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Schrédinger Equation Expectation value, observables, and operators

Born’s rule

@ Probability amplitude i == complex function
used to describe behaviour of systems

@ Probability density (probability per unit length in one dimension)
P(x) dx = |y(x)|*dx (1)
@ Probability to find particle between two points x; and x;

P(x; < x <1xp) = /xz [ (x) | dx (2)

X1

@ Normalization == probability to find particle between (—oo, +00)

—+o0
| p@Pa=1 )

[ee]

L. A. Anchordoqui (CUNY) Modern Physics 10-26-2023 4/35



Schrédinger Equation Expectation value, observables, and operators

Expectation value

@ We can no longer speak with certainty about particle position

@ We can no longer guarantee outcome of single measurement
(of any physical quantity that depends on position)

@ Expectation value =
most probable outcome for single measurement
which is equivalent to average outcome for many measurements

@ E.g. = determine expected location of particle
Performing a large number of measurements
we calculate average position

_ mxit+mxa+--- Y
np+np+--- Y.in;

{x)

(4)
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Schrédinger Equation Expectation value, observables, and operators

Expectation value (cont'd)

@ Number of times n; that we measure each position x;
is proportional to probability P(x;) dx
to find particle in interval dx at x;

@ Making substitution and changing sums to integrals

B fj;o P(x) xdx

S pa = W= [ @R @

{x)

@ Expectation value of any function f(x)

~

)= [ F@lp@PR €
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Schrédinger Equation Expectation value, observables, and operators

@ State vector or wave-function i = represented as “ket” |¢)
@ We express any n-dimensional vector in terms of basis vectors
@ We expand any wave function in terms of basis state vectors

) = A1) + Az|¢p2) + - - - (7)

@ Alongside the ket = we define “bra” (|
@ Together = bra and ket define scalar product

—+o0

Gy = [ dxg @ ) = @le) = Wl ©)

@ As for n-dimensional vector == Schwartz inequality holds

Wlp) </ (w|p) (p|¢) (9)
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Schrédinger Equation Expectation value, observables, and operators

Operators and Observables

@ Operator A = maps state vector into another A|ip) = |¢)
@ Eigenstate (or eigenfunction) of A with eigenvalue a

Alyp) = aly)

@ Observable == any particle property that can be measured
@ For any observable A = there is an operator A

+o0

(4) = (plAly) = [ dxy*(x) Ap(x) (10)

@ A'is called hermitian conjugate of A if

T At T A t
[ Ay yax= [ "¢ Apdx= (AToly) = (9lAy) (1)

—00 —

@ Ais called hermitian if A" = A s (A¢|p) = (¢|Aw)
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Schrédinger Equation

Expectation value, observables, and operators

@ Operators are associative but not (in general) commutative

@ Example = (£p — p2)p(x) = —ih {xai’ -l

@ Since this must hold for any function ¢(x)

@ Short-hand notation:

AB|p) = A(By)) = (AB)|y) # BA|y) (12)
% ()] (13)
e
by product rule of differentiation
(2p — pR)p(x) = ihy(x) (14)
£p—pr =ih (15)
[A,B] = AB - BA
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Schrodinger Equation Free particle solution

@ A “free” particle = no external forces acting upon it = V(x) = V}
@ State represented by its wave function & ¢(x) = Ae'™
@ Schrédinger equation has 4 possible solutions

2
zh’?(E CVo)p(x) = —aalep(x) _Rp(x)  tkeRorS (16)

e 2 travelling waves solutions
P(x) = Ae** 4 B R k= i% 2m(E—Vy) (E>Vy) (17)
e 2 exponentially decaying solutions

x) = Ae®™ + Be ™ ix = j:i1 2m(Vy — E E <V,
¥ 0

@ Allowed energies are

= 1
E=%-+W (19)
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Schrodinger Equation Free particle solution

@ E > Vj = classically allowed
@ E < Vj = classically forbidden
@ Traveling wave solutions = time evolution of probability density

