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Maxwell’s Equations
1 All known laws of electricity and magnetism are summarize in

~∇ · ~E(~r, t) =
1
ε0

ρ(~r, t) (1)

~∇× ~E = −∂~B(~r, t)
∂t

(2)

~∇ · ~B(~r, t) = 0 (3)

~∇× ~B(~r, t) = µ0~(~r, t) + µ0ε0
∂~E(~r, t)

∂t
(4)

and associated force law

~F = q~E + q~v× ~B (5)

2 Careful dimensional analysis + c = (µ0ε0)−1/2
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Relativity of Electric and Magnetic Fields

Giving a quick rundown of the ~E � ~B dilemma
When we said that magnetic force on charge was proportional to
its velocity + you may have wondered:

1 What velocity?
2 With respect to which reference frame?

From definition of ~B + what this vector is depends on our choice
of reference frame for specification of velocity of charges
But we have said nothing about which is the proper frame for
specifying the magnetic field
It turns out that any inertial frame will do
Although static Maxwell’s equations separate into ~E and ~B with no
apparent connection between the two fields + in nature there is
intimate relation between them that arises from relativity principle
Let’s see what our knowledge of relativity would tell us about
magnetic forces if we assume that relativity principle is applicable
– as it is – to electromagnetism
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Relativity of Electric and Magnetic Fields

Feynman’s example
Think about what happens when negative charge moves with
velocity v0 parallel to current-carrying wire
Try to understand what goes on in two reference frames:
one fixed wrt wire (S) and one fixed wrt particle (S′)
In S-frame + there is magnetic force on particle
Force is directed toward wire + if charge were moving freely we
would see it curve in toward wire
But in S′-frame there can be no magnetic force on particle +

because its velocity is zero
Does it then stay where it is?
Would we see different things happening in the two systems?
Principle of relativity would say that in S′ we should also see
particle move closer to wire
We must try to understand why that would happen
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Relativity of Electric and Magnetic Fields

Atomic description of current-carrying wire in S-frame
In conductor electric currents come from motion of negative
conduction electrons while positive nuclear charges and
remainder of electrons stay fixed in body of material

ρ− + charge density of conduction electrons of velocity v

ρ+ + density of charges at rest = ρ− + wire is uncharged

There is no ~E field outside wire

Force on moving particle + ~F = q~v0 × ~B
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Fig. 13–10.The interaction of a current-carrying wire and a particle with the charge   as seen in two frames. In frame   (part a), the wire is at rest; in frame 
 (part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it
curve in toward the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is?
Would we see different things happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to
the wire. We must try to understand why that would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the
negative electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the
material. We let the charge density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be
equal to the negative of  , since we are considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is
just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed
toward the wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of
the particle is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  .
The positive charges moving with the wire will make some magnetic field   at the particle. But the particle is now at , so there is no  force on it!
If there is any force on the particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if
it appears —it must be that a neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the
same; but we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge  depend on the
volume occupied by charges, the densities will change, too.

Before we can decide about the charge  in  , we must know what happens to the electric  of a bunch of electrons when the charges are
moving. We know that the apparent mass of a particle changes by  . Does its charge do something similar? No!  are always the ,
moving or not. Otherwise we would not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than
the protons, the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle
carrying it, in the heated block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have
seen earlier, a very small fractional change in the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever
been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed,
the net charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence
of charge on speed would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a
single particle is independent of its state of motion.
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Fig. 13–7.The magnetic field outside of a long wire carrying the current  .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical
cross section? We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed
circles. If we make this assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same
magnitude at all points on a circle concentric with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of 

 times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form.
Remembering that   is at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation
like (13.17) is used to  the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square
meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple
demonstration of the forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should
then be pushed either toward or away from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite
directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a
tight spiral, as shown by the cross sections in Fig. 13–8. Such a coil is called a . We observe experimentally that when a solenoid is very long
compared with its diameter, the field outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the
size of the field inside.

Fig. 13–8.The magnetic field of a long solenoid.

Since the field  inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use
Ampère’s law with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at
right angles to the field, and returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be 
times the total current through  , which is   if there are   turns of the solenoid in the length  . We have

A
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Relativity of Electric and Magnetic Fields

Recall Ampère’s law +
¸
~B · d~̀ = µ0 Iencl

~B field at distance r from axis of wire: B = 1
4πε0c2

2I
r

c = 1/
√

µ0ε0
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Fig. 13–10.The interaction of a current-carrying wire and a particle with the charge   as seen in two frames. In frame   (part a), the wire is at rest; in frame 
 (part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it
curve in toward the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is?
Would we see different things happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to
the wire. We must try to understand why that would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the
negative electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the
material. We let the charge density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be
equal to the negative of  , since we are considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is
just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed
toward the wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of
the particle is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  .
The positive charges moving with the wire will make some magnetic field   at the particle. But the particle is now at , so there is no  force on it!
If there is any force on the particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if
it appears —it must be that a neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the
same; but we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge  depend on the
volume occupied by charges, the densities will change, too.

Before we can decide about the charge  in  , we must know what happens to the electric  of a bunch of electrons when the charges are
moving. We know that the apparent mass of a particle changes by  . Does its charge do something similar? No!  are always the ,
moving or not. Otherwise we would not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than
the protons, the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle
carrying it, in the heated block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have
seen earlier, a very small fractional change in the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever
been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed,
the net charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence
of charge on speed would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a
single particle is independent of its state of motion.
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Fig. 13–7.The magnetic field outside of a long wire carrying the current  .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical
cross section? We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed
circles. If we make this assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same
magnitude at all points on a circle concentric with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of 

 times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form.
Remembering that   is at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation
like (13.17) is used to  the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square
meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple
demonstration of the forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should
then be pushed either toward or away from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite
directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a
tight spiral, as shown by the cross sections in Fig. 13–8. Such a coil is called a . We observe experimentally that when a solenoid is very long
compared with its diameter, the field outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the
size of the field inside.

Fig. 13–8.The magnetic field of a long solenoid.

Since the field  inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use
Ampère’s law with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at
right angles to the field, and returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be 
times the total current through  , which is   if there are   turns of the solenoid in the length  . We have

A

Force in S-frame
Conclude that:

1 Force on particle is directed toward wire

2 Force has magnitude + F = 1
4πε0c2

2Iqv0
r

Since I = ρ−vA + F = 1
4πε0c2

2qρ−Avv0
r

We could continue to treat general case of arbitrary velocities
but it will be just as good to look at special case v0 = v

Taking v0 = v + F = q
2πε0

ρ−A
r

v2

c2
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Relativity of Electric and Magnetic Fields

What happens in S′?
Particle is at rest and wire is running past with speed v

Positive charges moving with wire will make some B′ at particle

But particle is now at rest + there is no magnetic force on it!

If there is any force on particle it must come from ~E

It must be that moving wire has produced an ~E

But it can do that only if it appears charged + it must be that
neutral wire with current appears to be charged when set in motion
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Fig. 13–10.The interaction of a current-carrying wire and a particle with the charge   as seen in two frames. In frame   (part a), the wire is at rest; in frame 
 (part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it
curve in toward the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is?
Would we see different things happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to
the wire. We must try to understand why that would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the
negative electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the
material. We let the charge density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be
equal to the negative of  , since we are considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is
just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed
toward the wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of
the particle is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  .
The positive charges moving with the wire will make some magnetic field   at the particle. But the particle is now at , so there is no  force on it!
If there is any force on the particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if
it appears —it must be that a neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the
same; but we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge  depend on the
volume occupied by charges, the densities will change, too.

Before we can decide about the charge  in  , we must know what happens to the electric  of a bunch of electrons when the charges are
moving. We know that the apparent mass of a particle changes by  . Does its charge do something similar? No!  are always the ,
moving or not. Otherwise we would not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than
the protons, the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle
carrying it, in the heated block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have
seen earlier, a very small fractional change in the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever
been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed,
the net charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence
of charge on speed would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a
single particle is independent of its state of motion.
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Fig. 13–7.The magnetic field outside of a long wire carrying the current  .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical
cross section? We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed
circles. If we make this assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same
magnitude at all points on a circle concentric with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of 

 times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form.
Remembering that   is at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation
like (13.17) is used to  the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square
meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple
demonstration of the forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should
then be pushed either toward or away from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite
directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a
tight spiral, as shown by the cross sections in Fig. 13–8. Such a coil is called a . We observe experimentally that when a solenoid is very long
compared with its diameter, the field outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the
size of the field inside.

Fig. 13–8.The magnetic field of a long solenoid.

Since the field  inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use
Ampère’s law with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at
right angles to the field, and returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be 
times the total current through  , which is   if there are   turns of the solenoid in the length  . We have

A
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Relativity of Electric and Magnetic Fields

Charge density in S and S′

Compute ρ of wire in S′ from what’s known about it in S

Aren’t ρ and ρ′ the same?

Charge q on particle is invariant scalar quantity
+ independent of reference frame

In any frame + charge density of distribution of electrons
is proportional to number of electrons per unit volume

BUT we know that lengths are changed between S and S′

+ so volumes will change also

Since charge densities depend on volume occupied by charges
+ densities will change too

Must calculate:
volume changes because of relativistic contraction of distances
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Relativity of Electric and Magnetic Fields

Length contraction of current-carrying wire
Take length L0 of wire with charge density ρ0 of stationary charges
Total charge Q = ρ0L0A0

If same charges are observed in different frame moving v + they
will all be found in piece of material with shorter length

L = L0

√
1− v2/c2

but same area

13

Magnetostatics

Review: Chapter 15, Vol. I, The Special Theory of Relativity

13–1 The magnetic field

The force on an electric charge depends not only on where it is, but also on how fast it is moving. Every point in space is characterized by two vector quantities which
determine the force on any charge. First, there is the electric force, which gives a force component independent of the motion of the charge. We describe it by the electric
field, . Second, there is an additional force component, called the magnetic force, which depends on the velocity of the charge. This magnetic force has a strange directional
character: At any particular point in space, both the direction of the force and its magnitude depend on the direction of motion of the particle: at every instant the force is
always at right angles to the velocity vector; also, at any particular point, the force is always at right angles to a fixed direction in space (see Fig. 13–1); and finally, the
magnitude of the force is proportional to the component of the velocity at right angles to this unique direction. It is possible to describe all of this behavior by defining the
magnetic field vector  , which specifies both the unique direction in space and the constant of proportionality with the velocity, and to write the magnetic force as  .
The total electromagnetic force on a charge can, then, be written as

This is called the Lorentz force.

Fig. 13–1. The velocity-dependent component of the force on a moving charge
is at right angles to  and to the direction of . It is also proportional to the
component of  at right angles to , that is, to .

The magnetic force is easily demonstrated by bringing a bar magnet close to a cathode-ray tube. The deflection of the electron beam shows that the presence of the
magnet results in forces on the electrons transverse to their direction of motion, as we described in Chapter 12 of Vol. I.

The unit of magnetic field   is evidently one newton second per coulomb-meter. The same unit is also one volt second per meter . It is also called one weber per square
meter.

13–2 Electric current; the conservation of charge

We consider first how we can understand the magnetic forces on wires carrying electric currents. In order to do this, we define what is meant by the current density.
Electric currents are electrons or other charges in motion with a net drift or flow. We can represent the charge flow by a vector which gives the amount of charge passing per
unit area and per unit time through a surface element at right angles to the flow (just as we did for the case of heat flow). We call this the current density and represent it by
the vector  . It is directed along the motion of the charges. If we take a small area   at a given place in the material, the amount of charge flowing across that area in a unit
time is

where   is the unit vector normal to  .

Fig. 13–2. If a charge distribution of density  moves with the velocity , the
charge per unit time through  is .

The current density is related to the average flow velocity of the charges. Suppose that we have a distribution of charges whose average motion is a drift with the
velocity  . As this distribution passes over a surface element  , the charge   passing through the surface element in a time   is equal to the charge contained in a
parallelepiped whose base is   and whose height is  , as shown in Fig. 13–2. The volume of the parallelepiped is the projection of   at right angles to  times  ,
which when multiplied by the charge density   will give  . Thus

The charge per unit time is then  , from which we get

If the charge distribution consists of individual charges, say electrons, each with the charge   and moving with the mean velocity  , then the current density is

where   is the number of charges per unit volume.

Fig. 13–3. The current  through the surface  is .

The total charge passing per unit time through any surface   is called the electric current, . It is equal to the integral of the normal component of the flow through all of
the elements of the surface:

(see Fig. 13–3).

Fig. 13–4. The integral of  over a closed surface is negative the rate of
change of the total charge  inside.

