Modern Physics

Luis A. Anchordoqui

Department of Physics and Astronomy Lehman College, City University of New York

> Lesson XI November 2, 2023

L. A. Anchordoqui (CUNY)

Table of Contents

Schrödinger Equation

• Particle in a central potential

- Prescription to obtain 3D Schrödinger equation for free particle:
 - substitute into classical energy momentum relation

$$E = \frac{|\vec{p}|^2}{2m} \tag{1}$$

differential operators

$$E
ightarrow i\hbar rac{\partial}{\partial t}$$
 and $ec{p}
ightarrow -i\hbar ec{
abla}$

• resulting operator equation

$$-\frac{\hbar^2}{2m}\nabla^2\psi = i\hbar\frac{\partial}{\partial t}\psi$$
(3)

acts on complex wave function $\psi(\vec{x}, t)$

• Interpret $\rho = |\psi|^2$ as reprobability density $|\psi|^2 d^3x$ gives probability of finding particle in volume element d^3x

(2)

Continuity equation

• We are often concerned with moving particles

- Must calculate density flux of particle beam j
- From conservation of probability rate of decrease of number of particles in a given volume is equal to total flux of particles out of that volume

$$-\frac{\partial}{\partial t}\int_{V}\rho \,dV = \int_{S}\vec{j}\cdot\hat{n}\,dS = \int_{V}\vec{\nabla}\cdot\vec{j}\,dV \tag{4}$$

(last equality is Gauss' theorem)

Probability and flux densities are related by continuity equation

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0 \tag{5}$$

Flux

To determine flux...

• First form $\partial \rho / \partial t$ by substracting wave equation multiplied by $-i\psi^*$ from the complex conjugate equation multiplied by $-i\psi$

$$\frac{\partial \rho}{\partial t} - \frac{\hbar}{2m} (\psi^* \nabla^2 \psi - \psi \nabla^2 \psi^*) = 0$$
(6)

• Comparing this with continuity equation 🖙 probability flux density

$$\vec{j} = -\frac{i\hbar}{2m}(\psi^*\nabla\psi - \psi\nabla\psi^*) \tag{7}$$

• Example so free particle of energy *E* and momentum \vec{p}

$$\psi = N e^{i\vec{p}\cdot\vec{x} - iEt} \tag{8}$$

has we $ho = |N|^2$ and $\vec{j} = |N^2| \, \vec{p} \, / m$

Time-independent Schrödinger equation for central potential

Potential depends only on distance from origin

$$V(\vec{r}) = V(|\vec{r}|) = V(r)$$
 (9)

hamiltonian is spherically symmetric

$$\left\{\begin{array}{l}
x = r \sin \vartheta \cos \varphi \\
y = r \sin \vartheta \sin \varphi \\
z = r \cos \vartheta
\end{array}\right\} \Leftrightarrow \left\{\begin{array}{l}
r = \sqrt{x^2 + y^2 + z^2} \\
\vartheta = \arctan\left(z/\sqrt{x^2 + y^2}\right) \\
\varphi = \arctan(y/x)
\end{array}\right\} (10)$$

Express the Laplacian ∇² in spherical coordinates

$$\nabla^{2} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) + \frac{1}{r^{2} \sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}} \quad (11)$$

L. A. Anchordoqui (CUNY)

To look for solutions...

• Use separation of variable methods is $\psi(r, \vartheta, \varphi) = R(r)Y(\vartheta, \varphi)$

$$-\frac{\hbar^2}{2m}\left[\frac{Y}{r^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \frac{R}{r^2\sin\vartheta}\frac{\partial}{\partial\vartheta}\left(\sin\vartheta\frac{\partial Y}{\partial\vartheta}\right) + \frac{R}{r^2\sin^2\vartheta}\frac{\partial^2 Y}{\partial\varphi^2}\right] + V(r)RY = ERY$$

• Divide by RY/r^2 and rearrange terms

$$-\frac{\hbar^2}{2m}\left[\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right)\right] + r^2(V-E) = \frac{\hbar^2}{2mY}\left[\frac{1}{\sin\vartheta}\frac{\partial}{\partial\vartheta}\left(\sin\vartheta\frac{\partial Y}{\partial\vartheta}\right) + \frac{1}{\sin^2\vartheta}\frac{\partial^2 Y}{\partial\varphi^2}\right]$$