P(x,t) = ¢ (x, )p(x, ) = p* (x)e“"p(x)e ™" = p*(x)p(x) (20)
independent of time!
@ Particle traveling in only one (say +x) direction

P(x,t) = ¢ (x)p(x) = A*e ™A™ = A*A (21)

independent of position = particle completely delocalized!
@ Superposition of both positive and negative going waves

P(r,t) = (A +B) (A + Be i)
= A*A+B*B+2R{A*Be >* 1 B*Ae***}
@ For real-valued coefficients A and B
P(x,t) = A* + B* 4 2ABcos(2kx) (22)
which is equation for standing wave
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Schrédinger Equation Step potential

0 forx <0
Vo forx >0

(a) Energy (a) Energy1
T ‘
‘ V(x) =V,
Vix) = V,
’ V(x)=0 E
V=0 - ol %
0‘ X ‘
| 1}
y(x)
(b) W(x) (b)
0 X 0 x
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Schrédinger Equation Step potential

Casel: E >V

@ x <0

lpl (x) — Aeiklx _|_ Be—iklx kl — lsz/h

@ x>0

1,02(96) _ Ceikzx + De—ikzx

kz = \/2m(E—Vo)/h

@ Assume particle initially comes from —x direction = D = 0

@ Continuity constraints @ x =0

$1(0) =¢»(0) = A+B=C

¥'(0) = $(0) = ik1(A — B) = ik2C

@ Combining these and eliminating C

B ki—k 1-k/k

A kl—l—kz - 1—|—k2/k1

(24)

(26)
(27)

(28)

4
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Schrédinger Equation Step potential

Casel: E > V, (contd)
@ Reflection coefficient of barrier = reflectivity

2

R = (29)

B _|1-ke/k
-l =

EYYR

@ Due to conservation of particle number
(or probability depending on how you think about wave function)
transmissivity is simply given by

1—ky/ki |

T=1-R=1-|-—2/"
’1+k2/k1

(30)

@ In going from region | to region I
de Broglie wavelength becomes longer for increased potential step
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Schrédinger Equation Step potential

Case2: E <V

@ x <0

lpl (x) — Aeiklx _|_ Be—iklx kl — lsz/h

@ x>0

Po(x) = Ce* 4 De ¥

@ C = 0 since ¥ cannot grow infinitely large as x — oo

@ Continuity constraints @ x =0

$1(0) =¢»(0) = A+B=D

$1(0) = ¢3(0) = ik1(A — B) = x2D

Combining these and eliminating D

B _kl—iKz

A kl—l—iKz

Ky = \/Zm(Vo—E)/h

(31)

(33)
(34)

(35)

4
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Schrodinger Equation Step potential

Case2: E < V) (contd)
@ Reflectivity of barrier

iKz k1 TF iKz
il =1
‘ <k1 —+ ZKz) (kl = iK2> (36)
@ Although P # 0 to penetrate into classically forbidden region
particle will always be reflected (eventually)

AN

T

I | | |
2 3 4 5
E/V,
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Schrédinger Equation Potential barrier and tunneling

Vo for —L/2<x<L/2

Vix) :{ 0 otherwise (37)
(a) EnergyT y
0
E
SRy Ry, )
(b)
i
I
—L/2 L/2 X
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Schrédinger Equation Potential barrier and tunneling

wave function
¥1(x) = Ae®™ 4 Be ™ y(x) = Ce™ + De ™ ip3(x) = Fe'™ + Ge'™
wave vector

k=+2mE/h Kk =1/2m(Vo —E)/h

e Assuming particle initially starts on left of barrier = G = 0
boundary conditions

o—ikL/2 | %ez’kL/Z _ %e—xuz n %eKL/z
i (e—z‘kL/Z _ ieikL/.z) _ . (f‘e KL/2 _ ieKL/2>
ik <ZeikL/2> oy (iem/z _ ZEKL/2>

%eikL/z _ %EKL/Z n %e—u/z
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Schrédinger Equation Potential barrier and tunneling

Solving for transmission coefficient I

2 4k%x?

