iϑ) = sinh(ϑ)
Lorentz boost may be regarded as rotation

through imaginary angle iϑ in itc-z plane
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