Each side must be independently equal to a constant w κ = - ^{ħ²}/_{2m} l(l+1)
 Obtain two equations

$$\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) - \frac{2mr^2}{\hbar^2}(V-E) = l(l+1)$$
(12)

$$\frac{1}{\sin\vartheta}\frac{\partial}{\partial\vartheta}\left(\sin\vartheta\frac{\partial Y}{\partial\vartheta}\right) + \frac{1}{\sin^2\vartheta}\frac{\partial^2 Y}{\partial\varphi^2} = -l(l+1)Y$$
(13)

What is the meaning of operator in angular equation?

Angular momentum operator

$$\hat{\vec{L}} = \hat{\vec{r}} imes \hat{\vec{p}} = -i\hbar \, \hat{\vec{r}} imes \hat{\vec{\nabla}}$$

in cartesian coordinates

$$\hat{L}_{x} = \hat{y}\hat{p}_{z} - \hat{p}_{y}\hat{z} = -i\hbar\left(y\frac{\partial}{\partial z} - \frac{\partial}{\partial y}z\right)$$

$$\hat{L}_{y} = \hat{z}\hat{p}_{x} - \hat{p}_{z}\hat{x} = -i\hbar\left(z\frac{\partial}{\partial x} - \frac{\partial}{\partial z}x\right)$$

$$\hat{L}_{z} = \hat{x}\hat{p}_{y} - \hat{p}_{x}\hat{y} = -i\hbar\left(x\frac{\partial}{\partial y} - \frac{\partial}{\partial x}y\right)$$
(15)

commutation relations

$$[\hat{L}_i, \hat{L}_j] = i\hbar \, \varepsilon_{ijk} \, \hat{L}_k \quad \text{and} \quad [\hat{L}^2, \hat{L}_x] = [\hat{L}^2, \hat{L}_y] = [\hat{L}^2, \hat{L}_z] = 0$$
 (16)

$$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$$

L. A. Anchordoqui (CUNY)

Modern Physics

(14)

We can always know:

length of angular momentum plus one of its components E.g. \square choosing the *z*-component

Angular momentum vector in spherical coordinates

$$\hat{L}_{x} = i\hbar \left(\sin \varphi \frac{\partial}{\partial \theta} + \cot \varphi \cos \varphi \frac{\partial}{\partial \varphi} \right)$$

$$\hat{L}_{y} = -i\hbar \left(\cos \varphi \frac{\partial}{\partial \theta} - \cot \theta \sin \varphi \frac{\partial}{\partial \varphi} \right)$$

$$\hat{L}_{z} = -\hbar \frac{\partial}{\partial \varphi}$$
(17)

• Form of \hat{L}^2 should be familiar

$$\hat{L}^{2} = -\hbar^{2} \left[\frac{1}{\sin\vartheta} \frac{\partial}{\partial\vartheta} \left(\sin\vartheta \frac{\partial}{\partial\vartheta} \right) + \frac{1}{\sin^{2}\vartheta} \frac{\partial^{2}}{\partial\varphi^{2}} \right]$$
(18)

• Eigenvalue equations for \hat{L}^2 and \hat{L}_z operators:

$$\hat{L}^2 Y(\vartheta, \varphi) = \hbar^2 l(l+1) Y(\vartheta, \varphi) \text{ and } \hat{L}_z Y(\vartheta, \varphi) = \hbar m Y(\vartheta, \varphi)$$

Solution of angular equation

$$\frac{1}{\sin\vartheta}\frac{\partial}{\partial\vartheta}\left(\sin\vartheta\frac{\partial Y_l^m(\vartheta,\varphi)}{\partial\vartheta}\right) + \frac{1}{\sin^2\vartheta}\frac{\partial^2 Y_l^m(\vartheta,\varphi)}{\partial\varphi^2} = -l(l+1)Y_l^m(\vartheta,\varphi)$$