The current   out of a closed surface   represents the rate at which charge leaves the volume   enclosed by  . One of the basic laws of physics is that electric charge is
indestructible; it is never lost or created. Electric charges can move from place to place but never appear from nowhere. We say that charge is conserved. If there is a net
current out of a closed surface, the amount of charge inside must decrease by the corresponding amount (Fig. 13–4). We can, therefore, write the law of the conservation of
charge as

The charge inside can be written as a volume integral of the charge density:

If we apply (13.6) to a small volume  , we know that the left-hand integral is  . The charge inside is  , so the conservation of charge can also be written as

(Gauss’ mathematics once again!).

13–3 The magnetic force on a current

Fig. 13–5. The magnetic force on a current-carrying wire is the sum of the
forces on the individual moving charges.

Now we are ready to find the force on a current-carrying wire in a magnetic field. The current consists of charged particles moving with the velocity   along the wire.
Each charge feels a transverse force

(Fig. 13–5a). If there are   such charges per unit volume, the number in a small volume   of the wire is  . The total magnetic force   on the volume   is the sum
of the forces on the individual charges, that is,

But  is just , so

(Fig. 13–5b). The force per unit volume is  .

If the current is uniform across a wire whose cross-sectional area is  , we may take as the volume element a cylinder with the base area   and the length  . Then

Now we can call   the vector current   in the wire. (Its magnitude is the electric current in the wire, and its direction is along the wire.) Then

The force per unit length on a wire is  .

This equation gives the important result that the magnetic force on a wire, due to the movement of charges in it, depends only on the total current, and not on the
amount of charge carried by each particle—or even its sign! The magnetic force on a wire near a magnet is easily shown by observing its deflection when a current is turned
on, as was described in Chapter 1 (see Fig. 1–6).

13–4 The magnetic field of steady currents; Ampère’s law

We have seen that there is a force on a wire in the presence of a magnetic field, produced, say, by a magnet. From the principle that action equals reaction we might
expect that there should be a force on the source of the magnetic field, i.e., on the magnet, when there is a current through the wire.1 There are indeed such forces, as is seen
by the deflection of a compass needle near a current-carrying wire. Now we know that magnets feel forces from other magnets, so that means that when there is a current in a
wire, the wire itself generates a magnetic field. Moving charges, then, produce a magnetic field. We would like now to try to discover the laws that determine how such
magnetic fields are created. The question is: Given a current, what magnetic field does it make? The answer to this question was determined experimentally by three critical
experiments and a brilliant theoretical argument given by Ampère. We will pass over this interesting historical development and simply say that a large number of
experiments have demonstrated the validity of Maxwell’s equations. We take them as our starting point. If we drop the terms involving time derivatives in these equations we
get the equations of magnetostatics:

and

These equations are valid only if all electric charge densities are constant and all currents are steady, so that the electric and magnetic fields are not changing with time—all
of the fields are “static.”

We may remark that it is rather dangerous to think that there is such a thing as a static magnetic situation, because there must be currents in order to get a magnetic
field at all—and currents can come only from moving charges. “Magnetostatics” is, therefore, an approximation. It refers to a special kind of dynamic situation with large
numbers of charges in motion, which we can approximate by a steady flow of charge. Only then can we speak of a current density   which does not change with time. The
subject should more accurately be called the study of steady currents. Assuming that all fields are steady, we drop all terms in  and   from the complete Maxwell
equations, Eqs. (2.41), and obtain the two equations (13.12) and (13.13) above. Also notice that since the divergence of the curl of any vector is necessarily zero, Eq. (13.13)
requires that  . This is true, by Eq. (13.8), only if   is zero. But that must be so if   is not changing with time, so our assumptions are consistent.

The requirement that   means that we may only have charges which flow in paths that close back on themselves. They may, for instance, flow in wires that form
complete loops—called circuits. The circuits may, of course, contain generators or batteries that keep the charges flowing. But they may not include condensers which are
charging or discharging. (We will, of course, extend the theory later to include dynamic fields, but we want first to take the simpler case of steady currents.)

Now let us look at Eqs. (13.12) and  (13.13) to see what they mean. The first one says that the divergence of   is zero. Comparing it to the analogous equation in
electrostatics, which says that  , we can conclude that there is no magnetic analog of an electric charge. There are no magnetic charges from which lines of 
can emerge. If we think in terms of “lines” of the vector field  , they can never start and they never stop. Then where do they come from? Magnetic fields “appear” in the
presence of currents; they have a curl proportional to the current density. Wherever there are currents, there are lines of magnetic field making loops around the currents.
Since lines of   do not begin or end, they will often close back on themselves, making closed loops. But there can also be complicated situations in which the lines are not
simple closed loops. But whatever they do, they never diverge from points. No magnetic charges have ever been discovered, so  . This much is true not only for
magnetostatics, it is always true—even for dynamic fields.

Fig. 13–6. The line integral of the tangential component of  is equal to the
surface integral of the normal component of .

The connection between the  field and currents is contained in Eq. (13.13). Here we have a new kind of situation which is quite different from electrostatics, where we
had  . That equation meant that the line integral of   around any closed path is zero:

We got that result from Stokes’ theorem, which says that the integral around any closed path of any vector field is equal to the surface integral of the normal component of
the curl of the vector (taken over any surface which has the closed loop as its periphery). Applying the same theorem to the magnetic field vector and using the symbols
shown in Fig. 13–6, we get

Taking the curl of   from Eq. (13.13), we have

The integral over  , according to (13.5), is the total current   through the surface  . Since for steady currents the current through   is independent of the shape of  , so long
as it is bounded by the curve  , one usually speaks of “the current through the loop  .” We have, then, a general law: the circulation of   around any closed curve is equal to
the current   through the loop, divided by  :

This law—called Ampère’s law—plays the same role in magnetostatics that Gauss’ law played in electrostatics. Ampère’s law alone does not determine   from currents; we
must, in general, also use  . But, as we will see in the next section, it can be used to find the field in special circumstances which have certain simple symmetries.

13–5 The magnetic field of a straight wire and of a solenoid; atomic currents

Fig. 13–7. The magnetic field outside of a long wire carrying the current .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical cross section?
We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed circles. If we make this
assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same magnitude at all points on a circle concentric
with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of   times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form. Remembering that   is
at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation like (13.17) is used
to define the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple demonstration of the
forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should then be pushed either toward or away
from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a tight spiral,
as shown by the cross sections in Fig. 13–8. Such a coil is called a solenoid. We observe experimentally that when a solenoid is very long compared with its diameter, the field
outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the size of the field inside.

Fig. 13–8. The magnetic field of a long solenoid.

Since the field stays inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use Ampère’s law
with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at right angles to the field, and
returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be   times the total current through  , which is 
if there are   turns of the solenoid in the length  . We have

Or, letting   be the number of turns per unit length of the solenoid (that is, ), we get

What happens to the lines of   when they get to the end of the solenoid? Presumably, they spread out in some way and return to enter the solenoid at the other end, as
sketched in Fig. 13–9. Such a field is just what is observed outside of a bar magnet. But what is a magnet anyway? Our equations say that   comes from the presence of
currents. Yet we know that ordinary bars of iron (no batteries or generators) also produce magnetic fields. You might expect that there should be some other terms on the
right-hand side of (13.12) or (13.13) to represent “the density of magnetic iron” or some such quantity. But there is no such term. Our theory says that the magnetic effects of
iron come from some internal currents which are already taken care of by the  term.

Fig. 13–9. The magnetic field outside of a solenoid.

Matter is very complex when looked at from a fundamental point of view—as we saw when we tried to understand dielectrics. In order not to interrupt our present
discussion, we will wait until later to deal in detail with the interior mechanisms of magnetic materials like iron: You will have to accept, for the moment, that all magnetism
is produced from currents, and that in a permanent magnet there are permanent internal currents. In the case of iron, these currents come from electrons spinning around
their own axes. Every electron has such a spin, which corresponds to a tiny circulating current. Of course, one electron doesn’t produce much magnetic field, but in an
ordinary piece of matter there are billions and billions of electrons. Normally these spin and point every which way, so that there is no net effect. The miracle is that in a very
few substances, like iron, a large fraction of the electrons spin with their axes in the same direction—for iron, two electrons of each atom take part in this cooperative motion.
In a bar magnet there are large numbers of electrons all spinning in the same direction and, as we will see, their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for dielectrics—that a uniformly polarized dielectric is equivalent to a distribution of charges on its surface.) It is,
therefore, no accident that a bar magnet is equivalent to a solenoid.

13–6 The relativity of magnetic and electric fields

When we said that the magnetic force on a charge was proportional to its velocity, you may have wondered: “What velocity? With respect to which reference frame?” It
is, in fact, clear from the definition of   given at the beginning of this chapter that what this vector is will depend on what we choose as a reference frame for our
specification of the velocity of charges. But we have said nothing about which is the proper frame for specifying the magnetic field.

It turns out that any inertial frame will do. We will also see that magnetism and electricity are not independent things—that they should always be taken together as one
complete electromagnetic field. Although in the static case Maxwell’s equations separate into two distinct pairs, one pair for electricity and one pair for magnetism, with no
apparent connection between the two fields, nevertheless, in nature itself there is a very intimate relationship between them that arises from the principle of relativity.
Historically, the principle of relativity was discovered after Maxwell’s equations. It was, in fact, the study of electricity and magnetism which led ultimately to Einstein’s
discovery of his principle of relativity. But let’s see what our knowledge of relativity would tell us about magnetic forces if we assume that the relativity principle is applicable
—as it is—to electromagnetism.

Suppose we think about what happens when a negative charge moves with velocity   parallel to a current-carrying wire, as in Fig. 13–10. We will try to understand what
goes on in two reference frames: one fixed with respect to the wire, as in part (a) of the figure, and one fixed with respect to the particle, as in part (b). We will call the first
frame   and the second  .

Fig. 13–10. The interaction of a current-carrying wire and a particle with the
charge  as seen in two frames. In frame  (part a), the wire is at rest; in frame 
(part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it curve in toward
the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is? Would we see different things
happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to the wire. We must try to understand why that
would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the negative
electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the material. We let the charge
density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be equal to the negative of  , since we are
considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed toward the
wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of the particle
is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  . The positive
charges moving with the wire will make some magnetic field   at the particle. But the particle is now at rest, so there is no magnetic force on it! If there is any force on the
particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if it appears charged—it must be that a
neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the same; but
we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge densities depend on the volume occupied by
charges, the densities will change, too.

Before we can decide about the charge densities in  , we must know what happens to the electric charge of a bunch of electrons when the charges are moving. We know
that the apparent mass of a particle changes by  . Does its charge do something similar? No! Charges are always the same, moving or not. Otherwise we would
not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than the protons,
the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle carrying it, in the heated
block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have seen earlier, a very small fractional change in
the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed, the net
charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence of charge on speed
would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a single particle is independent of its
state of motion.

So the charge   on a particle is an invariant scalar quantity, independent of the frame of reference. That means that in any frame the charge density of a distribution of
electrons is just proportional to the number of electrons per unit volume. We need only worry about the fact that the volume can change because of the relativistic
contraction of distances.

We now apply these ideas to our moving wire. If we take a length   of the wire, in which there is a charge density   of stationary charges, it will contain the total
charge  . If the same charges are observed in a different frame to be moving with velocity  , they will all be found in a piece of the material with the shorter
length

but with the same area   (since dimensions transverse to the motion are unchanged). See Fig. 13–11.

Fig. 13–11. If a distribution of charged particles at rest has the charge
density , the same charges will have the density  when
seen from a frame with the relative velocity .

If we call   the density of charges in the frame in which they are moving, the total charge   will be  . This must also be equal to  , because charge is the same
in any system, so that   or, from (13.22),

The charge density of a moving distribution of charges varies in the same way as the relativistic mass of a particle.

We now use this general result for the positive charge density   of our wire. These charges are at rest in frame  . In  , however, where the wire moves with the
speed  , the positive charge density becomes

The negative charges are at rest in  . So they have their “rest density”   in this frame. In Eq. (13.23) , because they have the density   when the wire is at
rest, i.e., in frame  , where the speed of the negative charges is  . For the conduction electrons, we then have that

or

Now we can see why there are electric fields in  —because in this frame the wire has the net charge density   given by

Using (13.24) and (13.26), we have

Since the stationary wire is neutral, , and we have

Our moving wire is positively charged and will produce an electric field   at the external stationary particle. We have already solved the electrostatic problem of a uniformly
charged cylinder. The electric field at the distance   from the axis of the cylinder is

The force on the negatively charged particle is toward the wire. We have, at least, a force in the same direction from the two points of view; the electric force in   has the
same direction as the magnetic force in  .

