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Schrödinger Equation Expectation value, observables, and operators

Born’s rule
Probability amplitude ψ + complex function

used to describe behaviour of systems

Probability density (probability per unit length in one dimension)

P(x) dx = |ψ(x)|2dx (1)

Probability to find particle between two points x1 and x2

P(x1 < x < x2) =
∫ x2

x1

|ψ(x)|2 dx (2)

Normalization + probability to find particle between (−∞,+∞)

∫ +∞

−∞
|ψ(x)|2 dx = 1 (3)
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Schrödinger Equation Expectation value, observables, and operators

Expectation value
We can no longer speak with certainty about particle position

We can no longer guarantee outcome of single measurement
(of any physical quantity that depends on position)

Expectation value +

most probable outcome for single measurement
which is equivalent to average outcome for many measurements

E.g. + determine expected location of particle
Performing a large number of measurements

we calculate average position

〈x〉 = n1x1 + n2x2 + · · ·
n1 + n2 + · · ·

=
∑i nixi

∑i ni
(4)
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Schrödinger Equation Expectation value, observables, and operators

Expectation value (cont’d)
Number of times ni that we measure each position xi

is proportional to probability P(xi) dx
to find particle in interval dx at xi

Making substitution and changing sums to integrals

〈x〉 =
∫ +∞
−∞ P(x) x dx
∫ +∞
−∞ P(x) dx

⇒ 〈x〉 =
∫ +∞

−∞
x|ψ(x)|2 dx (5)

Expectation value of any function f (x)

〈 f (x)〉 =
∫ +∞

−∞
f (x)|ψ(x)|2 dx (6)
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Schrödinger Equation Expectation value, observables, and operators

Dirac notation
State vector or wave-function ψ + represented as “ket” |ψ〉
We express any n-dimensional vector in terms of basis vectors
We expand any wave function in terms of basis state vectors

|ψ〉 = λ1|ψ1〉+ λ2|ψ2〉+ · · · (7)

Alongside the ket + we define “bra” 〈ψ|
Together + bra and ket define scalar product

〈φ|ψ〉 ≡
∫ +∞

−∞
dx φ∗(x) ψ(x)⇒ 〈φ|ψ〉∗ = 〈ψ|φ〉 (8)

As for n-dimensional vector + Schwartz inequality holds

〈ψ|φ〉 ≤
√
〈ψ|ψ〉〈φ|φ〉 (9)
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Schrödinger Equation Expectation value, observables, and operators

Operators and Observables

Operator Â + maps state vector into another Â|ψ〉 = |φ〉
Eigenstate (or eigenfunction) of Â with eigenvalue a

Â|ψ〉 = a|ψ〉

Observable + any particle property that can be measured
For any observable A + there is an operator Â

〈A〉 = 〈ψ|Â|ψ〉 =
∫ +∞

−∞
dx ψ∗(x) Âψ(x) (10)

A† is called hermitian conjugate of Â if
∫ +∞

−∞
(Â†φ)∗ ψ dx =

∫ +∞

−∞
φ∗ Âψ dx ⇒ 〈A†φ|ψ〉 = 〈φ|Aψ〉 (11)

Â is called hermitian if Â† = Â + 〈Aφ|ψ〉 = 〈φ|Aψ〉
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Schrödinger Equation Expectation value, observables, and operators

Commutator
Operators are associative but not (in general) commutative

ÂB̂|ψ〉 = Â(B̂ψ〉) = (ÂB̂)|ψ〉 6= B̂Â|ψ〉 (12)

Example +(x̂ p̂− p̂x̂)ψ(x) = −ih̄
{

x
∂ψ

∂x
− ∂

∂x
[xψ(x)]

}
(13)

by product rule of differentiation

(x̂ p̂− p̂x̂)ψ(x) = ih̄ψ(x) (14)

Since this must hold for any function ψ(x)

x̂ p̂− p̂x̂ = ih̄ (15)

Short-hand notation:

[Â, B̂] ≡ ÂB̂− B̂Â
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Schrödinger Equation Free particle solution

A “free” particle + no external forces acting upon it⇒ V(x) = V0

State represented by its wave function + ψ(x) = Aeikx

Schrödinger equation has 4 possible solutions

2m
h̄2 (E−V0)ψ(x) = − ∂2

∂x2 ψ(x) = k2ψ(x) ± k ∈ < or= (16)

