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Schrodinger Equation Particle in a central potential

@ Prescription to obtain 3D Schrddinger equation for free particle:
e substitute into classical energy momentum relation

_ PP
E= o (1)
o differential operators
., 0 . -
E — zﬁg and P — —ihV (2)
e resulting operator equation
e, .0
o V¥ =iy (3)

acts on complex wave function ¢ (¥, t)

@ Interpret p = |y|? as = probability density
[|2d3x gives probability of finding particle in volume element d°x
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Schrédinger Equation Particle in a central potential

@ We are often concerned with moving particles
e.g. collision of particles
@ Must calculate density flux of particle beam 7

@ From conservation of probability
rate of decrease of number of particles in a given volume
is equal to total flux of particles out of that volume

i/pdv /fﬁds_/<7]m1 (4)

(last equality is Gauss’ theorem)
@ Probability and flux densities are related by continuity equation

o <
P v.7=0 (5)
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Schrédinger Equation Particle in a central potential

To determine flux. ..

@ First form dp/dt by substracting wave equation multiplied by —iyp*
from the complex conjugate equation multiplied by —iyp

X vy = 6)
@ Comparing this with continuity equation = probability flux density
= ih
J= =5 WV —yVy") 7)
@ Example = free particle of energy E and momentum p

P = Neiﬁf?iEt (8)

has e p = [N|>and 7= |N?| p/m
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Schrodinger Equation Particle in a central potential

Time-independent Schrédinger equation for central potential
@ Potential depends only on distance from origin

V(E) =v(7]) =V(r) (9)

hamiltonian is spherically symmetric

@ Instead of using cartesian coordinates X = {x,y,z}
use spherical coordinates ¥ = {r, 9, ¢} defined by

y =rsin?sin ¢ ® = arctan (z/\/x2+y2) (10)

z =rcos?d ¢ = arctan(y/x)

x =rsindcos ¢ r=yx+y+2
ad

@ Express the Laplacian V? in spherical coordinates

10 ) 1 0 ) 1 02
222 (2% )y & % (Gingl ) 4% (11
v r2 or <r 8r> t 2sin9 90 (Sm1989> - 72 sin® © 0> (1)
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To look for solutions... '

@ Use separation of variable methods = (7,9, ¢) = R(r)Y (9, ¢)

Y d [ ,dR R 2 Y R &Y
R [Yd [,dR\, R 3 _R oY RY = ERY
2m Lz dr (r dr) T Zsing ab (sml9319) T sinzﬁa(Pz} Y

@ Divide by RY/r? and rearrange terms

ﬁz 1d(,dR 719 Y 1 0%
{Rdr (r E)} PV —E) = 2mY Linﬂ@(a ﬁw) sm219W}

@ Each side must be independently equal to a constant = »r = —%l(l +1)

@ Obtain two equations

2
Edi (rz‘;i:) S By =10+ ) (12)

1 a( ay) 1 aiY:il(lH)Y (13)

sin @ 99 sin 0@ sin? 9 0¢?

@ What is the meaning of operator in angular equation?
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Angular momentum operator

A
S

L=fxp=—iitxV (14)

in cartesian coordinates

a

P2 = 2412412
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Schrédinger Equation Particle in a central potential

We can always know:
length of angular momentum plus one of its components

E.g. == choosing the z-component
A

37|
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Schrédinger Equation Particle in a central potential

@ Angular momentum vector in spherical coordinates

. .0 0
Ly = ih smc;)%—l—cotgocosq)%

a . a . a
Ly, = —ih <cos P55~ cot ¥ sin q)a(P>
L, = —ﬁi (17)
ya - an
@ Form of 1.2 should be familiar

. 1 9 0 1 92
2 32 a9 (. 0\ 1 o

Lr=—n Linﬂaﬁ <51nl9819> +sin2198g02] (18)

@ Eigenvalue equations for L? and L, operators:

L2Y(9,9) = RA1(1+1)Y(8,¢) and L,Y(8,9) = hmY (9, @)
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Schrédinger Equation Particle in a central potential

Solution of angular equation

1 9 (. 9V"(8¢) 1 *Y]"(d,9)
sin ¥ 09 a0 sin?9  d¢?

= -1+ 1)Y"(3,9)

@ Use separation of variables == Y (8, ¢) = O(9)D(¢)
@ By multiplying both sides of the equation by sin®> ¢/Y (9, ¢)

1 .4 (. ,dO .24 1 4o
a(9) [smﬂd19 (Smﬂdﬂ>} +1(I4+1)sin“ 9 = ~3(p) a7 (19)
@ 2 equations in different variables s introduce constant m?:
d>® 2
s @ (¢) (20)

oo d (. dON o, . 2
smﬁﬁ (smﬂdﬁ> = [m* — (I + 1) sin” 8]©(9) (21)
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Schrédinger Equation Particle in a central potential

Solution of angular equation

@ First equation is easily solved to give = ®(¢) = ¢™?