The magnitude of the force in   is

Comparing this result for   with our result for   in Eq. (13.21), we see that the magnitudes of the forces are almost identical from the two points of view. In fact,

so for the small velocities we have been considering, the two forces are equal. We can say that for low velocities, at least, we understand that magnetism and electricity are
just “two ways of looking at the same thing.”

But things are even better than that. If we take into account the fact that forces also transform when we go from one system to the other, we find that the two ways of
looking at what happens do indeed give the same physical result for any velocity.

One way of seeing this is to ask a question like: What transverse momentum will the particle have after the force has acted for a little while? We know from Chapter 16 of
Vol. I that the transverse momentum of a particle should be the same in both the  - and -frames. Calling the transverse coordinate  , we want to compare  and  .
Using the relativistically correct equation of motion, , we expect that after the time   our particle will have a transverse momentum   in the -system given
by

In the -system, the transverse momentum will be

We must, of course, compare  and   for corresponding time intervals  and  . We have seen in Chapter 15 of Vol. I that the time intervals referred to a moving
particle appear to be longer than those in the rest system of the particle. Since our particle is initially at rest in  , we expect, for small  , that

and everything comes out O.K. From (13.31) and (13.32),

which is just   if we combine (13.30) and (13.33).

We have found that we get the same physical result whether we analyze the motion of a particle moving along a wire in a coordinate system at rest with respect to the
wire, or in a system at rest with respect to the particle. In the first instance, the force was purely “magnetic,” in the second, it was purely “electric.” The two points of view are
illustrated in Fig. 13–12 (although there is still a magnetic field   in the second frame, it produces no forces on the stationary particle).

Fig. 13–12. In frame  the charge density is zero and the current density is .
There is only a magnetic field. In , there is a charge density  and a different
current density . The magnetic field  is different and there is an electric
field .

If we had chosen still another coordinate system, we would have found a different mixture of  and   fields. Electric and magnetic forces are part of one physical
phenomenon—the electromagnetic interactions of particles. The separation of this interaction into electric and magnetic parts depends very much on the reference frame
chosen for the description. But a complete electromagnetic description is invariant; electricity and magnetism taken together are consistent with Einstein’s relativity.

Since electric and magnetic fields appear in different mixtures if we change our frame of reference, we must be careful about how we look at the fields  and  . For
instance, if we think of “lines” of  or  , we must not attach too much reality to them. The lines may disappear if we try to observe them from a different coordinate system.
For example, in system   there are electric field lines, which we do not find “moving past us with velocity   in system  .” In system   there are no electric field lines at all!
Therefore it makes no sense to say something like: When I move a magnet, it takes its field with it, so the lines of   are also moved. There is no way to make sense, in
general, out of the idea of “the speed of a moving field line.” The fields are our way of describing what goes on at a point in space. In particular,  and   tell us about the
forces that will act on a moving particle. The question “What is the force on a charge from a moving magnetic field?” doesn’t mean anything precise. The force is given by the
values of  and   at the charge, and the formula (13.1) is not to be altered if the source of  or   is moving (it is the values of  and   that will be altered by the motion).
Our mathematical description deals only with the fields as a function of ,  , , and   with respect to some inertial frame.

We will later be speaking of “a wave of electric and magnetic fields travelling through space,” as, for instance, a light wave. But that is like speaking of a wave travelling
on a string. We don’t then mean that some part of the string is moving in the direction of the wave, we mean that the displacement of the string appears first at one place and
later at another. Similarly, in an electromagnetic wave, the wave travels; but the magnitude of the fields change. So in the future when we—or someone else—speaks of a
“moving” field, you should think of it as just a handy, short way of describing a changing field in some circumstances.

13–7 The transformation of currents and charges

You may have worried about the simplification we made above when we took the same velocity   for the particle and for the conduction electrons in the wire. We could
go back and carry through the analysis again for two different velocities, but it is easier to simply notice that charge and current density are the components of a four-vector
(see Chapter 17, Vol. I).

We have seen that if   is the density of the charges in their rest frame, then in a frame in which they have the velocity  , the density is

In that frame their current density is

Now we know that the energy   and momentum   of a particle moving with velocity   are given by

where   is its rest mass. We also know that  and   form a relativistic four-vector. Since  and   depend on the velocity 
exactly as do  and  , we can conclude that  and   are also the components of a relativistic four-vector. This property is the key to a general analysis of the field of a wire
moving with any velocity, which we would need if we want to do the problem again with the velocity   of the particle different from the velocity of the conduction electrons.

If we wish to transform  and   to a coordinate system moving with a velocity   in the -direction, we know that they transform just like  and  , so that we have
(see Chapter 15, Vol. I)
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Magnetostatics

Review: Chapter 15, Vol. I, The Special Theory of Relativity

13–1 The magnetic field

The force on an electric charge depends not only on where it is, but also on how fast it is moving. Every point in space is characterized by two vector quantities which
determine the force on any charge. First, there is the electric force, which gives a force component independent of the motion of the charge. We describe it by the electric
field, . Second, there is an additional force component, called the magnetic force, which depends on the velocity of the charge. This magnetic force has a strange directional
character: At any particular point in space, both the direction of the force and its magnitude depend on the direction of motion of the particle: at every instant the force is
always at right angles to the velocity vector; also, at any particular point, the force is always at right angles to a fixed direction in space (see Fig. 13–1); and finally, the
magnitude of the force is proportional to the component of the velocity at right angles to this unique direction. It is possible to describe all of this behavior by defining the
magnetic field vector  , which specifies both the unique direction in space and the constant of proportionality with the velocity, and to write the magnetic force as  .
The total electromagnetic force on a charge can, then, be written as

This is called the Lorentz force.

Fig. 13–1. The velocity-dependent component of the force on a moving charge
is at right angles to  and to the direction of . It is also proportional to the
component of  at right angles to , that is, to .

The magnetic force is easily demonstrated by bringing a bar magnet close to a cathode-ray tube. The deflection of the electron beam shows that the presence of the
magnet results in forces on the electrons transverse to their direction of motion, as we described in Chapter 12 of Vol. I.

The unit of magnetic field   is evidently one newton second per coulomb-meter. The same unit is also one volt second per meter . It is also called one weber per square
meter.

13–2 Electric current; the conservation of charge

We consider first how we can understand the magnetic forces on wires carrying electric currents. In order to do this, we define what is meant by the current density.
Electric currents are electrons or other charges in motion with a net drift or flow. We can represent the charge flow by a vector which gives the amount of charge passing per
unit area and per unit time through a surface element at right angles to the flow (just as we did for the case of heat flow). We call this the current density and represent it by
the vector  . It is directed along the motion of the charges. If we take a small area   at a given place in the material, the amount of charge flowing across that area in a unit
time is

where   is the unit vector normal to  .

Fig. 13–2. If a charge distribution of density  moves with the velocity , the
charge per unit time through  is .

The current density is related to the average flow velocity of the charges. Suppose that we have a distribution of charges whose average motion is a drift with the
velocity  . As this distribution passes over a surface element  , the charge   passing through the surface element in a time   is equal to the charge contained in a
parallelepiped whose base is   and whose height is  , as shown in Fig. 13–2. The volume of the parallelepiped is the projection of   at right angles to  times  ,
which when multiplied by the charge density   will give  . Thus

The charge per unit time is then  , from which we get

If the charge distribution consists of individual charges, say electrons, each with the charge   and moving with the mean velocity  , then the current density is

where   is the number of charges per unit volume.

Fig. 13–3. The current  through the surface  is .

The total charge passing per unit time through any surface   is called the electric current, . It is equal to the integral of the normal component of the flow through all of
the elements of the surface:

(see Fig. 13–3).

Fig. 13–4. The integral of  over a closed surface is negative the rate of
change of the total charge  inside.

The current   out of a closed surface   represents the rate at which charge leaves the volume   enclosed by  . One of the basic laws of physics is that electric charge is
indestructible; it is never lost or created. Electric charges can move from place to place but never appear from nowhere. We say that charge is conserved. If there is a net
current out of a closed surface, the amount of charge inside must decrease by the corresponding amount (Fig. 13–4). We can, therefore, write the law of the conservation of
charge as

The charge inside can be written as a volume integral of the charge density:

If we apply (13.6) to a small volume  , we know that the left-hand integral is  . The charge inside is  , so the conservation of charge can also be written as

(Gauss’ mathematics once again!).

13–3 The magnetic force on a current

Fig. 13–5. The magnetic force on a current-carrying wire is the sum of the
forces on the individual moving charges.

Now we are ready to find the force on a current-carrying wire in a magnetic field. The current consists of charged particles moving with the velocity   along the wire.
Each charge feels a transverse force

(Fig. 13–5a). If there are   such charges per unit volume, the number in a small volume   of the wire is  . The total magnetic force   on the volume   is the sum
of the forces on the individual charges, that is,

But  is just , so

(Fig. 13–5b). The force per unit volume is  .

If the current is uniform across a wire whose cross-sectional area is  , we may take as the volume element a cylinder with the base area   and the length  . Then

Now we can call   the vector current   in the wire. (Its magnitude is the electric current in the wire, and its direction is along the wire.) Then

The force per unit length on a wire is  .

This equation gives the important result that the magnetic force on a wire, due to the movement of charges in it, depends only on the total current, and not on the
amount of charge carried by each particle—or even its sign! The magnetic force on a wire near a magnet is easily shown by observing its deflection when a current is turned
on, as was described in Chapter 1 (see Fig. 1–6).

13–4 The magnetic field of steady currents; Ampère’s law

We have seen that there is a force on a wire in the presence of a magnetic field, produced, say, by a magnet. From the principle that action equals reaction we might
expect that there should be a force on the source of the magnetic field, i.e., on the magnet, when there is a current through the wire.1 There are indeed such forces, as is seen
by the deflection of a compass needle near a current-carrying wire. Now we know that magnets feel forces from other magnets, so that means that when there is a current in a
wire, the wire itself generates a magnetic field. Moving charges, then, produce a magnetic field. We would like now to try to discover the laws that determine how such
magnetic fields are created. The question is: Given a current, what magnetic field does it make? The answer to this question was determined experimentally by three critical
experiments and a brilliant theoretical argument given by Ampère. We will pass over this interesting historical development and simply say that a large number of
experiments have demonstrated the validity of Maxwell’s equations. We take them as our starting point. If we drop the terms involving time derivatives in these equations we
get the equations of magnetostatics:

and

These equations are valid only if all electric charge densities are constant and all currents are steady, so that the electric and magnetic fields are not changing with time—all
of the fields are “static.”

We may remark that it is rather dangerous to think that there is such a thing as a static magnetic situation, because there must be currents in order to get a magnetic
field at all—and currents can come only from moving charges. “Magnetostatics” is, therefore, an approximation. It refers to a special kind of dynamic situation with large
numbers of charges in motion, which we can approximate by a steady flow of charge. Only then can we speak of a current density   which does not change with time. The
subject should more accurately be called the study of steady currents. Assuming that all fields are steady, we drop all terms in  and   from the complete Maxwell
equations, Eqs. (2.41), and obtain the two equations (13.12) and (13.13) above. Also notice that since the divergence of the curl of any vector is necessarily zero, Eq. (13.13)
requires that  . This is true, by Eq. (13.8), only if   is zero. But that must be so if   is not changing with time, so our assumptions are consistent.

The requirement that   means that we may only have charges which flow in paths that close back on themselves. They may, for instance, flow in wires that form
complete loops—called circuits. The circuits may, of course, contain generators or batteries that keep the charges flowing. But they may not include condensers which are
charging or discharging. (We will, of course, extend the theory later to include dynamic fields, but we want first to take the simpler case of steady currents.)

Now let us look at Eqs. (13.12) and  (13.13) to see what they mean. The first one says that the divergence of   is zero. Comparing it to the analogous equation in
electrostatics, which says that  , we can conclude that there is no magnetic analog of an electric charge. There are no magnetic charges from which lines of 
can emerge. If we think in terms of “lines” of the vector field  , they can never start and they never stop. Then where do they come from? Magnetic fields “appear” in the
presence of currents; they have a curl proportional to the current density. Wherever there are currents, there are lines of magnetic field making loops around the currents.
Since lines of   do not begin or end, they will often close back on themselves, making closed loops. But there can also be complicated situations in which the lines are not
simple closed loops. But whatever they do, they never diverge from points. No magnetic charges have ever been discovered, so  . This much is true not only for
magnetostatics, it is always true—even for dynamic fields.

Fig. 13–6. The line integral of the tangential component of  is equal to the
surface integral of the normal component of .