2 travelling waves solutions

ψ(x) = Aeikx + Be−ikx k = ±1
h̄

√
2m(E−V0) (E > V0) (17)

2 exponentially decaying solutions

ψ(x) = Aeκx + Be−κx iκ = ±i
1
h̄

√
2m(V0 − E) (E < V0)

(18)
Allowed energies are

E =
h̄2k2

2m
+ V0 (19)
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Schrödinger Equation Free particle solution

E > V0 + classically allowed
E < V0 + classically forbidden
Traveling wave solutions + time evolution of probability density

P(x, t) = ψ∗(x, t)ψ(x, t) = ψ∗(x)eiωtψ(x)e−iωt = ψ∗(x)ψ(x) (20)

independent of time!
Particle traveling in only one (say +x) direction

P(x, t) = ψ∗(x)ψ(x) = A∗e−ikx Aeikx = A∗A (21)

independent of position + particle completely delocalized!
Superposition of both positive and negative going waves

P(x, t) =
(

Aeikx + B−ikx
)∗

(Aeikx + Be−ikx)

= A∗A + B∗B + 2<{A∗Be−2ikx + B∗Ae2ikx}
For real-valued coefficients A and B

P(x, t) = A2 + B2 + 2ABcos(2kx) (22)

which is equation for standing wave
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Schrödinger Equation Step potential

V(x) =
{

0 for x < 0
V0 for x ≥ 0

(23)
252 Chapter 6 The Schrödinger Equation

ψ(x )

Energy

E

0 x

0
I II

I II

V(x ) = V0

V(x) = 0

x

(a)

(b)

Figure 6-22 (a) A potential step. Particles are incident on the step from the left toward the
right, each with total energy E ! V0 . (b) The wavelength of the incident wave (Region I) is
shorter than that of the transmitted wave (Region II). Since k2 " k1 , however,
the transmission coefficient T " 1.

ƒC ƒ 2 ! ƒA ƒ 2;

The general solutions are

Region I

6-63

Region II

6-64

Specializing these solutions to our situation where we are assuming the incident beam
of particles to be moving from left to right, we see that the first term in Equation 6-63
represents that beam since multiplying by the time part of yields a
plane wave (i.e., a beam of free particles) moving to the right. The second term,

represents particles moving to the left in Region I. In Equation 6-64, D # 0
since that term represents particles incident on the potential step from the right and
there are none. Thus, we have that the constant A is known or at least obtainable (de-
termined by normalization of in terms of the density of particles in the beam as
explained above) and the constants B and C are yet to be found. We find them by ap-
plying the continuity condition on and at x # 0, i.e., by requiring that

and . Continuity of at x # 0 yields

or

6-65a

Continuity of at x # 0 gives

6-65bk1A $ k1B # k2C

d%>dx A & B # C

%I(0) # A & B # %II(0) # C

%d%I(0)>dx # d%II(0)>dx%I(0) # %II(0)
d%(x)>dx%(x)

Aeik1x

Be$ik2x,

'(x, t), ei(t,Aeik1x

(x ! 0)  %II(x) # Ceik2x & De$ik2x

(x " 0)  %I(x) # Aeik1x & Be$ik1x

254 Chapter 6 The Schrödinger Equation

ψ(x )

Energy

E

0 x

0

V(x) = V0

V(x) = 0

x

(a)

(b)

Figure 6-24 (a) A potential
step. Particles are incident
on the step from the left
moving toward the right,
each with total energy
E ! V0 . (b) The wave
transmitted into region II is
a decreasing exponential.
However, the value of R in
this case is 1 and no net
energy is transmitted.
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0
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R
, T
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T

E/V0

Figure 6-25 Reflection
coefficient R and transmission
coefficient T for a potential
step V0 high versus energy E
(in units of V0).

Now let us consider the case shown in Figure 6-24a, where E ! V0 . Classically,
we expect all particles to be reflected at x " 0; however, we note that k2 in Equation
6-64 is now an imaginary number since E ! V0 . Thus,

6-71

is a real exponential function where (We choose the positive
root so that as ) This means that the numerator and denominator of
the right side of Equation 6-66 are complex conjugates of each other; hence

and R " 1 and T " 0. Figure 6-25 is a graph of both R and T versus en-
ergy for a potential step. In agreement with the classical prediction, all of the particles
(waves) are reflected back into Region I. However, another interesting result of our so-
lution of Schrödinger’s equation is that the particle waves do not all reflect at x " 0.