- Use separation of variables \mathbb{I} $Y(\vartheta, \varphi) = \Theta(\vartheta) \Phi(\varphi)$
- By multiplying both sides of the equation by $\sin^2 \vartheta / Y(\vartheta, \varphi)$

$$\frac{1}{\Theta(\vartheta)} \left[\sin \vartheta \frac{d}{d\vartheta} \left(\sin \vartheta \frac{d\Theta}{d\vartheta} \right) \right] + l(l+1) \sin^2 \vartheta = -\frac{1}{\Phi(\varphi)} \frac{d^2 \Phi}{d\varphi^2}$$
(19)

• 2 equations in different variables introduce constant m^2 :

$$\frac{d^2\Phi}{d\varphi^2} = -m^2\Phi(\varphi) \tag{20}$$

$$\sin\vartheta \frac{d}{d\vartheta} \left(\sin\vartheta \frac{d\Theta}{d\vartheta} \right) = [m^2 - l(l+1)\sin^2\vartheta]\Theta(\vartheta)$$
 (21)

L. A. Anchordoqui (CUNY)

Solution of angular equation

- First equation is easily solved to give ${}^{\tiny \mbox{\tiny CP}} \Phi(\phi) = e^{im\phi}$
- Imposing periodicity $\Phi(\varphi + 2\pi) = \Phi(\varphi) \bowtie m = 0, \pm 1, \pm 2, \cdots$
- Solutions to the second equation $\mathbb{S} \Theta(\vartheta) = AP_l^m(\cos \vartheta)$
- *P*^m_l restaurce associated Legendre polynomials
- Normalized angular eigenfunctions

$$Y_l^m(\vartheta,\varphi) = \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\vartheta) e^{im\varphi}$$
(22)

Spherical harmonics are orthogonal:

$$\int_0^{\pi} \int_0^{2\pi} Y_l^{m*}(\vartheta, \varphi) Y_{l'}^{m'} \sin \vartheta d\vartheta d\varphi = \delta_{ll'} \delta_{mm'}, \qquad (23)$$

L. A. Anchordoqui (CUNY)

Modern Physics

Schrödinger Equation

Particle in a central potential

L. A. Anchordoqui (CUNY)

Solution of radial equation

$$\frac{d}{dr}\left(r^2\frac{dR(r)}{dr}\right) - \frac{2mr^2}{\hbar^2}(V-E) = l(l+1)R(r)$$

• to simplify solution u = rR(r)

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + \left[V + \frac{\hbar}{2m}\frac{l(l+1)}{r^2}\right]u(r) = Eu(r)$$
(25)

define an effective potential

$$V'(r) = V(r) + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2}$$
(26)

(25) is very similar to the one-dimensional Schrödinger equation

● Wave function ☞ need 3 quantum numbers (*n*, *l*, *m*)

$$\psi_{n,l,m}(r,\vartheta,\varphi) = R_{n,l}(r)Y_l^m(\vartheta,\varphi)$$
(27)

L. A. Anchordoqui (CUNY)

Modern Physics

11-2-2015 15/25

(24)

- Beam of atoms passes through a region where there is nonuniform \vec{B} -field
- Atoms with their magnetic dipole moments in opposite directions experience forces in opposite directions

Results of Stern-Gerlach experiment

- Image of slit with field turned off (left)
- With the field on read two images of slit appear
- Small divisions in the scale represent 0.05 mm

Uhlenbeck-Goudsmit-Pauli hypothesis

Magnetic moment reconnected via intrinsic angular momentum

$$\vec{u}_S = -\frac{e}{2m_e}g_e\vec{S} \tag{28}$$

• For intrinsic spin region only matrix representation is possible

• Spin up $|\uparrow\rangle$ and down $|\downarrow\rangle$ are defined by

spin up
$$\Leftrightarrow \begin{pmatrix} 1\\0 \end{pmatrix}$$
 spin down $\Leftrightarrow \begin{pmatrix} 0\\1 \end{pmatrix}$. (29)

• \hat{S}_z spin operator is defined by

$$\hat{S}_z = \frac{\hbar}{2} \left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array} \right) \tag{30}$$