The connection between the  field and currents is contained in Eq. (13.13). Here we have a new kind of situation which is quite different from electrostatics, where we
had  . That equation meant that the line integral of   around any closed path is zero:

We got that result from Stokes’ theorem, which says that the integral around any closed path of any vector field is equal to the surface integral of the normal component of
the curl of the vector (taken over any surface which has the closed loop as its periphery). Applying the same theorem to the magnetic field vector and using the symbols
shown in Fig. 13–6, we get

Taking the curl of   from Eq. (13.13), we have

The integral over  , according to (13.5), is the total current   through the surface  . Since for steady currents the current through   is independent of the shape of  , so long
as it is bounded by the curve  , one usually speaks of “the current through the loop  .” We have, then, a general law: the circulation of   around any closed curve is equal to
the current   through the loop, divided by  :

This law—called Ampère’s law—plays the same role in magnetostatics that Gauss’ law played in electrostatics. Ampère’s law alone does not determine   from currents; we
must, in general, also use  . But, as we will see in the next section, it can be used to find the field in special circumstances which have certain simple symmetries.

13–5 The magnetic field of a straight wire and of a solenoid; atomic currents

Fig. 13–7. The magnetic field outside of a long wire carrying the current .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical cross section?
We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed circles. If we make this
assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same magnitude at all points on a circle concentric
with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of   times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form. Remembering that   is
at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation like (13.17) is used
to define the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple demonstration of the
forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should then be pushed either toward or away
from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a tight spiral,
as shown by the cross sections in Fig. 13–8. Such a coil is called a solenoid. We observe experimentally that when a solenoid is very long compared with its diameter, the field
outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the size of the field inside.

Fig. 13–8. The magnetic field of a long solenoid.

Since the field stays inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use Ampère’s law
with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at right angles to the field, and
returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be   times the total current through  , which is 
if there are   turns of the solenoid in the length  . We have

Or, letting   be the number of turns per unit length of the solenoid (that is, ), we get

What happens to the lines of   when they get to the end of the solenoid? Presumably, they spread out in some way and return to enter the solenoid at the other end, as
sketched in Fig. 13–9. Such a field is just what is observed outside of a bar magnet. But what is a magnet anyway? Our equations say that   comes from the presence of
currents. Yet we know that ordinary bars of iron (no batteries or generators) also produce magnetic fields. You might expect that there should be some other terms on the
right-hand side of (13.12) or (13.13) to represent “the density of magnetic iron” or some such quantity. But there is no such term. Our theory says that the magnetic effects of
iron come from some internal currents which are already taken care of by the  term.

Fig. 13–9. The magnetic field outside of a solenoid.

Matter is very complex when looked at from a fundamental point of view—as we saw when we tried to understand dielectrics. In order not to interrupt our present
discussion, we will wait until later to deal in detail with the interior mechanisms of magnetic materials like iron: You will have to accept, for the moment, that all magnetism
is produced from currents, and that in a permanent magnet there are permanent internal currents. In the case of iron, these currents come from electrons spinning around
their own axes. Every electron has such a spin, which corresponds to a tiny circulating current. Of course, one electron doesn’t produce much magnetic field, but in an
ordinary piece of matter there are billions and billions of electrons. Normally these spin and point every which way, so that there is no net effect. The miracle is that in a very
few substances, like iron, a large fraction of the electrons spin with their axes in the same direction—for iron, two electrons of each atom take part in this cooperative motion.
In a bar magnet there are large numbers of electrons all spinning in the same direction and, as we will see, their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for dielectrics—that a uniformly polarized dielectric is equivalent to a distribution of charges on its surface.) It is,
therefore, no accident that a bar magnet is equivalent to a solenoid.

13–6 The relativity of magnetic and electric fields

When we said that the magnetic force on a charge was proportional to its velocity, you may have wondered: “What velocity? With respect to which reference frame?” It
is, in fact, clear from the definition of   given at the beginning of this chapter that what this vector is will depend on what we choose as a reference frame for our
specification of the velocity of charges. But we have said nothing about which is the proper frame for specifying the magnetic field.

It turns out that any inertial frame will do. We will also see that magnetism and electricity are not independent things—that they should always be taken together as one
complete electromagnetic field. Although in the static case Maxwell’s equations separate into two distinct pairs, one pair for electricity and one pair for magnetism, with no
apparent connection between the two fields, nevertheless, in nature itself there is a very intimate relationship between them that arises from the principle of relativity.
Historically, the principle of relativity was discovered after Maxwell’s equations. It was, in fact, the study of electricity and magnetism which led ultimately to Einstein’s
discovery of his principle of relativity. But let’s see what our knowledge of relativity would tell us about magnetic forces if we assume that the relativity principle is applicable
—as it is—to electromagnetism.

Suppose we think about what happens when a negative charge moves with velocity   parallel to a current-carrying wire, as in Fig. 13–10. We will try to understand what
goes on in two reference frames: one fixed with respect to the wire, as in part (a) of the figure, and one fixed with respect to the particle, as in part (b). We will call the first
frame   and the second  .

Fig. 13–10. The interaction of a current-carrying wire and a particle with the
charge  as seen in two frames. In frame  (part a), the wire is at rest; in frame 
(part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it curve in toward
the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is? Would we see different things
happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to the wire. We must try to understand why that
would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the negative
electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the material. We let the charge
density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be equal to the negative of  , since we are
considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed toward the
wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of the particle
is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  . The positive
charges moving with the wire will make some magnetic field   at the particle. But the particle is now at rest, so there is no magnetic force on it! If there is any force on the
particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if it appears charged—it must be that a
neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the same; but
we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge densities depend on the volume occupied by
charges, the densities will change, too.

Before we can decide about the charge densities in  , we must know what happens to the electric charge of a bunch of electrons when the charges are moving. We know
that the apparent mass of a particle changes by  . Does its charge do something similar? No! Charges are always the same, moving or not. Otherwise we would
not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than the protons,
the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle carrying it, in the heated
block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have seen earlier, a very small fractional change in
the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed, the net
charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence of charge on speed
would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a single particle is independent of its
state of motion.

So the charge   on a particle is an invariant scalar quantity, independent of the frame of reference. That means that in any frame the charge density of a distribution of
electrons is just proportional to the number of electrons per unit volume. We need only worry about the fact that the volume can change because of the relativistic
contraction of distances.

We now apply these ideas to our moving wire. If we take a length   of the wire, in which there is a charge density   of stationary charges, it will contain the total
charge  . If the same charges are observed in a different frame to be moving with velocity  , they will all be found in a piece of the material with the shorter
length

but with the same area   (since dimensions transverse to the motion are unchanged). See Fig. 13–11.

Fig. 13–11. If a distribution of charged particles at rest has the charge
density , the same charges will have the density  when
seen from a frame with the relative velocity .

If we call   the density of charges in the frame in which they are moving, the total charge   will be  . This must also be equal to  , because charge is the same
in any system, so that   or, from (13.22),

The charge density of a moving distribution of charges varies in the same way as the relativistic mass of a particle.

We now use this general result for the positive charge density   of our wire. These charges are at rest in frame  . In  , however, where the wire moves with the
speed  , the positive charge density becomes

The negative charges are at rest in  . So they have their “rest density”   in this frame. In Eq. (13.23) , because they have the density   when the wire is at
rest, i.e., in frame  , where the speed of the negative charges is  . For the conduction electrons, we then have that

or

Now we can see why there are electric fields in  —because in this frame the wire has the net charge density   given by

Using (13.24) and (13.26), we have

Since the stationary wire is neutral, , and we have

Our moving wire is positively charged and will produce an electric field   at the external stationary particle. We have already solved the electrostatic problem of a uniformly
charged cylinder. The electric field at the distance   from the axis of the cylinder is

The force on the negatively charged particle is toward the wire. We have, at least, a force in the same direction from the two points of view; the electric force in   has the
same direction as the magnetic force in  .

The magnitude of the force in   is

Comparing this result for   with our result for   in Eq. (13.21), we see that the magnitudes of the forces are almost identical from the two points of view. In fact,

so for the small velocities we have been considering, the two forces are equal. We can say that for low velocities, at least, we understand that magnetism and electricity are
just “two ways of looking at the same thing.”

But things are even better than that. If we take into account the fact that forces also transform when we go from one system to the other, we find that the two ways of
looking at what happens do indeed give the same physical result for any velocity.

One way of seeing this is to ask a question like: What transverse momentum will the particle have after the force has acted for a little while? We know from Chapter 16 of
Vol. I that the transverse momentum of a particle should be the same in both the  - and -frames. Calling the transverse coordinate  , we want to compare  and  .
Using the relativistically correct equation of motion, , we expect that after the time   our particle will have a transverse momentum   in the -system given
by

In the -system, the transverse momentum will be

We must, of course, compare  and   for corresponding time intervals  and  . We have seen in Chapter 15 of Vol. I that the time intervals referred to a moving
particle appear to be longer than those in the rest system of the particle. Since our particle is initially at rest in  , we expect, for small  , that

and everything comes out O.K. From (13.31) and (13.32),

which is just   if we combine (13.30) and (13.33).

We have found that we get the same physical result whether we analyze the motion of a particle moving along a wire in a coordinate system at rest with respect to the
wire, or in a system at rest with respect to the particle. In the first instance, the force was purely “magnetic,” in the second, it was purely “electric.” The two points of view are
illustrated in Fig. 13–12 (although there is still a magnetic field   in the second frame, it produces no forces on the stationary particle).

Fig. 13–12. In frame  the charge density is zero and the current density is .
There is only a magnetic field. In , there is a charge density  and a different
current density . The magnetic field  is different and there is an electric
field .

If we had chosen still another coordinate system, we would have found a different mixture of  and   fields. Electric and magnetic forces are part of one physical
phenomenon—the electromagnetic interactions of particles. The separation of this interaction into electric and magnetic parts depends very much on the reference frame
chosen for the description. But a complete electromagnetic description is invariant; electricity and magnetism taken together are consistent with Einstein’s relativity.

Since electric and magnetic fields appear in different mixtures if we change our frame of reference, we must be careful about how we look at the fields  and  . For
instance, if we think of “lines” of  or  , we must not attach too much reality to them. The lines may disappear if we try to observe them from a different coordinate system.
For example, in system   there are electric field lines, which we do not find “moving past us with velocity   in system  .” In system   there are no electric field lines at all!
Therefore it makes no sense to say something like: When I move a magnet, it takes its field with it, so the lines of   are also moved. There is no way to make sense, in
general, out of the idea of “the speed of a moving field line.” The fields are our way of describing what goes on at a point in space. In particular,  and   tell us about the
forces that will act on a moving particle. The question “What is the force on a charge from a moving magnetic field?” doesn’t mean anything precise. The force is given by the
values of  and   at the charge, and the formula (13.1) is not to be altered if the source of  or   is moving (it is the values of  and   that will be altered by the motion).
Our mathematical description deals only with the fields as a function of ,  , , and   with respect to some inertial frame.

We will later be speaking of “a wave of electric and magnetic fields travelling through space,” as, for instance, a light wave. But that is like speaking of a wave travelling
on a string. We don’t then mean that some part of the string is moving in the direction of the wave, we mean that the displacement of the string appears first at one place and
later at another. Similarly, in an electromagnetic wave, the wave travels; but the magnitude of the fields change. So in the future when we—or someone else—speaks of a
“moving” field, you should think of it as just a handy, short way of describing a changing field in some circumstances.

13–7 The transformation of currents and charges

You may have worried about the simplification we made above when we took the same velocity   for the particle and for the conduction electrons in the wire. We could
go back and carry through the analysis again for two different velocities, but it is easier to simply notice that charge and current density are the components of a four-vector
(see Chapter 17, Vol. I).

We have seen that if   is the density of the charges in their rest frame, then in a frame in which they have the velocity  , the density is

In that frame their current density is

Now we know that the energy   and momentum   of a particle moving with velocity   are given by

where   is its rest mass. We also know that  and   form a relativistic four-vector. Since  and   depend on the velocity 
exactly as do  and  , we can conclude that  and   are also the components of a relativistic four-vector. This property is the key to a general analysis of the field of a wire
moving with any velocity, which we would need if we want to do the problem again with the velocity   of the particle different from the velocity of the conduction electrons.

