Modern Physics

Luis A. Anchordoqui

Department of Physics and Astronomy Lehman College, City University of New York

> Lesson III September 7, 2023


Table of Contents

Foundations of Special Relativity

- Einstein postulates
- Relativity of simultaneity
- Lorentz transformations

Foundations of Special Relativity

Modern Physics

Historical Overview

- In 19th century ☞ it was known that:
 - water waves must have medium to move across (water)
 - audible sound waves require medium to move through (e.g. air)
- If this were the case is as Earth moves in its orbit around Sun flow of æther across Earth could produce detectable "æther wind"
- Unless æther were always stationary with respect to Earth speed of beam of light emitted from source on Earth would depend on magnitude of æther wind and on beam direction
- 1881 Michelson-Morley experiment to measure speed of light in different directions became most famous failed experiment to date and first strong evidence against luminiferous æther

Historical Overview (cont'd)

(1892 - 1909)

- To explain nature's apparent conspiracy to hide æther drift Lorentz developed theory based on two ad hoc hypotheses:
 - Longitudinal contraction of rigid bodies
 - slowing down of clocks (time dilation)

when moving through æther at speed $v \bowtie both$ by $(1 - v^2/c^2)^{1/2}$

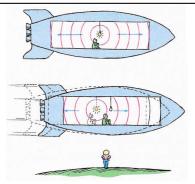
 This would so affect every aparatus designed to measure the æther drift as to neutralize all expected effects

(1898)

 Poincare arugued that æther might be unobservable and suggested concept would be thrown aside as useless BUT he continued to use concept in later papers of 1908

(1905)

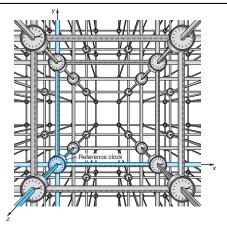
Einstein advanced principle of relativity


The laws of physics are identical in all inertial frames or equivalently the outcome of any experiment is the same when performed

with identical initial conditions relative to any inertial frame

2 There exists an inertial frame in which light signals in vacuum always travel rectilinearly at constant speed c (in all directions) independently of the motion of the source

Vinnie and Brittany investigate relativity of simultaneity


- From Vinnie's viewpoint light from travels equals distances to both ends of rocket striking both ends simultaneously
- Events of striking front and the end of spacecraft are not simultaneous in Brittany's reference frame
- Because of rocket's motion

light strikes back end sooner than front end

How does observer in inertial reference frame describe event?

- Event raise an occurrence characterized by: three space coordinates and one time coordinate
- Events are described by observers who do belong to particular inertial frames of reference
- Different observers in different inertial frames would describe same event with different spacetime coordinates
- Observer's rest frame is also known as proper frame
- Two ordinary methods to construct coordinate system
 - use of confederates at each place
 - single observer method

Confederate scheme for coordinatizing any event

- Observer establishes lattice of confederates
 with identical synchronized clocks
- label of any event in spacetime is reading of clock and location of nearest confederate to event

L. A. Anchordoqui (CUNY)

Modern Physics

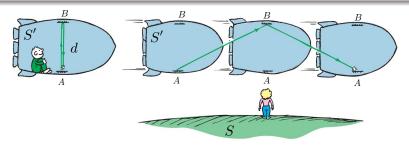
9-7-2023 9/30

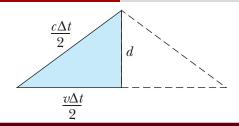
Single clock at spatial origin

- Observer continuously sends out light rays in all directions keeping track of emission time
- At any event ☞ incoming light ray is reflected back to observer
- Observer has 2 times + a direction associated with any event
- To yield spatial coordinatizing consistent with confederate scheme:

$$|\vec{r}| = c \, (\tau_2 - \tau_1)/2 \tag{1}$$

$$t = (\tau_1 + \tau_2)/2$$
 (2)


Relativity of simultaneity


Einstein's thought experiments

Idealized clock

light wave is bouncing back and forth between two mirrors

- Clock "ticks" when light wave makes a round trip from mirror A to mirror B and back
- Assume mirrors A and B are separated by distance d in rest frame
- Llight wave will take $\Delta t' = 2d'/c$ for round trip $A \rightarrow B \rightarrow A$