• \hat{S}_z acts on up and down states by ordinary matrix multiplication

$$\hat{S}_{z}|\uparrow
angle = rac{\hbar}{2} \left(egin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}
ight) \left(egin{array}{cc} 1 \\ 0 \end{array}
ight) = rac{\hbar}{2} \left(egin{array}{cc} 1 \\ 0 \end{array}
ight) = rac{\hbar}{2}|\uparrow
angle \quad (31)$$

$$\hat{S}_{z}|\downarrow
angle = rac{\hbar}{2} \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight) \left(egin{array}{cc} 0 \ 1 \end{array}
ight) = -rac{\hbar}{2} \left(egin{array}{cc} 0 \ 1 \end{array}
ight) = -rac{\hbar}{2}|\uparrow
angle$$
 (32)

• As for orbital angular momentum $[\hat{S}_i, \hat{S}_j] = i\hbar \epsilon_{ijk} \hat{S}_k$

$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$
 and $\hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}$ (33)

Only 4 hermitian 2-by-2 matrices region indentity + Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(34)

Modern Physics

Relativistic wave equation

- Schrodinger equation violates Lorentz invariance and is not suitable for particle moving relativistically
- Making the operator substitution starting from relativistic energy momentum relation

$$-\frac{\partial^2 \psi}{\partial t^2} + \nabla^2 \psi = m^2 \psi \qquad (\hbar = c = 1)$$
(35)

• Introducing the covariant form vert $p^\mu
ightarrow i \partial^\mu$

$$\partial^{\mu} = \left(\partial_{t}, -\vec{\nabla}\right) \quad \text{and} \quad \partial_{\mu} = \left(\partial_{t}, \vec{\nabla}\right)$$
 (36)

we can form invariant (D'Alembertian) operator $\Box^2 \equiv \partial_\mu \partial^\mu$

$$\partial_{\mu}\partial^{\mu}\psi + m^{2}\psi \equiv (\Box^{2} + m^{2})\psi = 0$$
(37)

• Recall $\psi(\vec{x}, t)$ is scalar complex-valued wave function

L. A. Anchordoqui (CUNY)

Modern Physics

Negative probability density?

• Multiplying KG by $-i\psi^*$ minus complex conjugate equation by $-i\psi$

$$\partial_t \underbrace{[i(\psi^* \partial_t \psi - \psi \partial_t \psi^*)]}_{\rho} + \vec{\nabla} \cdot \underbrace{[-i(\psi^* \vec{\nabla} \psi - \psi \nabla \psi^*)]}_{\vec{j}} = 0$$
(38)

• Consider motion free particle of energy *E* and momentum \vec{p}

$$\psi = N e^{i(\vec{p}.\vec{x} - Et)} \tag{39}$$

from (38) is $\rho = 2 E |N|^2$ and $\vec{j} = 2 \vec{p} |N|^2$

Probability density ρ is timelike component of 4-vector

$$\rho \propto E = \pm (\vec{p}^{2} + m^{2})^{1/2}$$
(40)

 In addition to acceptable E > 0 solutions we have negative energy solutions which have associated negative probability density!

L. A. Anchordoqui (CUNY)

Modern Physics

11-2-2015 22/25

Antimatter

Pauli and Weisskopf register inserted charge e in continuity equation

$$j^{\mu} = -i e \left(\psi^* \ \partial^{\mu} \psi - \psi \ \partial^{\mu} \psi^* \right)$$
(41)

interpreting j^{μ} as electromagnetic charge-current density

- j⁰ represents a charge density representation of the set of the s
- Stückelberg and Feynman repeative energy solution describes a particle which propagates backwards in time or positive energy *antiparticle* propagating forward in time

Klein-Gordon Equation

L. A. Anchordoqui (CUNY)

Modern Physics

Thor's "spinless" positron

• Consider spin-0 particle with (E, \vec{p}, e)

generally referred to as the "spinless electron"

Electromagnetic 4-vector current is

$$j^{\mu}(e^{-}) = -2e|N|^{2}(E, \vec{p})$$
(42)

• Taking antiparticle e^+ of same (E, \vec{p})

$$j^{\mu}(e^{+}) = +2e|N|^{2}(E,\vec{p}) = -2e|N|^{2}(-E,-p)$$
 (43)

exactly same current of the original particle with $-E_{r} - \vec{p}$

- As far as system is concerned [™] emission of antiparticle with energy *E* is same as absorption of particle of energy −*E*
- Negative-energy particle solutions going backward in time describe

positive-energy antiparticle solutions going forward in time