If we wish to transform  and   to a coordinate system moving with a velocity   in the -direction, we know that they transform just like  and  , so that we have
(see Chapter 15, Vol. I)
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Relativity of Electric and Magnetic Fields

Current and Charge Distribution within Wire

ρ + density of charges in S
Charge conservation implies:
Q = ρLA0 = ρ0L0 A0 + ρL = ρ0L0 ⇒ ρ = ρ0/

√
1− v2/c2

ρ+ charges are at rest in S + BUT move with spped v in S′

ρ′+ = ρ+/
√

1− v2/c2 ≡ γρ+

Negative charges are at rest in S′ + rest density ≡ ρ0 = ρ′−
because they have density ρ− when wire is at rest in S

where speed of negative charges is v
For conductor electrons + ρ− = γρ′− ⇒ ρ′− = ρ−

√
1− v2/c2

In S′ we have a net charge + ρ′ = ρ′+ + ρ′− 6= 0

ρ′ = ρ+
1√

1− v2/c2
+ ρ−

√
1− v2/c2

Since stationary wire is neutral + ρ− = −ρ+ ⇒ ρ′ = ρ+
v2/c2

√
1−v2/c2
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Relativity of Electric and Magnetic Fields

Recall Gauss’ law +
‚

~E · d~A = Q/ε0

Take Q = ρAL and A = 2πrL

~E field at distance r from axix of wire + E′ = ρ′A
2πε0r = ρ+Av2/c2

2πε0r
√

1−v2/c2

Force in S′-frame
Force on negatively charged particle in S′ is also towards wire

Magnitude of force in S′ + F′ = q
2ε0

ρ+A
r

v2/c2
√

1−v2/c2

Comparing F with F′ + F′ = F√
1−v2/c2

For small velocities + F = F′!

Conclude that + for low velocities electricity and magnetism
are just “two ways of looking at the same stuff”

But wait + things are even better than that!!!
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Relativity of Electric and Magnetic Fields

No Contraction in Orthogonal Directions

What transverse momentum will particle have
after force has acted for little while?

Transverse momentum of particle should be the same
in both S- and S′-frames

Calling transverse coordinate y + ∆py = F∆t and ∆p′y = F′∆t′

We must compare ∆py and ∆p′y for time intervals ∆t and ∆t′

Since particle is initially at rest in S′ + for small time interval

∆t =
∆t′√

1− v2/c2

We conclude that
∆p′y
∆py

=
F′ ∆t′

F ∆t
= 1!!!
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Relativity of Electric and Magnetic Fields

Relativity of Electric and Magnetic Fields

13

Magnetostatics

Review: Chapter 15, Vol. I, The Special Theory of Relativity

13–1 The magnetic field

The force on an electric charge depends not only on where it is, but also on how fast it is moving. Every point in space is characterized by two vector quantities which
determine the force on any charge. First, there is the electric force, which gives a force component independent of the motion of the charge. We describe it by the electric
field, . Second, there is an additional force component, called the magnetic force, which depends on the velocity of the charge. This magnetic force has a strange directional
character: At any particular point in space, both the direction of the force and its magnitude depend on the direction of motion of the particle: at every instant the force is
always at right angles to the velocity vector; also, at any particular point, the force is always at right angles to a fixed direction in space (see Fig. 13–1); and finally, the
magnitude of the force is proportional to the component of the velocity at right angles to this unique direction. It is possible to describe all of this behavior by defining the
magnetic field vector  , which specifies both the unique direction in space and the constant of proportionality with the velocity, and to write the magnetic force as  .
The total electromagnetic force on a charge can, then, be written as

This is called the Lorentz force.

Fig. 13–1. The velocity-dependent component of the force on a moving charge
is at right angles to  and to the direction of . It is also proportional to the
component of  at right angles to , that is, to .

The magnetic force is easily demonstrated by bringing a bar magnet close to a cathode-ray tube. The deflection of the electron beam shows that the presence of the
magnet results in forces on the electrons transverse to their direction of motion, as we described in Chapter 12 of Vol. I.

The unit of magnetic field   is evidently one newton second per coulomb-meter. The same unit is also one volt second per meter . It is also called one weber per square
meter.

13–2 Electric current; the conservation of charge

We consider first how we can understand the magnetic forces on wires carrying electric currents. In order to do this, we define what is meant by the current density.
Electric currents are electrons or other charges in motion with a net drift or flow. We can represent the charge flow by a vector which gives the amount of charge passing per
unit area and per unit time through a surface element at right angles to the flow (just as we did for the case of heat flow). We call this the current density and represent it by
the vector  . It is directed along the motion of the charges. If we take a small area   at a given place in the material, the amount of charge flowing across that area in a unit
time is

where   is the unit vector normal to  .

Fig. 13–2. If a charge distribution of density  moves with the velocity , the
charge per unit time through  is .

The current density is related to the average flow velocity of the charges. Suppose that we have a distribution of charges whose average motion is a drift with the
velocity  . As this distribution passes over a surface element  , the charge   passing through the surface element in a time   is equal to the charge contained in a
parallelepiped whose base is   and whose height is  , as shown in Fig. 13–2. The volume of the parallelepiped is the projection of   at right angles to  times  ,
which when multiplied by the charge density   will give  . Thus

The charge per unit time is then  , from which we get

If the charge distribution consists of individual charges, say electrons, each with the charge   and moving with the mean velocity  , then the current density is

where   is the number of charges per unit volume.

Fig. 13–3. The current  through the surface  is .

The total charge passing per unit time through any surface   is called the electric current, . It is equal to the integral of the normal component of the flow through all of
the elements of the surface:

(see Fig. 13–3).

Fig. 13–4. The integral of  over a closed surface is negative the rate of
change of the total charge  inside.

The current   out of a closed surface   represents the rate at which charge leaves the volume   enclosed by  . One of the basic laws of physics is that electric charge is
indestructible; it is never lost or created. Electric charges can move from place to place but never appear from nowhere. We say that charge is conserved. If there is a net
current out of a closed surface, the amount of charge inside must decrease by the corresponding amount (Fig. 13–4). We can, therefore, write the law of the conservation of
charge as

The charge inside can be written as a volume integral of the charge density:

If we apply (13.6) to a small volume  , we know that the left-hand integral is  . The charge inside is  , so the conservation of charge can also be written as

(Gauss’ mathematics once again!).

13–3 The magnetic force on a current

Fig. 13–5. The magnetic force on a current-carrying wire is the sum of the
forces on the individual moving charges.

Now we are ready to find the force on a current-carrying wire in a magnetic field. The current consists of charged particles moving with the velocity   along the wire.
Each charge feels a transverse force

(Fig. 13–5a). If there are   such charges per unit volume, the number in a small volume   of the wire is  . The total magnetic force   on the volume   is the sum
of the forces on the individual charges, that is,

But  is just , so

(Fig. 13–5b). The force per unit volume is  .

If the current is uniform across a wire whose cross-sectional area is  , we may take as the volume element a cylinder with the base area   and the length  . Then

Now we can call   the vector current   in the wire. (Its magnitude is the electric current in the wire, and its direction is along the wire.) Then

The force per unit length on a wire is  .

This equation gives the important result that the magnetic force on a wire, due to the movement of charges in it, depends only on the total current, and not on the
amount of charge carried by each particle—or even its sign! The magnetic force on a wire near a magnet is easily shown by observing its deflection when a current is turned
on, as was described in Chapter 1 (see Fig. 1–6).

13–4 The magnetic field of steady currents; Ampère’s law

We have seen that there is a force on a wire in the presence of a magnetic field, produced, say, by a magnet. From the principle that action equals reaction we might
expect that there should be a force on the source of the magnetic field, i.e., on the magnet, when there is a current through the wire.1 There are indeed such forces, as is seen
by the deflection of a compass needle near a current-carrying wire. Now we know that magnets feel forces from other magnets, so that means that when there is a current in a
wire, the wire itself generates a magnetic field. Moving charges, then, produce a magnetic field. We would like now to try to discover the laws that determine how such
magnetic fields are created. The question is: Given a current, what magnetic field does it make? The answer to this question was determined experimentally by three critical
experiments and a brilliant theoretical argument given by Ampère. We will pass over this interesting historical development and simply say that a large number of
experiments have demonstrated the validity of Maxwell’s equations. We take them as our starting point. If we drop the terms involving time derivatives in these equations we
get the equations of magnetostatics:

and

These equations are valid only if all electric charge densities are constant and all currents are steady, so that the electric and magnetic fields are not changing with time—all
of the fields are “static.”

We may remark that it is rather dangerous to think that there is such a thing as a static magnetic situation, because there must be currents in order to get a magnetic
field at all—and currents can come only from moving charges. “Magnetostatics” is, therefore, an approximation. It refers to a special kind of dynamic situation with large
numbers of charges in motion, which we can approximate by a steady flow of charge. Only then can we speak of a current density   which does not change with time. The
subject should more accurately be called the study of steady currents. Assuming that all fields are steady, we drop all terms in  and   from the complete Maxwell
equations, Eqs. (2.41), and obtain the two equations (13.12) and (13.13) above. Also notice that since the divergence of the curl of any vector is necessarily zero, Eq. (13.13)
requires that  . This is true, by Eq. (13.8), only if   is zero. But that must be so if   is not changing with time, so our assumptions are consistent.

The requirement that   means that we may only have charges which flow in paths that close back on themselves. They may, for instance, flow in wires that form
complete loops—called circuits. The circuits may, of course, contain generators or batteries that keep the charges flowing. But they may not include condensers which are
charging or discharging. (We will, of course, extend the theory later to include dynamic fields, but we want first to take the simpler case of steady currents.)

Now let us look at Eqs. (13.12) and  (13.13) to see what they mean. The first one says that the divergence of   is zero. Comparing it to the analogous equation in
electrostatics, which says that  , we can conclude that there is no magnetic analog of an electric charge. There are no magnetic charges from which lines of 
can emerge. If we think in terms of “lines” of the vector field  , they can never start and they never stop. Then where do they come from? Magnetic fields “appear” in the
presence of currents; they have a curl proportional to the current density. Wherever there are currents, there are lines of magnetic field making loops around the currents.
Since lines of   do not begin or end, they will often close back on themselves, making closed loops. But there can also be complicated situations in which the lines are not
simple closed loops. But whatever they do, they never diverge from points. No magnetic charges have ever been discovered, so  . This much is true not only for
magnetostatics, it is always true—even for dynamic fields.

Fig. 13–6. The line integral of the tangential component of  is equal to the
surface integral of the normal component of .

The connection between the  field and currents is contained in Eq. (13.13). Here we have a new kind of situation which is quite different from electrostatics, where we
had  . That equation meant that the line integral of   around any closed path is zero:

We got that result from Stokes’ theorem, which says that the integral around any closed path of any vector field is equal to the surface integral of the normal component of
the curl of the vector (taken over any surface which has the closed loop as its periphery). Applying the same theorem to the magnetic field vector and using the symbols
shown in Fig. 13–6, we get

Taking the curl of   from Eq. (13.13), we have

The integral over  , according to (13.5), is the total current   through the surface  . Since for steady currents the current through   is independent of the shape of  , so long
as it is bounded by the curve  , one usually speaks of “the current through the loop  .” We have, then, a general law: the circulation of   around any closed curve is equal to
the current   through the loop, divided by  :

This law—called Ampère’s law—plays the same role in magnetostatics that Gauss’ law played in electrostatics. Ampère’s law alone does not determine   from currents; we
must, in general, also use  . But, as we will see in the next section, it can be used to find the field in special circumstances which have certain simple symmetries.

13–5 The magnetic field of a straight wire and of a solenoid; atomic currents

Fig. 13–7. The magnetic field outside of a long wire carrying the current .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical cross section?
We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed circles. If we make this
assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same magnitude at all points on a circle concentric
with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of   times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form. Remembering that   is
at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation like (13.17) is used
to define the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple demonstration of the
forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should then be pushed either toward or away
from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a tight spiral,
as shown by the cross sections in Fig. 13–8. Such a coil is called a solenoid. We observe experimentally that when a solenoid is very long compared with its diameter, the field
outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the size of the field inside.

Fig. 13–8. The magnetic field of a long solenoid.

Since the field stays inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use Ampère’s law
with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at right angles to the field, and
returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be   times the total current through  , which is 
if there are   turns of the solenoid in the length  . We have

Or, letting   be the number of turns per unit length of the solenoid (that is, ), we get

What happens to the lines of   when they get to the end of the solenoid? Presumably, they spread out in some way and return to enter the solenoid at the other end, as
sketched in Fig. 13–9. Such a field is just what is observed outside of a bar magnet. But what is a magnet anyway? Our equations say that   comes from the presence of
currents. Yet we know that ordinary bars of iron (no batteries or generators) also produce magnetic fields. You might expect that there should be some other terms on the
right-hand side of (13.12) or (13.13) to represent “the density of magnetic iron” or some such quantity. But there is no such term. Our theory says that the magnetic effects of
iron come from some internal currents which are already taken care of by the  term.

Fig. 13–9. The magnetic field outside of a solenoid.