F
T:{ A| (k24 «2)2cosh(2kL) — (k* 4 x* + 6k2k2) (38)
Ao
Ao
X = L/2

L. A. Anchordoqui (CUNY) Modern Physics 10-26-2023 19/35



Schrédinger Equation Particle in a box

0 forx < L/2
Vix)=< VW for —L/2<x<L/2 (39)
00 forx > L/2

~L)2 +L/2
—_—

v
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Schrédinger Equation Particle in a box

@ wave function outside box
Pp(x) =0 x<-—-L/2Ax>L/2

@ wave function inside box

¥(x) = Ae* 4 Be7™  _L/2<x<L/2

@ energy and wave vector

h2k2 2m(E — Vp)

E=—"+V,=k =
om 0T 12

@ boundary conditions for wave function
$(—L/2) = Ae ™/ 4 B2 = 0

IIJ<+L/2) — AeikL/Z + Be*ikL/Z =0
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@ adding (43) to (44) gives

2(A+ B)cos(kL/2) =0 (45)
@ while subtracting (43) from (44) gives

2i(A — B)sin(kL/2) =0 (46)

@ both conditions in (45) and (46) must be met
e when A = B (46) is met and to satisfy (45)
_2mm

7T
- z ~0,1,2,3,- - 47
k I + L n 0/ 7 13/ ( )

e when A = —B in which (45) is met and to satisfy (46)

. 271'712
L

k ny=1,2,3, - (48)
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Schrodinger Equation Particle in a box

e Consolidate quantization conditions rewriting

k:% n=1,2,3- (49)

and solution to time-independent Schrédinger equation

Pulx) = A { cos(nrx/L)  formodd  _ o [”; (x N L)] (50)

sin(nmtx/L)  forneven 2

¢ Not only is the wave vector quantized = but also

p=hk=nhnn/L (51)
and
h2k2 h? 2n?
E = V() + ~ VO + W (52)
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Schrodinger Equation Particle in a box

@ Amplitude can be found by considering normalization condition

+00 +L/2 n L 2
o= o o)
Lw |, (x)|“dx i sin | 7 { ¥+ 3

recall = /+L/2 ‘ [nn <x+ L)} 2 L
sin | — =
—L/2 L 2

dx = —. (54)
@ Since we require == |A]2L/2 =1

2
A:\/§:>lpn(x):\/gsin {”L” <x+;>] (55)

@ Normalization can be met for a range of complex amplitudes

A= ef¢\/§ (56)

in which phase ¢ is arbitrary
@ This implies outcome of measurement about particle position
(which is proportional to |y (x)|?)
is invariant under global phase factor
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Schrodinger Equation Particle in a box

Hamiltonian operator

@ Each solution i, (x) = satisfies the eigenvalue problem

N N hZ 82
Hypy(x) = Enpu(x) Il = [_2max2 + V(x) (57)
@ Solutions are orthogonal to one another
+L/2
[ ) () dx = G (59
1 m=n
R (59
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Schrédinger Equation Particle in a box

V3 v3

N 2/L

0 L/3 2L/3 L X 0 L/3 2L/3 L X
L) \V%

NI 2/L

0 L/2 L x 0 L/2 L x
2
v %

Nl 2/L]

L. A. Anchordoqui (CUNY) Modern Physics 10-26-2023 26/35



Schrédinger Equation Finite square well

V()
E1=+E
a ) y
E>=-E
\ -VH
_%dzﬁx) = Ey(x) in region I
Ei=+E= —%dzﬂx) = (E+ Vy)yp(x) inregion Il
_;Tnd %x) = Ey(x) in region III
_%dzﬁx) = —Ey(x) in region I
2
Er=-E= ;; d}i Y — (Vg — E)¢(x) in region I
2hm e d;E —E(x) in region III
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Schrodinger Equation Finite square well

@ E; @ Expect to find solution in terms of travelling waves
Not so interesting = describes case of unbound particle