ƒB ƒ 2 " ƒA ƒ 2

xS # .$II S 0
% " 22m(V0 & E)>U.

$II(x) " Ceik2x " Ce&%x
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Schrödinger Equation Step potential

Case1: E > V0

x < 0 +
ψ1(x) = Aeik1x + Be−ik1x k1 =

√
2mE/h̄ (24)

x > 0 +

ψ2(x) = Ceik2x + De−ik2x k2 =
√

2m(E−V0)/h̄ (25)

Assume particle initially comes from −x direction + D = 0
Continuity constraints @ x = 0

ψ1(0) = ψ2(0)⇒ A + B = C (26)

ψ′(0) = ψ′2(0)⇒ ik1(A− B) = ik2C (27)

Combining these and eliminating C

B
A

=
k1 − k2

k1 + k2
=

1− k2/k1

1 + k2/k1
(28)
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Schrödinger Equation Step potential

Case1: E > V0 (cont’d)
Reflection coefficient of barrier + reflectivity

R =

∣∣∣∣
B
A

∣∣∣∣
2

=

∣∣∣∣
1− k2/k1

1 + k2/k1

∣∣∣∣
2

(29)

Due to conservation of particle number
(or probability depending on how you think about wave function)
transmissivity is simply given by

T = 1− R = 1−
∣∣∣∣
1− k2/k1

1 + k2/k1

∣∣∣∣
2

(30)

In going from region I to region II
de Broglie wavelength becomes longer for increased potential step
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Schrödinger Equation Step potential

Case2: E < V0

x < 0 +
ψ1(x) = Aeik1x + Be−ik1x k1 =

√
2mE/h̄ (31)

x > 0 +

ψ2(x) = Ceκ2x + De−κ2x κ2 =
√

2m(V0 − E)/h̄ (32)

C = 0 since ψ cannot grow infinitely large as x → ∞
Continuity constraints @ x = 0

ψ1(0) = ψ2(0)⇒ A + B = D (33)

ψ′1(0) = ψ′2(0)⇒ ik1(A− B) = κ2D (34)

Combining these and eliminating D

B
A

=
k1 − iκ2

k1 + iκ2
(35)
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Schrödinger Equation Step potential

Case2: E < V0 (cont’d)
Reflectivity of barrier

R =

∣∣∣∣
B
A

∣∣∣∣
2

=

(
k1 − iκ2

k1 + iκ2

)(
k1 + iκ2

k1 − iκ2

)
= 1 (36)

Although P 6= 0 to penetrate into classically forbidden region
particle will always be reflected (eventually)

254 Chapter 6 The Schrödinger Equation
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Figure 6-24 (a) A potential
step. Particles are incident
on the step from the left
moving toward the right,
each with total energy
E ! V0 . (b) The wave
transmitted into region II is
a decreasing exponential.
However, the value of R in
this case is 1 and no net
energy is transmitted.
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Figure 6-25 Reflection
coefficient R and transmission
coefficient T for a potential
step V0 high versus energy E
(in units of V0).

Now let us consider the case shown in Figure 6-24a, where E ! V0 . Classically,
we expect all particles to be reflected at x " 0; however, we note that k2 in Equation
6-64 is now an imaginary number since E ! V0 . Thus,

6-71

is a real exponential function where (We choose the positive
root so that as ) This means that the numerator and denominator of
the right side of Equation 6-66 are complex conjugates of each other; hence

and R " 1 and T " 0. Figure 6-25 is a graph of both R and T versus en-
ergy for a potential step. In agreement with the classical prediction, all of the particles
(waves) are reflected back into Region I. However, another interesting result of our so-
lution of Schrödinger’s equation is that the particle waves do not all reflect at x " 0.

ƒB ƒ 2 " ƒA ƒ 2

xS # .$II S 0
% " 22m(V0 & E)>U.