Matter is very complex when looked at from a fundamental point of view—as we saw when we tried to understand dielectrics. In order not to interrupt our present
discussion, we will wait until later to deal in detail with the interior mechanisms of magnetic materials like iron: You will have to accept, for the moment, that all magnetism
is produced from currents, and that in a permanent magnet there are permanent internal currents. In the case of iron, these currents come from electrons spinning around
their own axes. Every electron has such a spin, which corresponds to a tiny circulating current. Of course, one electron doesn’t produce much magnetic field, but in an
ordinary piece of matter there are billions and billions of electrons. Normally these spin and point every which way, so that there is no net effect. The miracle is that in a very
few substances, like iron, a large fraction of the electrons spin with their axes in the same direction—for iron, two electrons of each atom take part in this cooperative motion.
In a bar magnet there are large numbers of electrons all spinning in the same direction and, as we will see, their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for dielectrics—that a uniformly polarized dielectric is equivalent to a distribution of charges on its surface.) It is,
therefore, no accident that a bar magnet is equivalent to a solenoid.

13–6 The relativity of magnetic and electric fields

When we said that the magnetic force on a charge was proportional to its velocity, you may have wondered: “What velocity? With respect to which reference frame?” It
is, in fact, clear from the definition of   given at the beginning of this chapter that what this vector is will depend on what we choose as a reference frame for our
specification of the velocity of charges. But we have said nothing about which is the proper frame for specifying the magnetic field.

It turns out that any inertial frame will do. We will also see that magnetism and electricity are not independent things—that they should always be taken together as one
complete electromagnetic field. Although in the static case Maxwell’s equations separate into two distinct pairs, one pair for electricity and one pair for magnetism, with no
apparent connection between the two fields, nevertheless, in nature itself there is a very intimate relationship between them that arises from the principle of relativity.
Historically, the principle of relativity was discovered after Maxwell’s equations. It was, in fact, the study of electricity and magnetism which led ultimately to Einstein’s
discovery of his principle of relativity. But let’s see what our knowledge of relativity would tell us about magnetic forces if we assume that the relativity principle is applicable
—as it is—to electromagnetism.

Suppose we think about what happens when a negative charge moves with velocity   parallel to a current-carrying wire, as in Fig. 13–10. We will try to understand what
goes on in two reference frames: one fixed with respect to the wire, as in part (a) of the figure, and one fixed with respect to the particle, as in part (b). We will call the first
frame   and the second  .

Fig. 13–10. The interaction of a current-carrying wire and a particle with the
charge  as seen in two frames. In frame  (part a), the wire is at rest; in frame 
(part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it curve in toward
the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is? Would we see different things
happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to the wire. We must try to understand why that
would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the negative
electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the material. We let the charge
density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be equal to the negative of  , since we are
considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed toward the
wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of the particle
is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  . The positive
charges moving with the wire will make some magnetic field   at the particle. But the particle is now at rest, so there is no magnetic force on it! If there is any force on the
particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if it appears charged—it must be that a
neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the same; but
we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge densities depend on the volume occupied by
charges, the densities will change, too.

Before we can decide about the charge densities in  , we must know what happens to the electric charge of a bunch of electrons when the charges are moving. We know
that the apparent mass of a particle changes by  . Does its charge do something similar? No! Charges are always the same, moving or not. Otherwise we would
not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than the protons,
the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle carrying it, in the heated
block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have seen earlier, a very small fractional change in
the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed, the net
charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence of charge on speed
would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a single particle is independent of its
state of motion.

So the charge   on a particle is an invariant scalar quantity, independent of the frame of reference. That means that in any frame the charge density of a distribution of
electrons is just proportional to the number of electrons per unit volume. We need only worry about the fact that the volume can change because of the relativistic
contraction of distances.

We now apply these ideas to our moving wire. If we take a length   of the wire, in which there is a charge density   of stationary charges, it will contain the total
charge  . If the same charges are observed in a different frame to be moving with velocity  , they will all be found in a piece of the material with the shorter
length

but with the same area   (since dimensions transverse to the motion are unchanged). See Fig. 13–11.

Fig. 13–11. If a distribution of charged particles at rest has the charge
density , the same charges will have the density  when
seen from a frame with the relative velocity .

If we call   the density of charges in the frame in which they are moving, the total charge   will be  . This must also be equal to  , because charge is the same
in any system, so that   or, from (13.22),

The charge density of a moving distribution of charges varies in the same way as the relativistic mass of a particle.

We now use this general result for the positive charge density   of our wire. These charges are at rest in frame  . In  , however, where the wire moves with the
speed  , the positive charge density becomes

The negative charges are at rest in  . So they have their “rest density”   in this frame. In Eq. (13.23) , because they have the density   when the wire is at
rest, i.e., in frame  , where the speed of the negative charges is  . For the conduction electrons, we then have that

or

Now we can see why there are electric fields in  —because in this frame the wire has the net charge density   given by

Using (13.24) and (13.26), we have

Since the stationary wire is neutral, , and we have

Our moving wire is positively charged and will produce an electric field   at the external stationary particle. We have already solved the electrostatic problem of a uniformly
charged cylinder. The electric field at the distance   from the axis of the cylinder is

The force on the negatively charged particle is toward the wire. We have, at least, a force in the same direction from the two points of view; the electric force in   has the
same direction as the magnetic force in  .

The magnitude of the force in   is

Comparing this result for   with our result for   in Eq. (13.21), we see that the magnitudes of the forces are almost identical from the two points of view. In fact,

so for the small velocities we have been considering, the two forces are equal. We can say that for low velocities, at least, we understand that magnetism and electricity are
just “two ways of looking at the same thing.”

But things are even better than that. If we take into account the fact that forces also transform when we go from one system to the other, we find that the two ways of
looking at what happens do indeed give the same physical result for any velocity.

One way of seeing this is to ask a question like: What transverse momentum will the particle have after the force has acted for a little while? We know from Chapter 16 of
Vol. I that the transverse momentum of a particle should be the same in both the  - and -frames. Calling the transverse coordinate  , we want to compare  and  .
Using the relativistically correct equation of motion, , we expect that after the time   our particle will have a transverse momentum   in the -system given
by

In the -system, the transverse momentum will be

We must, of course, compare  and   for corresponding time intervals  and  . We have seen in Chapter 15 of Vol. I that the time intervals referred to a moving
particle appear to be longer than those in the rest system of the particle. Since our particle is initially at rest in  , we expect, for small  , that

and everything comes out O.K. From (13.31) and (13.32),

which is just   if we combine (13.30) and (13.33).

We have found that we get the same physical result whether we analyze the motion of a particle moving along a wire in a coordinate system at rest with respect to the
wire, or in a system at rest with respect to the particle. In the first instance, the force was purely “magnetic,” in the second, it was purely “electric.” The two points of view are
illustrated in Fig. 13–12 (although there is still a magnetic field   in the second frame, it produces no forces on the stationary particle).

Fig. 13–12. In frame  the charge density is zero and the current density is .
There is only a magnetic field. In , there is a charge density  and a different
current density . The magnetic field  is different and there is an electric
field .

If we had chosen still another coordinate system, we would have found a different mixture of  and   fields. Electric and magnetic forces are part of one physical
phenomenon—the electromagnetic interactions of particles. The separation of this interaction into electric and magnetic parts depends very much on the reference frame
chosen for the description. But a complete electromagnetic description is invariant; electricity and magnetism taken together are consistent with Einstein’s relativity.

Since electric and magnetic fields appear in different mixtures if we change our frame of reference, we must be careful about how we look at the fields  and  . For
instance, if we think of “lines” of  or  , we must not attach too much reality to them. The lines may disappear if we try to observe them from a different coordinate system.
For example, in system   there are electric field lines, which we do not find “moving past us with velocity   in system  .” In system   there are no electric field lines at all!
Therefore it makes no sense to say something like: When I move a magnet, it takes its field with it, so the lines of   are also moved. There is no way to make sense, in
general, out of the idea of “the speed of a moving field line.” The fields are our way of describing what goes on at a point in space. In particular,  and   tell us about the
forces that will act on a moving particle. The question “What is the force on a charge from a moving magnetic field?” doesn’t mean anything precise. The force is given by the
values of  and   at the charge, and the formula (13.1) is not to be altered if the source of  or   is moving (it is the values of  and   that will be altered by the motion).
Our mathematical description deals only with the fields as a function of ,  , , and   with respect to some inertial frame.

We will later be speaking of “a wave of electric and magnetic fields travelling through space,” as, for instance, a light wave. But that is like speaking of a wave travelling
on a string. We don’t then mean that some part of the string is moving in the direction of the wave, we mean that the displacement of the string appears first at one place and
later at another. Similarly, in an electromagnetic wave, the wave travels; but the magnitude of the fields change. So in the future when we—or someone else—speaks of a
“moving” field, you should think of it as just a handy, short way of describing a changing field in some circumstances.

13–7 The transformation of currents and charges

You may have worried about the simplification we made above when we took the same velocity   for the particle and for the conduction electrons in the wire. We could
go back and carry through the analysis again for two different velocities, but it is easier to simply notice that charge and current density are the components of a four-vector
(see Chapter 17, Vol. I).

We have seen that if   is the density of the charges in their rest frame, then in a frame in which they have the velocity  , the density is

In that frame their current density is

Now we know that the energy   and momentum   of a particle moving with velocity   are given by

where   is its rest mass. We also know that  and   form a relativistic four-vector. Since  and   depend on the velocity 
exactly as do  and  , we can conclude that  and   are also the components of a relativistic four-vector. This property is the key to a general analysis of the field of a wire
moving with any velocity, which we would need if we want to do the problem again with the velocity   of the particle different from the velocity of the conduction electrons.

If we wish to transform  and   to a coordinate system moving with a velocity   in the -direction, we know that they transform just like  and  , so that we have
(see Chapter 15, Vol. I)
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Magnetostatics

Review: Chapter 15, Vol. I, The Special Theory of Relativity

13–1 The magnetic field

The force on an electric charge depends not only on where it is, but also on how fast it is moving. Every point in space is characterized by two vector quantities which
determine the force on any charge. First, there is the electric force, which gives a force component independent of the motion of the charge. We describe it by the electric
field, . Second, there is an additional force component, called the magnetic force, which depends on the velocity of the charge. This magnetic force has a strange directional
character: At any particular point in space, both the direction of the force and its magnitude depend on the direction of motion of the particle: at every instant the force is
always at right angles to the velocity vector; also, at any particular point, the force is always at right angles to a fixed direction in space (see Fig. 13–1); and finally, the
magnitude of the force is proportional to the component of the velocity at right angles to this unique direction. It is possible to describe all of this behavior by defining the
magnetic field vector  , which specifies both the unique direction in space and the constant of proportionality with the velocity, and to write the magnetic force as  .
The total electromagnetic force on a charge can, then, be written as

This is called the Lorentz force.

Fig. 13–1. The velocity-dependent component of the force on a moving charge
is at right angles to  and to the direction of . It is also proportional to the
component of  at right angles to , that is, to .

The magnetic force is easily demonstrated by bringing a bar magnet close to a cathode-ray tube. The deflection of the electron beam shows that the presence of the
magnet results in forces on the electrons transverse to their direction of motion, as we described in Chapter 12 of Vol. I.

The unit of magnetic field   is evidently one newton second per coulomb-meter. The same unit is also one volt second per meter . It is also called one weber per square
meter.

13–2 Electric current; the conservation of charge

We consider first how we can understand the magnetic forces on wires carrying electric currents. In order to do this, we define what is meant by the current density.
Electric currents are electrons or other charges in motion with a net drift or flow. We can represent the charge flow by a vector which gives the amount of charge passing per
unit area and per unit time through a surface element at right angles to the flow (just as we did for the case of heat flow). We call this the current density and represent it by
the vector  . It is directed along the motion of the charges. If we take a small area   at a given place in the material, the amount of charge flowing across that area in a unit
time is

where   is the unit vector normal to  .

Fig. 13–2. If a charge distribution of density  moves with the velocity , the
charge per unit time through  is .

The current density is related to the average flow velocity of the charges. Suppose that we have a distribution of charges whose average motion is a drift with the
velocity  . As this distribution passes over a surface element  , the charge   passing through the surface element in a time   is equal to the charge contained in a
parallelepiped whose base is   and whose height is  , as shown in Fig. 13–2. The volume of the parallelepiped is the projection of   at right angles to  times  ,
which when multiplied by the charge density   will give  . Thus

The charge per unit time is then  , from which we get

If the charge distribution consists of individual charges, say electrons, each with the charge   and moving with the mean velocity  , then the current density is

where   is the number of charges per unit volume.

Fig. 13–3. The current  through the surface  is .

The total charge passing per unit time through any surface   is called the electric current, . It is equal to the integral of the normal component of the flow through all of
the elements of the surface:

(see Fig. 13–3).