@ Imposing periodicity ®(¢ +27) = ®(¢) = m =0,£1,£2,---
@ Solutions to the second equation = ©(9) = AP/"(cos 9)
@ P/" = associated Legendre polynomials

@ Normalized angular eigenfunctions

Y/ (8, ) = \/<2I FD T pincos )i (22)

4 (14 m)!

@ Spherical harmonics are orthogonal:

27r
/ / “(9,9) Y1 sin 0d8dg = 1:pm (23)
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Schrédinger Equation Particle in a central potential

Solution of radial equation

d (#dR(r)) 2 By — 11+ 1)R() (24)

dr dr h?

@ to simplify solution = u(r) = rR(r)

2m 12

N )
2m dr?

] u(r) = Eu(r) (25)

@ define an effective potential

2
Vi =) + 2 D

(26)

(25) is very similar to the one-dimensional Schrédinger equation
@ Wave function == need 3 quantum numbers (1,1, m)

Yuim(r, 8, @) = Ry i(r)Y[" (8, @) (27)
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Stern-Gerlach experiment

Stern-Gerlach apparatus I

Screen

@ Beam of atoms passes through a region where there is nonuniform B-field

@ Atoms with their magnetic dipole moments in opposite directions
experience forces in opposite directions
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Stern-Gerlach experiment

Results of Stern-Gerlach experiment I

@ Image of slit with field turned off (left)
@ With the field on = two images of slit appear
@ Small divisions in the scale represent 0.05 mm
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Stern-Gerlach experiment

Uhlenbeck-Goudsmit-Pauli hypothesis

@ Magnetic moment = connected via intrinsic angular momentum

- e
Hs =

B 2m,

—

8eS

@ For intrinsic spin = only matrix representation is possible
e Spinup | 1) and down | |) are defined by

spinup & ( (1) )

e S, spin operator is defined by
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Stern-Gerlach experiment

@ S, acts on up and down states by ordinary matrix multiplication

st = 5(0 S )(0)=3(0)=511 6

s = 5(o S)(0)=-5(3)=-3nea

@ As for orbital angular momentum [S;, ;] = ifi€;j Sy

. h/0 1 . R0 —i
sx_2<1 0> and sy_z(i 0) (33)

@ Only 4 hermitian 2-by-2 matrices == indentity + Pauli matrices

a=(32) e=(07) mm (%) o
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Stern-Gerlach experiment

Spin up

Spin down
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Relativistic wave equation

@ Schrodinger equation violates Lorentz invariance
and is not suitable for particle moving relativistically

@ Making the operator substitution
starting from relativistic energy momentum relation

_@+v2¢:m2¢ (h=c=1) (35)
@ Introducing the covariant form = p# — io¥
o = (at,—ﬁ) and 9, = (atﬁ) (36)
we can form invariant (D’Alembertian) operator [1> = d,,0"

0,0"p +m*yp = (D> +m?)p =0 (37)

@ Recall (%, 1) is scalar complex-valued wave function
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Negative probability density?

@ Multiplying KG by —iyp* minus complex conjugate equation by —iyp

At [i(y* 0y — pAp™)] +V. [—i(y* Ve —p V") =0  (38)

[ J

@ Consider motion free particle of energy E and momentum p
1/) — Nei(ﬁ.f*Ef) (39)

from (38) = p = 2E [N|? and 7 = 2 7 |N|?
@ Probability density p is timelike component of 4-vector

pxE=x(p>+m?)/? (40)

@ In addition to acceptable E > 0 solutions
we have negative energy solutions
which have associated negative probability density!
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Klein-Gordon Equation

Antimatter

@ Pauli and Weisskopf = inserted charge e in continuity equation
j'=—ie(y* o'y —p o'y’ (41)
interpreting j* as electromagnetic charge-current density

@ ¥ represents a charge density = not a probability density
and so the fact that it can be negative is no longer objectable

@ Stiickelberg and Feynman = negative energy solution
describes a particle which propagates backwards in time
or positive energy antiparticle propagating forward in time
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Klein-Gordon Equation
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Klein-Gordon Equation

Thor’s “spinless” positron

@ Consider spin-0 particle with (E, 7, e)
generally referred to as the “spinless electron”
@ Electromagnetic 4-vector current is

j*(e7) = —2¢|N*(E, ) (42)
@ Taking antiparticle et of same (E, p)
j(e*) = +2¢|N[*(E,p) = —2¢|N|*(—E, —p) (43)

exactly same current of the original particle with —E, —p

@ As far as system is concerned == emission of antiparticle with
energy E is same as absorption of particle of energy —E
@ Negative-energy particle solutions going backward in time
describe
positive-energy antiparticle solutions going forward in time
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