Time dilation

Since light has velocity c in all directions

$$d^{2} + \left(v\frac{\Delta t}{2}\right)^{2} = \left(\frac{c\Delta t}{2}\right)^{2}$$
(3)
$$t = \frac{2d'}{\sqrt{2}} = \frac{\Delta t'}{\sqrt{2}}$$
(4)

$$ht = \frac{2u}{\sqrt{c^2 - v^2}} = \frac{2u}{\sqrt{1 - v^2/c^2}}$$

Ticking of clock in Vinnie's frame which moves @ v in direction \perp to separation of mirrors is slower by $\gamma = (1 - v^2/c^2)^{-1/2}$

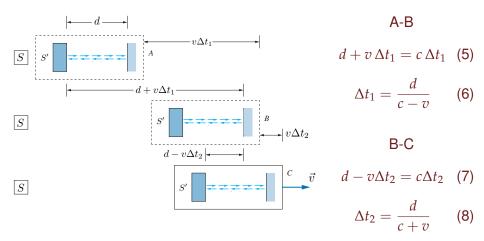
Twin Paradox

- Consider two synchronized standard clocks *A* and *B* at rest at point *P* of intertial frame *S*
- Let *A* remain @ *P* while *B* is briefly accelerated to some velocity *v* with which it travels to distant point *Q*
- There it is decelerated and made to return with velocity v to P
- If one of two twins travels with B while other remains with A
 B twin will be younger than A twin when meet again

Can't *B* claim with equal right it was her who remained where she was while *A* went on round-trip $\bowtie A$ should be younger when meet again?

Answer is NO I this solves paradox

- A remained at rest in single inertial frame while B accelerated out of his rest frame: @P, @Q, and once again @P
- Accelerations recorded on B's accelerometer she can be under no illusion that it was her who remain at rest
- Two accelerations at P are not essential (age comparison could be made in passing) but acceleration in Q is vital



Answer is NO I this solves paradox

- Eperimet involves 3 inertial frames:
 - earth-bound frame S
 - S' of outbound rocket
 - S'' of returning rocket
- Experiment not symmetrical between twins:
 - A stays at rest in single inertial frame S
 - but B occupies at least two different frames
- This allows result to be unsymmetrical

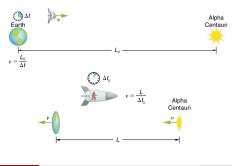
Rotate clock by 90° before setting it in motion

Length contraction

Interval between two consecutive ticks in the moving frame is

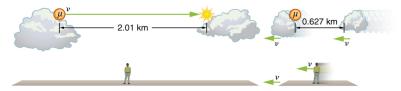
$$\Delta t = \Delta t_1 + \Delta t_2 = \frac{2d}{c(1 - v^2/c^2)}$$
$$= \left(\frac{d}{d'}\right) \frac{\Delta t'}{1 - v^2/c^2}$$
(9)

Because of time dilation


$$\Delta t' = \Delta t \ \sqrt{1 - v^2/c^2} \tag{10}$$

we get

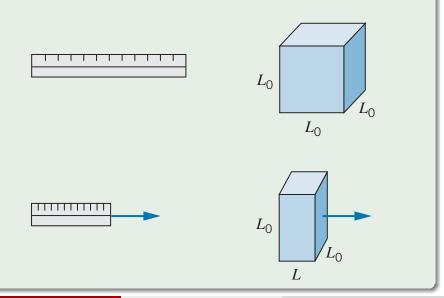
$$d = \left(1 - \frac{v^2}{c^2}\right)^{1/2} d'$$
 (11)


A Trip to Alpha Centauri

- One thing all observers agree upon is relative speed
- Even though clocks measure different elapsed times for same process reading they still agree that relative speed is the same
- Distance too depends on observer's relative motion!
- If two observers see different times reactive they must also see different distances for relative speed to be same to each of them

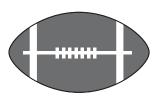
Life of a Muon

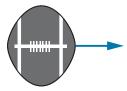
- Earth-bound observer sees muon travels at 0.95c for $7.05 \ \mu s$ from time it is produced until it decays
- It travels distance $rac{rac}{} L_0 = v \Delta t = 2.1 \text{ km}$ relative to Earth
- In muon's rest frame
 is lifetime is only 2.20 μs ⇒ it has enough time to travel only L = vΔt₀ = 0.627 km
- Distance between same two events (muon production and decay) depends on who measures it + how they are moving relative to it



Einstein time dilation factor agrees with experiment with fractional error of 2×10^{-3} at 95% confidence!