Fig. 13–4. The integral of  over a closed surface is negative the rate of
change of the total charge  inside.

The current   out of a closed surface   represents the rate at which charge leaves the volume   enclosed by  . One of the basic laws of physics is that electric charge is
indestructible; it is never lost or created. Electric charges can move from place to place but never appear from nowhere. We say that charge is conserved. If there is a net
current out of a closed surface, the amount of charge inside must decrease by the corresponding amount (Fig. 13–4). We can, therefore, write the law of the conservation of
charge as

The charge inside can be written as a volume integral of the charge density:

If we apply (13.6) to a small volume  , we know that the left-hand integral is  . The charge inside is  , so the conservation of charge can also be written as

(Gauss’ mathematics once again!).

13–3 The magnetic force on a current

Fig. 13–5. The magnetic force on a current-carrying wire is the sum of the
forces on the individual moving charges.

Now we are ready to find the force on a current-carrying wire in a magnetic field. The current consists of charged particles moving with the velocity   along the wire.
Each charge feels a transverse force

(Fig. 13–5a). If there are   such charges per unit volume, the number in a small volume   of the wire is  . The total magnetic force   on the volume   is the sum
of the forces on the individual charges, that is,

But  is just , so

(Fig. 13–5b). The force per unit volume is  .

If the current is uniform across a wire whose cross-sectional area is  , we may take as the volume element a cylinder with the base area   and the length  . Then

Now we can call   the vector current   in the wire. (Its magnitude is the electric current in the wire, and its direction is along the wire.) Then

The force per unit length on a wire is  .

This equation gives the important result that the magnetic force on a wire, due to the movement of charges in it, depends only on the total current, and not on the
amount of charge carried by each particle—or even its sign! The magnetic force on a wire near a magnet is easily shown by observing its deflection when a current is turned
on, as was described in Chapter 1 (see Fig. 1–6).

13–4 The magnetic field of steady currents; Ampère’s law

We have seen that there is a force on a wire in the presence of a magnetic field, produced, say, by a magnet. From the principle that action equals reaction we might
expect that there should be a force on the source of the magnetic field, i.e., on the magnet, when there is a current through the wire.1 There are indeed such forces, as is seen
by the deflection of a compass needle near a current-carrying wire. Now we know that magnets feel forces from other magnets, so that means that when there is a current in a
wire, the wire itself generates a magnetic field. Moving charges, then, produce a magnetic field. We would like now to try to discover the laws that determine how such
magnetic fields are created. The question is: Given a current, what magnetic field does it make? The answer to this question was determined experimentally by three critical
experiments and a brilliant theoretical argument given by Ampère. We will pass over this interesting historical development and simply say that a large number of
experiments have demonstrated the validity of Maxwell’s equations. We take them as our starting point. If we drop the terms involving time derivatives in these equations we
get the equations of magnetostatics:

and

These equations are valid only if all electric charge densities are constant and all currents are steady, so that the electric and magnetic fields are not changing with time—all
of the fields are “static.”

We may remark that it is rather dangerous to think that there is such a thing as a static magnetic situation, because there must be currents in order to get a magnetic
field at all—and currents can come only from moving charges. “Magnetostatics” is, therefore, an approximation. It refers to a special kind of dynamic situation with large
numbers of charges in motion, which we can approximate by a steady flow of charge. Only then can we speak of a current density   which does not change with time. The
subject should more accurately be called the study of steady currents. Assuming that all fields are steady, we drop all terms in  and   from the complete Maxwell
equations, Eqs. (2.41), and obtain the two equations (13.12) and (13.13) above. Also notice that since the divergence of the curl of any vector is necessarily zero, Eq. (13.13)
requires that  . This is true, by Eq. (13.8), only if   is zero. But that must be so if   is not changing with time, so our assumptions are consistent.

The requirement that   means that we may only have charges which flow in paths that close back on themselves. They may, for instance, flow in wires that form
complete loops—called circuits. The circuits may, of course, contain generators or batteries that keep the charges flowing. But they may not include condensers which are
charging or discharging. (We will, of course, extend the theory later to include dynamic fields, but we want first to take the simpler case of steady currents.)

Now let us look at Eqs. (13.12) and  (13.13) to see what they mean. The first one says that the divergence of   is zero. Comparing it to the analogous equation in
electrostatics, which says that  , we can conclude that there is no magnetic analog of an electric charge. There are no magnetic charges from which lines of 
can emerge. If we think in terms of “lines” of the vector field  , they can never start and they never stop. Then where do they come from? Magnetic fields “appear” in the
presence of currents; they have a curl proportional to the current density. Wherever there are currents, there are lines of magnetic field making loops around the currents.
Since lines of   do not begin or end, they will often close back on themselves, making closed loops. But there can also be complicated situations in which the lines are not
simple closed loops. But whatever they do, they never diverge from points. No magnetic charges have ever been discovered, so  . This much is true not only for
magnetostatics, it is always true—even for dynamic fields.

Fig. 13–6. The line integral of the tangential component of  is equal to the
surface integral of the normal component of .

The connection between the  field and currents is contained in Eq. (13.13). Here we have a new kind of situation which is quite different from electrostatics, where we
had  . That equation meant that the line integral of   around any closed path is zero:

We got that result from Stokes’ theorem, which says that the integral around any closed path of any vector field is equal to the surface integral of the normal component of
the curl of the vector (taken over any surface which has the closed loop as its periphery). Applying the same theorem to the magnetic field vector and using the symbols
shown in Fig. 13–6, we get

Taking the curl of   from Eq. (13.13), we have

The integral over  , according to (13.5), is the total current   through the surface  . Since for steady currents the current through   is independent of the shape of  , so long
as it is bounded by the curve  , one usually speaks of “the current through the loop  .” We have, then, a general law: the circulation of   around any closed curve is equal to
the current   through the loop, divided by  :

This law—called Ampère’s law—plays the same role in magnetostatics that Gauss’ law played in electrostatics. Ampère’s law alone does not determine   from currents; we
must, in general, also use  . But, as we will see in the next section, it can be used to find the field in special circumstances which have certain simple symmetries.

13–5 The magnetic field of a straight wire and of a solenoid; atomic currents

Fig. 13–7. The magnetic field outside of a long wire carrying the current .

We can illustrate the use of Ampère’s law by finding the magnetic field near a wire. We ask: What is the field outside a long straight wire with a cylindrical cross section?
We will assume something which may not be at all evident, but which is nevertheless true: that the field lines of   go around the wire in closed circles. If we make this
assumption, then Ampère’s law, Eq. (13.16), tells us how strong the field is. From the symmetry of the problem,  has the same magnitude at all points on a circle concentric
with the wire (see Fig. 13–7). We can then do the line integral of   quite easily; it is just the magnitude of   times the circumference. If   is the radius of the circle, then

The total current through the loop is merely the current   in the wire, so

or

The strength of the magnetic field drops off inversely as  , the distance from the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form. Remembering that   is
at right angles both to   and to  , we have

We have separated out the factor  , because it appears often. It is worth remembering that it is exactly   (in the mks system), since an equation like (13.17) is used
to define the unit of current, the ampere. At one meter from a current of one ampere the magnetic field is  webers per square meter.

Since a current produces a magnetic field, it will exert a force on a nearby wire which is also carrying a current. In Chapter 1 we described a simple demonstration of the
forces between two current-carrying wires. If the wires are parallel, each is at right angles to the  field of the other; the wires should then be pushed either toward or away
from each other. When currents are in the same direction, the wires attract; when the currents are moving in opposite directions, the wires repel.

Let’s take another example that can be analyzed by Ampère’s law if we add some knowledge about the field. Suppose we have a long coil of wire wound in a tight spiral,
as shown by the cross sections in Fig. 13–8. Such a coil is called a solenoid. We observe experimentally that when a solenoid is very long compared with its diameter, the field
outside is very small compared with the field inside. Using just that fact, together with Ampère’s law, we can find the size of the field inside.

Fig. 13–8. The magnetic field of a long solenoid.

Since the field stays inside (and has zero divergence), its lines must go along parallel to the axis, as shown in Fig. 13–8. That being the case, we can use Ampère’s law
with the rectangular “curve”   shown in the figure. This loop goes the distance   inside the solenoid, where the field is, say, , then goes at right angles to the field, and
returns along the outside, where the field is negligible. The line integral of   for this curve is just  , and it must be   times the total current through  , which is 
if there are   turns of the solenoid in the length  . We have

Or, letting   be the number of turns per unit length of the solenoid (that is, ), we get

What happens to the lines of   when they get to the end of the solenoid? Presumably, they spread out in some way and return to enter the solenoid at the other end, as
sketched in Fig. 13–9. Such a field is just what is observed outside of a bar magnet. But what is a magnet anyway? Our equations say that   comes from the presence of
currents. Yet we know that ordinary bars of iron (no batteries or generators) also produce magnetic fields. You might expect that there should be some other terms on the
right-hand side of (13.12) or (13.13) to represent “the density of magnetic iron” or some such quantity. But there is no such term. Our theory says that the magnetic effects of
iron come from some internal currents which are already taken care of by the  term.

Fig. 13–9. The magnetic field outside of a solenoid.

Matter is very complex when looked at from a fundamental point of view—as we saw when we tried to understand dielectrics. In order not to interrupt our present
discussion, we will wait until later to deal in detail with the interior mechanisms of magnetic materials like iron: You will have to accept, for the moment, that all magnetism
is produced from currents, and that in a permanent magnet there are permanent internal currents. In the case of iron, these currents come from electrons spinning around
their own axes. Every electron has such a spin, which corresponds to a tiny circulating current. Of course, one electron doesn’t produce much magnetic field, but in an
ordinary piece of matter there are billions and billions of electrons. Normally these spin and point every which way, so that there is no net effect. The miracle is that in a very
few substances, like iron, a large fraction of the electrons spin with their axes in the same direction—for iron, two electrons of each atom take part in this cooperative motion.
In a bar magnet there are large numbers of electrons all spinning in the same direction and, as we will see, their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for dielectrics—that a uniformly polarized dielectric is equivalent to a distribution of charges on its surface.) It is,
therefore, no accident that a bar magnet is equivalent to a solenoid.

13–6 The relativity of magnetic and electric fields

When we said that the magnetic force on a charge was proportional to its velocity, you may have wondered: “What velocity? With respect to which reference frame?” It
is, in fact, clear from the definition of   given at the beginning of this chapter that what this vector is will depend on what we choose as a reference frame for our
specification of the velocity of charges. But we have said nothing about which is the proper frame for specifying the magnetic field.

It turns out that any inertial frame will do. We will also see that magnetism and electricity are not independent things—that they should always be taken together as one
complete electromagnetic field. Although in the static case Maxwell’s equations separate into two distinct pairs, one pair for electricity and one pair for magnetism, with no
apparent connection between the two fields, nevertheless, in nature itself there is a very intimate relationship between them that arises from the principle of relativity.
Historically, the principle of relativity was discovered after Maxwell’s equations. It was, in fact, the study of electricity and magnetism which led ultimately to Einstein’s
discovery of his principle of relativity. But let’s see what our knowledge of relativity would tell us about magnetic forces if we assume that the relativity principle is applicable
—as it is—to electromagnetism.

Suppose we think about what happens when a negative charge moves with velocity   parallel to a current-carrying wire, as in Fig. 13–10. We will try to understand what
goes on in two reference frames: one fixed with respect to the wire, as in part (a) of the figure, and one fixed with respect to the particle, as in part (b). We will call the first
frame   and the second  .

Fig. 13–10. The interaction of a current-carrying wire and a particle with the
charge  as seen in two frames. In frame  (part a), the wire is at rest; in frame 
(part b), the charge is at rest.

In the -frame, there is clearly a magnetic force on the particle. The force is directed toward the wire, so if the charge were moving freely we would see it curve in toward
the wire. But in the -frame there can be no magnetic force on the particle, because its velocity is zero. Does it, therefore, stay where it is? Would we see different things
happening in the two systems? The principle of relativity would say that in   we should also see the particle move closer to the wire. We must try to understand why that
would happen.