$II(x) " Ceik2x " Ce&%x
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Schrödinger Equation Potential barrier and tunneling

V(x) =
{

V0 for − L/2 < x < L/2
0 otherwise

(37)

256 Chapter 6 The Schrödinger Equation

ψ(x )

Energy

E

x

x

0 a

0 a
I II III

V0

(a)

(b)

Barrier Potential
Now let us consider one of the more interesting quantum-mechanical potentials, the
barrier, illustrated by the example in Figure 6-27. The potential is

6-73

Classical particles incident on the barrier from the left in Region I with E ! V0 will
all be transmitted, slowing down while passing through Region II but moving at their
original speed again in Region III. For classical particles with E " V0 incident from
the left, all are reflected back into Region I. The quantum-mechanical behavior of
particles incident on the barrier in both energy ranges is much different!

First, let us see what happens when a beam of particles, all with the same energy
E " V0 , as illustrated in Figure 6-27a, are incident from the left. The general solutions
to the wave equation are, following the example of the potential step,

6-74

where, as before, and Note that involves
real exponentials, whereas and contain complex exponentials. Since the parti-
cle beam is incident on the barrier from the left, we can set G # 0. Once again, the
value of A is determined by the particle density in the beam and the four constants B,
C, D, and F are found in terms of A by applying the continuity condition on and

at x # 0 and at x # a. The details of the calculation are not of concern to us
here, but several of the more interesting results are.

As we discovered for the potential step with E " V0, the wave function incident
from the left does not decrease immediately to zero at the barrier but instead will decay
exponentially in the region of the barrier. Upon reaching the far wall of the barrier,
the wave function must join smoothly to a sinusoidal wave function to the right of the
barrier, as shown in Figure 6-27b. This implies that there will be some probability of
the particles represented by the wave function being found on the far right side of the

d$>dx
$

$III$I

$II% # 22m(V0 & E)>U.k1 # 22mE>U$III(x) # Feik1x ' Ge&ik1x  x ! a

$II(x) # Ce&%x ' De%x   0 " x " %

$I(x) # Aeik1x ' Be&ik1x  x " 0

V(x) # eV0 for 0 " x " a
0  for 0 ! x and x ! a

Figure 6-27 (a) Square
barrier potential.
(b) Penetration of the barrier
by a wave with energy less
than the barrier energy. Part
of the wave is transmitted by
the barrier even though,
classically, the particle cannot
enter the region 0 " x " a in
which the potential energy is
greater than the total energy.

�L/2

�L/2 L/2

L/2
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Schrödinger Equation Potential barrier and tunneling

wave function

ψ1(x) = Aeikx + Be−ikx ψ2(x) = Ceκx + De−κx ψ3(x) = Feikx + Geikx

wave vector

k =
√

2mE/h̄ κ =
√

2m(V0 − E)/h̄

• Assuming particle initially starts on left of barrier + G = 0
boundary conditions

e−ikL/2 +
B
A

eikL/2 =
C
A

e−κL/2 +
D
A

eκL/2

ik
(

e−ikL/2 − B
A

eikL/2
)

= κ

(
C
A

e−κL/2 − D
A

eκL/2
)

ik
(

F
A

eikL/2
)

= κ

(
C
A

eκL/2 − D
A

e−κL/2
)

F
A

eikL/2 =
C
A

eκL/2 +
D
A

e−κL/2
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Schrödinger Equation Potential barrier and tunneling

Solving for transmission coefficient

T=
∣∣∣∣

F
A

∣∣∣∣
2

=
4k2κ2

(k2 + κ2)2 cosh(2κL)− (k4 + κ4 + 6k2κ2)
(38)

162 Chapter 5 | The Schrödinger Equation

(The factor of 1/2 is present because in the time !t the particle must penetrate the
distance !x into the forbidden region and return through that same distance to the
allowed region.)

x = Lx = 0

U0E

FIGURE 5.26 A barrier of height U0
and width L.

In the limit K → 0, the penetration distance !x goes to 0 according to Eq. 5.60
because the particle has zero velocity; similarly, !x → 0 in the limit K → ∞,
because it moves for a vanishing time interval !t. In between those limits, there
must be a maximum value of !x for some particular K. Differentiating Eq. 5.60
with respect to K, we can find the maximum value

!xmax = 1
2

−h
√

2m(U0 − E)
(5.61)

This value of !x is identical with Eq. 5.58! This demonstrates that the penetration
into the forbidden region given by the solution to the Schrödinger equation is
entirely consistent with the uncertainty relationship. (The agreement between
Eqs. 5.58 and 5.61 is really somewhat accidental, because the factor 1/e used to
obtain Eq. 5.58 was chosen arbitrarily. What we have really demonstrated is that
the estimates of uncertainty given by the Heisenberg relationships are consistent
with the wave properties of the particle obtained from the Schrödinger equation.
This should not be surprising, because the uncertainty principle can be derived as
a consequence of the Schrödinger equation.)