@ F, & Expect waves inside the well and imaginary momentum
(yielding exponentially decaying probability of finding particle)

in outside regions

@ More precisely
e Region I: K =ik =k = \/ 2mE; _ \/ —2mE

e Region II: k = \/2m(v:2+52) _ \/Zm Vi +E)

e Region lll: k¥ = ix = k = \/ 2mE; — \/ —2mE

@ And wave function is
e Region I: (e x|
e Region Il: A’eikx 4 Ble—ikx
e Region lll: D'e™**
In first region can write either C’e—**l or C’e*
First notation makes it clear we have exponential decay
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Schrodinger Equation Finite square well

@ Potential even function of x

@ Differential operator also even function of x

@ Solution has to be odd or even for equation to hold
@ A and B must be chosen such that

l[J(X) — A/eikx _’_B/efikx

is either even or odd
@ Even solution @ i(x) = A cos(kx)
@ Odd solution @ ¢ (x) = Asin(kx)

Odd solution

@ (—x) = —1p(x) setting C' = —D’ @ rewrite —C' =D’ =C
e Region | (x) = —Ce* and ¢’ (x) = —xCe*™*
e Region Il ¢(x) = Asin(kx) and ¢’(x) = kA cos(kx)
e Region lll (x) = Ce ™ and ¢'(x) = —xCe **
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Schrédinger Equation Finite square well

@ Since y(—x) = —y(x) = consider boundary condition @ x = a
@ Two equations are

Asin(ka) = Ce™ ™
Ak cos(ka) = —kCe ™

@ Substituting first equation into second
Ak cos(ka) = —xAsin(ka)

@ Constraint on eigenvalues k and « &= x = —k cot(ka)
@ cotz (red) and z cot z (black)
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Schrédinger Equation Finite square well

@ Change of variable
e multiply both sides by a

e setting ka =z and ka = z; = 22 = Z;ln—zEaz and 22 = 2Vu=E)

: 2 _ 2mVyg 2
@ setting zj = etz

2 2

:ZO

P

—z20orka = 7% — 22

@ Transcendental equation for z (and hence E) as function of zg

ka = —kacot(ka) = z; = —zcot(z) = \/zg — 22 = —z cot(z)

@ To find solutions = plot both sides and look for crossings

o y1(z) = —/23 — 22 & quarter circle of radius zg = \/2mVya?/h*

® yy(z) = zcot(z)

AN

Zg2-(kaj?

\(a cét(ka)\
lon i3m ‘ka
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Schrodinger Equation Finite square well

@ Coefficient A (and hence C and D) can be found
(once eigenfunctions have been found)
by imposing eigenfunction is normalized

@ If zg < 71/2 = no solutions = 1%t curve never crosses curves
well is too shallow = no bound solutions == particle can escape
@ Only if Vi > -1, there’s bound solution
@ For zy > 7t/2 = infinite number of solutions
@ eg.
o for m/2 < zy < 37t/2 @ only one solution

e for3m/2 < zy < 57r/2 @ two solutions
e eftc.

@ Bound state is always possible if we consider even solution
@ Equation to be solved for even solution is

ka = katan(ka)
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Schrédinger Equation Finite square well

@ Odd solutions

-_,__Q

Region | Region i Region il

@ Even solutions

N
..

-
e

o
_"’

-
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Schrodinger Equation Superposition and time dependence

Expansion in orthogonal eigenfunctions

@ Time dependence of quantum states

P (X, t) = e Bt/ (60)

@ Solution for “particle in a box”
can be expressed as a sum of different solutions

o0

Y(x,t) = ) cutpu(x,t) (61)
n=1

¢, must obey normalization condition = Y5, |c, |2 = 1

@ Modulus squared of each coefficient
gives probability to find particle in that state

_ 2
Py = | (62)
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Schrodinger Equation Superposition and time dependence

@ Particle initially prepared
in symmetric superposition of ground and first excited states

¥t =0) = —= 1) + (o) (63)

@ Probability to find particle in state 1 or 2 is 1/2
@ State will then evolve in time according to
1

Y (x,t) = Vi [¢1<x)efiw1t_i_lpz(x)efiwzt]

= et ) e ] (6

@ Probability to find particle in initial superposition state
is not time independent
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