We return to our atomic description of a wire carrying a current. In a normal conductor, like copper, the electric currents come from the motion of some of the negative
electrons—called the conduction electrons—while the positive nuclear charges and the remainder of the electrons stay fixed in the body of the material. We let the charge
density of the conduction electrons be   and their velocity in   be  . The density of the charges at rest in   is  , which must be equal to the negative of  , since we are
considering an uncharged wire. There is thus no electric field outside the wire, and the force on the moving particle is just

Using the result we found in Eq. (13.18) for the magnetic field at the distance   from the axis of a wire, we conclude that the force on the particle is directed toward the
wire and has the magnitude

Using Eqs. (13.3) and (13.5), the current   can be written as  , where   is the area of a cross section of the wire. Then

We could continue to treat the general case of arbitrary velocities for  and  , but it will be just as good to look at the special case in which the velocity   of the particle
is the same as the velocity   of the conduction electrons. So we write  , and Eq. (13.20) becomes

Now we turn our attention to what happens in  , in which the particle is at rest and the wire is running past (toward the left in the figure) with the speed  . The positive
charges moving with the wire will make some magnetic field   at the particle. But the particle is now at rest, so there is no magnetic force on it! If there is any force on the
particle, it must come from an electric field. It must be that the moving wire has produced an electric field. But it can do that only if it appears charged—it must be that a
neutral wire with a current appears to be charged when set in motion.

We must look into this. We must try to compute the charge density in the wire in   from what we know about it in  . One might, at first, think they are the same; but
we know that lengths are changed between  and   (see Chapter 15, Vol. I), so volumes will change also. Since the charge densities depend on the volume occupied by
charges, the densities will change, too.

Before we can decide about the charge densities in  , we must know what happens to the electric charge of a bunch of electrons when the charges are moving. We know
that the apparent mass of a particle changes by  . Does its charge do something similar? No! Charges are always the same, moving or not. Otherwise we would
not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially uncharged. Now we heat it up. Because the electrons have a different mass than the protons,
the velocities of the electrons and of the protons will change by different amounts. If the charge of a particle depended on the speed of the particle carrying it, in the heated
block the charge of the electrons and protons would no longer balance. A block would become charged when heated. As we have seen earlier, a very small fractional change in
the charge of all the electrons in a block would give rise to enormous electric fields. No such effect has ever been observed.

Also, we can point out that the mean speed of the electrons in matter depends on its chemical composition. If the charge on an electron changed with speed, the net
charge in a piece of material would be changed in a chemical reaction. Again, a straightforward calculation shows that even a very small dependence of charge on speed
would give enormous fields from the simplest chemical reactions. No such effect is observed, and we conclude that the electric charge of a single particle is independent of its
state of motion.

So the charge   on a particle is an invariant scalar quantity, independent of the frame of reference. That means that in any frame the charge density of a distribution of
electrons is just proportional to the number of electrons per unit volume. We need only worry about the fact that the volume can change because of the relativistic
contraction of distances.

We now apply these ideas to our moving wire. If we take a length   of the wire, in which there is a charge density   of stationary charges, it will contain the total
charge  . If the same charges are observed in a different frame to be moving with velocity  , they will all be found in a piece of the material with the shorter
length

but with the same area   (since dimensions transverse to the motion are unchanged). See Fig. 13–11.

Fig. 13–11. If a distribution of charged particles at rest has the charge
density , the same charges will have the density  when
seen from a frame with the relative velocity .

If we call   the density of charges in the frame in which they are moving, the total charge   will be  . This must also be equal to  , because charge is the same
in any system, so that   or, from (13.22),

The charge density of a moving distribution of charges varies in the same way as the relativistic mass of a particle.

We now use this general result for the positive charge density   of our wire. These charges are at rest in frame  . In  , however, where the wire moves with the
speed  , the positive charge density becomes

The negative charges are at rest in  . So they have their “rest density”   in this frame. In Eq. (13.23) , because they have the density   when the wire is at
rest, i.e., in frame  , where the speed of the negative charges is  . For the conduction electrons, we then have that

or

Now we can see why there are electric fields in  —because in this frame the wire has the net charge density   given by

Using (13.24) and (13.26), we have

Since the stationary wire is neutral, , and we have

Our moving wire is positively charged and will produce an electric field   at the external stationary particle. We have already solved the electrostatic problem of a uniformly
charged cylinder. The electric field at the distance   from the axis of the cylinder is

The force on the negatively charged particle is toward the wire. We have, at least, a force in the same direction from the two points of view; the electric force in   has the
same direction as the magnetic force in  .

The magnitude of the force in   is

Comparing this result for   with our result for   in Eq. (13.21), we see that the magnitudes of the forces are almost identical from the two points of view. In fact,

so for the small velocities we have been considering, the two forces are equal. We can say that for low velocities, at least, we understand that magnetism and electricity are
just “two ways of looking at the same thing.”

But things are even better than that. If we take into account the fact that forces also transform when we go from one system to the other, we find that the two ways of
looking at what happens do indeed give the same physical result for any velocity.

One way of seeing this is to ask a question like: What transverse momentum will the particle have after the force has acted for a little while? We know from Chapter 16 of
Vol. I that the transverse momentum of a particle should be the same in both the  - and -frames. Calling the transverse coordinate  , we want to compare  and  .
Using the relativistically correct equation of motion, , we expect that after the time   our particle will have a transverse momentum   in the -system given
by

In the -system, the transverse momentum will be

We must, of course, compare  and   for corresponding time intervals  and  . We have seen in Chapter 15 of Vol. I that the time intervals referred to a moving
particle appear to be longer than those in the rest system of the particle. Since our particle is initially at rest in  , we expect, for small  , that

and everything comes out O.K. From (13.31) and (13.32),

which is just   if we combine (13.30) and (13.33).

We have found that we get the same physical result whether we analyze the motion of a particle moving along a wire in a coordinate system at rest with respect to the
wire, or in a system at rest with respect to the particle. In the first instance, the force was purely “magnetic,” in the second, it was purely “electric.” The two points of view are
illustrated in Fig. 13–12 (although there is still a magnetic field   in the second frame, it produces no forces on the stationary particle).

Fig. 13–12. In frame  the charge density is zero and the current density is .
There is only a magnetic field. In , there is a charge density  and a different
current density . The magnetic field  is different and there is an electric
field .

If we had chosen still another coordinate system, we would have found a different mixture of  and   fields. Electric and magnetic forces are part of one physical
phenomenon—the electromagnetic interactions of particles. The separation of this interaction into electric and magnetic parts depends very much on the reference frame
chosen for the description. But a complete electromagnetic description is invariant; electricity and magnetism taken together are consistent with Einstein’s relativity.

Since electric and magnetic fields appear in different mixtures if we change our frame of reference, we must be careful about how we look at the fields  and  . For
instance, if we think of “lines” of  or  , we must not attach too much reality to them. The lines may disappear if we try to observe them from a different coordinate system.
For example, in system   there are electric field lines, which we do not find “moving past us with velocity   in system  .” In system   there are no electric field lines at all!
Therefore it makes no sense to say something like: When I move a magnet, it takes its field with it, so the lines of   are also moved. There is no way to make sense, in
general, out of the idea of “the speed of a moving field line.” The fields are our way of describing what goes on at a point in space. In particular,  and   tell us about the
forces that will act on a moving particle. The question “What is the force on a charge from a moving magnetic field?” doesn’t mean anything precise. The force is given by the
values of  and   at the charge, and the formula (13.1) is not to be altered if the source of  or   is moving (it is the values of  and   that will be altered by the motion).
Our mathematical description deals only with the fields as a function of ,  , , and   with respect to some inertial frame.

We will later be speaking of “a wave of electric and magnetic fields travelling through space,” as, for instance, a light wave. But that is like speaking of a wave travelling
on a string. We don’t then mean that some part of the string is moving in the direction of the wave, we mean that the displacement of the string appears first at one place and
later at another. Similarly, in an electromagnetic wave, the wave travels; but the magnitude of the fields change. So in the future when we—or someone else—speaks of a
“moving” field, you should think of it as just a handy, short way of describing a changing field in some circumstances.

13–7 The transformation of currents and charges

You may have worried about the simplification we made above when we took the same velocity   for the particle and for the conduction electrons in the wire. We could
go back and carry through the analysis again for two different velocities, but it is easier to simply notice that charge and current density are the components of a four-vector
(see Chapter 17, Vol. I).

We have seen that if   is the density of the charges in their rest frame, then in a frame in which they have the velocity  , the density is

In that frame their current density is

Now we know that the energy   and momentum   of a particle moving with velocity   are given by

where   is its rest mass. We also know that  and   form a relativistic four-vector. Since  and   depend on the velocity 
exactly as do  and  , we can conclude that  and   are also the components of a relativistic four-vector. This property is the key to a general analysis of the field of a wire
moving with any velocity, which we would need if we want to do the problem again with the velocity   of the particle different from the velocity of the conduction electrons.

If we wish to transform  and   to a coordinate system moving with a velocity   in the -direction, we know that they transform just like  and  , so that we have
(see Chapter 15, Vol. I)
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= + .ρ′ ρ′
+ ρ′

−

= + .ρ′ ρ+

1 − /v2 c2− −−−−−−−√
ρ− 1 − /v2 c2

− −−−−−−−√

= −ρ− ρ+

= .ρ′ ρ+
/v2 c2

1 − /v2 c2− −−−−−−−√
(13.27)

E ′

r

= = .E ′ Aρ′

2π rϵ0

A /ρ+ v2 c2

2π rϵ0 1 − /v2 c2− −−−−−−−√
(13.28)

S ′

S

S ′

= .F ′ q

2πϵ0

Aρ+

r

/v2 c2

1 − /v2 c2− −−−−−−−√
(13.29)

F ′ F

= ,F ′ F

1 − /v2 c2− −−−−−−−√
(13.30)

S S ′ y ∆py ∆p′
y

F = dp/dt ∆t ∆py S

∆ = F ∆t.py (13.31)

S ′

∆ = ∆ .p′
y F ′ t′ (13.32)

∆py ∆p′
y ∆t ∆t′

S ′ ∆t

∆t = ,
∆t′

1 − /v2 c2− −−−−−−−√
(13.33)

= ,
∆p′

y

∆py

∆F ′ t′

F ∆t

= 1

B′

S j
S ′ ρ′

j′ B′

E ′

E B

E B

E B

S ′ v S S

B

E B

E B E B E B

x y z t

v

ρ0 v

ρ = .
ρ0

1 − /v2 c2− −−−−−−−√

j = ρv = .
vρ0

1 − /v2 c2− −−−−−−−√
(13.34)

U p v

U = , p = ,
m0c2

1 − /v2 c2− −−−−−−−√
vm0

1 − /v2 c2− −−−−−−−√

m0 U/c = c/m0 1 − /v2 c2− −−−−−−−√ p cρ = c /ρ0 1 − /v2 c2− −−−−−−−√ j v

U/c p cρ j

v0

ρ j u x t (x, y, z)

x′

y′

= ,
x − ut

1 − /u2 c2− −−−−−−−√
= y,

j′
x

j′

=
− uρjx

1 − /u2 c2− −−−−−−−√
= ,j

In S frame
1 Charge density is zero and current density is J
2 There is only ~B field

In S′ frame
1 There is charge density ρ′ 6= 0 and different current density J′
2 ~B′ field is different and there is ~E′ field

We must not attach too much reality to ~E and ~B “lines” + they may
disappear if we observe them from different coordinate system
Conclude that + electricity and magnetism

are just “two ways of looking at the same stuff”
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Lorentz Transformations of the Fields
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Lorentz Transformations of the Fields

Lorentz boost in the x-direction

E′x = Ex B′x = Bx

E′y = γ(Ey − vBz) B′y = γ(By + vEz)

E′z = γ(Ez + vBy) B′z = γ(Bz − vEy)
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Lorentz Transformations of the Fields

Ia = ~E · ~B is Lorentz invariant

~E′ · ~B′ = ExBx + γ2(Ey − vBz)(By + vEz/c2) + γ2(Ez + vBy)

× (Bz − vEy/c2)

= ExBx + γ2(EyBy − v2/c2EzBz − vBzBy + vEyEz/c2)

+ γ2(EzBz − v2/c2EyBy + vByBz − vEzEy/c2)

= ~E · ~B
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Lorentz Transformations of the Fields

Ib = E2 − c2B2 is Lorentz invariant

E′2 − c2B′2 = E2
x + γ2(Ey − vBz)

2 + γ2(Ez + vBy)
2

− c2B2
x − c2γ2(By + vEz/c2)2 − c2γ2(Bz − vEy/c2)2

= E2
x + E2

y + E2
z − c2B2

x − c2B2
y − c2B2

z

+ 2γ2v(−EyBz + EzBy)− 2γ2v(ByEz − BzEy)

= E2 − c2B2
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Lorentz Transformations of the Fields

Could an electromagnetic field appear
as pure electric field in one frame

and purely magnetic field in another one?

~B = 0 at P in inertial system S
This implies Ia = 0 and Ib > 0 at P
Can ~E = 0 at P in some inertial system?
Answer: No!
If ~E = 0 at P, then Ib < 0 at P

contradicting the fact that Ib is Lorentz invariant!

A magnetic field is NOT an electric field in another frame!

E and B are components of electromagnetic tensor Fµν
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