Potential Energy Barrier
Consider now the potential energy barrier shown in Figure 5.26:

U(x) = 0 x < 0

= U0 0 ≤ x ≤ L (5.62)

= 0 x > L

Particles with energy E less than U0 are incident from the left. Our experience
then leads us to expect solutions of the form shown in Figure 5.27—sinusoidal
oscillation in the region x < 0 (an incident wave and a reflected wave), exponen-
tials in the region 0 ≤ x ≤ L, and sinusoidal oscillations in the region x > L (the
transmitted wave). Note that the intensity of the transmitted wave (x > L) is much
smaller than the intensity of the incident + reflected waves (x < 0), which means
that most of the particles are reflected and few are transmitted through the barrier.
Also note that the wavelengths are the same on either side of the barrier (because
the kinetic energies are the same).

x = L

λ0

λ0

FIGURE 5.27 The real part of the
wave function of a particle of energy
E < U0 encountering a barrier (the
particle is incident from the left in
the figure). The wavelength λ0 is the
same on both sides of the barrier, but
the amplitude beyond the barrier is
much less than the original amplitude.

The intensity of the transmitted wave, which can be found by application of the
continuity conditions, depends on the energy of the particle and on the height and
thickness of the barrier. Classically, the particles should never appear at x > L,
because they do not have sufficient energy to overcome the barrier. This situation
is an example of barrier penetration, sometimes called quantum mechanical
tunneling. Particles can not be observed while they are in the classically forbidden
region 0 ≤ x ≤ L, but can “tunnel” through that region and be observed at x > L.

Every particle incident on the barrier of Figure 5.26 is either reflected or
transmitted; the number of incident particles is equal to the number reflected
back to x < 0 plus the number transmitted to x > L. None are “trapped” or ever
seen in the forbidden region 0 < x < L. How can the incident particle get from
x < 0 to x > L? As a classical particle, it can’t! However, the wave representing
the particle can penetrate through the barrier, which allows the particle to be
observed in the classically allowed region x > L.

/2
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Schrödinger Equation Particle in a box

V(x) =





∞ for x < L/2
V0 for − L/2 ≤ x ≤ L/2
∞ for x > L/2

(39)

6.4 THE PARTICLE IN A BOX 201

contain it. A simple example is a ball bouncing elastically between two im-
penetrable walls (Fig. 6.5). A more sophisticated one is a charged particle
moving along the axis of aligned metallic tubes held at different potentials,
as shown in Figure 6.6a. The central tube is grounded, so a test charge in-
side this tube has zero electric potential energy and experiences no electric
force. When both outer tubes are held at a high electric potential V, there
are no electric fields within them, but strong repulsive fields arise in the
gaps at 0 and L. The potential energy U(x) for this situation is sketched in
Figure 6.6b. As V is increased without limit and the gaps are simultaneously
reduced to zero, we approach the idealization known as the infinite square
well, or “box” potential (Fig. 6.6c).

From a classical viewpoint, our particle simply bounces back and forth be-
tween the confining walls of the box. Its speed remains constant, as does its ki-
netic energy. Furthermore, classical physics places no restrictions on the values
of its momentum and energy. The quantum description is quite different and
leads to the interesting phenomenon of energy quantization.

We are interested in the time-independent wavefunction !(x) of our parti-
cle. Because it is confined to the box, the particle can never be found outside,
which requires ! to be zero in the exterior regions x " 0 and x # L. Inside the
box, U(x) $ 0 and Equation 6.13 for !(x) becomes, after rearrangement,

Independent solutions to this equation are sin kx and cos kx, indicating that
k is the wavenumber of oscillation. The most general solution is a linear

d2!

dx2 $ %k2!(x)  with  k2 $
2mE

&2

(a)

q

V V

+  +  +  +  +  +  +  +

+  +  +  +  +  +  +  +

+  +  +  +  +  +  +  +

+  +  +  +  +  +  +  +

(b)

0

x

L

E
U = qV

(c)

x

L

U

0

∞ ∞

m
v

x

Figure 6.5 A particle of mass
m and speed v bouncing elasti-
cally between two impenetrable
walls.