L. A. Anchordoqui (CUNY)


Relativity of simultaneity

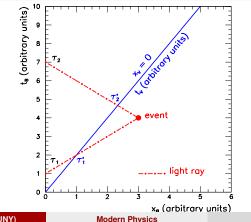

Example

L. A. Anchordoqui (CUNY)

Modern Physics

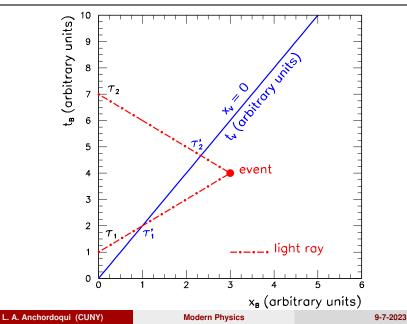
L. A. Anchordoqui (CUNY)

Modern Physics


- Einstein postulates retain Galilean invariance there is no experiment that can detect a uniform state of motion
- However 🖙 Galilean transformation rule *must be changed*
- Since light travels driven by Maxwell's equations transformation law between inertial observers *must* preserve Maxwell's equations
- Actually register it is even more general than that:
 we will have a set of transformations that leave *c* invariant

Recall that...

- When relatively moving observers label event all observers must use same two light rays
- Any event is characterized uniquely by two light rays that pass through it
- All observers finding labels of particular event MUST use same transmitted and received rays
- This apparent coincidence implies that all observers agree:
 on speed of light
 - that intersection of two light rays defines event
 - indeed I unique label of event


Example

- Vinnie and Brittany share same origin to coordinatize same event
- Transverse coordinates are same is used to construct clocks
- Red event is coordinatized by: Brittany as $(x_{\rm B}, t_{\rm B})$ Vinnie as (x_V, t_V)

L. A. Anchordogui (CUNY)

Lorentz transformations are relationship between (x_B , t_B) and (x_V , t_V)

25/30

- Start by finding coordinates of Vinnie's proper times τ₁' and τ₂' in terms of coordinates of red event in Brittany's reference frame
- Event τ'₁ has form (vt₁, t₁) in Brittany's coordinates since it is on Vinnie's time axis and he is moving at a speed v with respect to her
- This event is also on light ray with red event
- The equation of that light ray is

$$x - x_{\rm B} = c(t - t_{\rm B}) \tag{12}$$

Putting in coordinates of event τ₁'

$$vt_1 - x_B = c(t_1 - t_B)$$
 (13)

• Solving for t_1

$$t_1 = \frac{ct_{\rm B} - x_{\rm B}}{c - v} \tag{14}$$

• Because of time dilation

$$\tau_1' = t_1 \sqrt{1 - v^2 / c^2} \tag{15}$$

• Combining these

$$\tau_1' = \frac{ct_{\rm B} - x_{\rm B}}{c - v} \sqrt{1 - \frac{v^2}{c^2}}$$
(16)

• Similarly for event τ_2'

$$\tau_2' = t_2 \sqrt{1 - \frac{v^2}{c^2}}$$
(17)

and

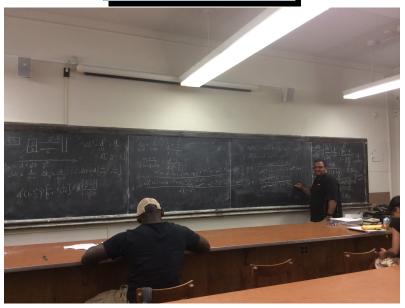
$$\tau_2' = \frac{ct_{\rm B} + x_{\rm B}}{c + v} \sqrt{1 - \frac{v^2}{c^2}}$$

(18)

• Substituting (16) and (18) into the definitions (1) and (2)

$$x_{\rm V} = \frac{x_{\rm B} - vt_{\rm B}}{\sqrt{1 - v^2/c^2}} = \gamma(x_{\rm B} - vt_{\rm B})$$

$$y_{\rm V} = y_{\rm B}$$


$$z_{\rm V} = z_{\rm B}$$

$$t_{\rm V} = \frac{t_{\rm B} - vx_{\rm B}/c^2}{\sqrt{1 - v^2/c^2}} = \gamma(t_{\rm B} - vx_{\rm B}/c^2)$$
 (19)

• Lorentz transformations if transverse directions are unaffected by velocity transformation

Homework hint: exercise 5.3

L. A. Anchordoqui (CUNY)

Modern Physics

Foundations of Special Relativity

Lorentz transformations

Homework hint: exercise 5.5

L. A. Anchordoqui (CUNY)