Figure 6.6 (a) Aligned metallic cylinders serve to confine a charged particle. The in-
ner cylinder is grounded, while the outer ones are held at some high electric potential
V. A charge q moves freely within the cylinders, but encounters electric forces in the
gaps separating them. (b) The electric potential energy seen by this charge. A charge
whose total energy is less than qV is confined to the central cylinder by the strong re-
pulsive forces in the gaps at x $ 0 and x $ L. (c) As V is increased and the gaps be-
tween cylinders are narrowed, the potential energy approaches that of the infinite
square well.

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  
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V (x)
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Schrödinger Equation Particle in a box

wave function outside box

ψ(x) = 0 x < −L/2∧ x > L/2 (40)

wave function inside box

ψ(x) = Aeikx + Be−ikx − L/2 ≤ x ≤ L/2 (41)

energy and wave vector

E =
h̄2k2

2m
+ V0 ⇒ k2 =

2m(E−V0)

h̄2 (42)

boundary conditions for wave function

ψ(−L/2) = Ae−ikL/2 + BeikL/2 = 0 (43)

ψ(+L/2) = AeikL/2 + Be−ikL/2 = 0 (44)
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Schrödinger Equation Particle in a box

adding (43) to (44) gives

2(A + B) cos(kL/2) = 0 (45)

while subtracting (43) from (44) gives

2i(A− B) sin(kL/2) = 0 (46)

both conditions in (45) and (46) must be met
when A = B (46) is met and to satisfy (45)

k =
2πn1

L
+

π

L
n1 = 0, 1, 2, 3, · · · (47)

when A = −B in which (45) is met and to satisfy (46)

k =
2πn2

L
n2 = 1, 2, 3, · · · (48)
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Schrödinger Equation Particle in a box

• Consolidate quantization conditions rewriting

k =
πn
L

n = 1, 2, 3 · · · (49)

and solution to time-independent Schrödinger equation

ψn(x) = A
{

cos(nπx/L) for n odd
sin(nπx/L) for n even

= A sin
[

nπ

L

(
x +

L
2

)]
(50)

• Not only is the wave vector quantized + but also

p = h̄k = h̄πn/L (51)

and

E = V0 +
h̄2k2

2m
= V0 +

h̄2π2n2

2mL2 (52)
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Schrödinger Equation Particle in a box

Amplitude can be found by considering normalization condition
∫ +∞

−∞
|ψn(x)|2dx =

∫ +L/2

−L/2

∣∣∣∣A sin
[

nπ

L

(
x +

L
2

)]∣∣∣∣
2

dx = |A|2 L
2

, (53)

recall + ∫ +L/2

−L/2

∣∣∣∣sin
[

nπ

L

(
x +

L
2

)]∣∣∣∣
2

dx =
L
2

. (54)

Since we require + |A|2L/2 = 1

A =

√
2
L
⇒ ψn(x) =

√
2
L

sin
[

nπ

L

(
x +

L
2

)]
(55)

Normalization can be met for a range of complex amplitudes

A = eiφ

√
2
L

(56)

in which phase φ is arbitrary
This implies outcome of measurement about particle position

(which is proportional to |ψ(x)|2)
is invariant under global phase factor
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Schrödinger Equation Particle in a box

Hamiltonian operator

Each solution ψn(x) + satisfies the eigenvalue problem

Ĥψn(x) = Enψn(x) Ĥ =

[
− h̄2

2m
∂2

∂x2 + V(x)

]
(57)

Solutions are orthogonal to one another

∫ +L/2

−L/2
ψ∗m(x)ψn(x) dx = δmn (58)

δmn

{
1 m = n
0 m 6= n (59)
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Schrödinger Equation Particle in a box 6-2 The Infinite Square Well 233

0

ψ1

ψ2

L x

0 LL/2 L /2

2 /L

L /3 2L/3 L /3 2L/3

x

ψ3

0 L x 0 L x

0 L x

0

2/L

2 /L

L x

ψ3
2

ψ2
2

ψ1
2

2 /L

2 /L

2 /L

Figure 6-4 Wave functions
and probability

densities for
n ! 1, 2, and 3 for the
infinite square well potential.
Though not shown,

for and
x " L.

x # 0$n(x) ! 0

Pn(x) ! $2
n(x)

$n(x)

Since the wave function is zero in regions of space where the potential energy is infinite,
the contributions to the integral from %& to 0 and from L to '& will both be zero.
Thus, only the integral from 0 to L needs to be evaluated. Integrating, we obtain

independent of n. The normalized wave function solutions for this
problem, also called eigenfunctions, are then

6-32

These wave functions are exactly the same as the standing-wave functions yn(x) for the
vibrating-string problem. The wave functions and the probability distribution func-
tions Pn(x) are sketched in Figure 6-4 for the lowest energy state n ! 1, called the
ground state, and for the first two excited states, n ! 2 and n ! 3. (Since these wave
functions are real, ) Notice in Figure 6-4 that the maximum
amplitudes of each of the are the same, as are those of 
Note, too, that both and extend to They just happen to be zero for
x # 0 and x " L in this case.

The number n in the equations above is called a quantum number. It specifies
both the energy and the wave function. Given any value of n, we can immediately
write down the wave function and the energy of the system. The quantum number n
occurs because of the boundary conditions at x ! 0 and x ! L. We will see
in Section 7-1 that for problems in three dimensions, three quantum numbers arise,
one associated with boundary conditions on each coordinate.

Comparison with Classical Results
Let us compare our quantum-mechanical solution of this problem with the classical so-
lution. In classical mechanics, if we know the potential energy function V(x), we can
find the force from and thereby obtain the acceleration 
from Newton’s second law. We can then find the position x as a function of time t if
we know the initial position and velocity. In this problem there is no force when the

ax ! d2x>dt2Fx ! %dV>dx

$(x) ! 0

( & .Pn(x)$n(x)
Pn(x), 2>L.(2>L)1>2,$n(x)

Pn(x) ! $n
…$n ! $2

n .

$n(x) ! A2
L

 sin
n)x
L

  n ! 1, 2, 3, Á

An ! (2>L)1>2
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Schrödinger Equation Finite square well

!

!

!2π2 
(E =� with�probability�1)�2m 

?�Question:�what�does�a�postion�measurement�yield?�What�is�the�probability�of�finding�the�particle�at�0�≤ x ≤ L?��
and�at�x = 0, L?��

?�Question:�What�is�the�difference�in�energy�between�n and�n +�1�when�n → ∞?�And�what�about�the�position��
probability�|wn|2�at�large�n?�What�does�that�say�about�a�possible�classical�limit?��
In�the�limit�of�large�quantum�numbers�or�small�deBroglie�wavelength�λ ∝ 1/k on�average�the�quantum�mechanical��
description�recovers�the�classical�one (Bohr�correspondence�principle).��

4.1.2�Finite�square�well�

We�now�consider�a potential�which�is�very�similar�to�the�one�studied�for�scattering�(compare Fig.�15�to Fig.�22),�
but�that�represents�a�completely�different situation.�The physical�picture�modeled�by�this potential�is�that�of a�
bound�particle.�Specifically�if�we�consider�the�case�where�the�total�energy�of�the�particle�E2�< 0�is�negative,�then�
classically�we�would�expect�the�particle�to�be�trapped�inside�the�potential�well.�This�is�similar�to�what�we�already�
saw when studying the infinite well.�Here however the height�of the well is finite, so that we�will see that the quantum�
mechanical�solution�allows�for�a�finite�penetration�of�the�wavefunction�in�the�classically�forbidden�region.�

?�Question:�What�is�the�expect�behavior�of�a�classical�particle?�(consider�for�example�a�snowboarder�in�a�half-pipe.�
If�she�does�not�have�enough�speed�she’s�not�going�to�be�able�to�jump�over�the�slope,�and�will�be�confined�inside).�

-VH 

a-a x 

E2=-E 

E1=+E 

V(x) 

Region I Region II Region III 

Fig.�22:�Potential�of�a�finite�well.�The�potential�is�non-zero�and�equal�to�−VH� in�the�region�−a ≤�x ≤�a.�

For�a�quantum�mechanical�particle�we�want�instead�to�solve�the�Schrödinger�equation.�We�consider�two�cases.�In�the�
first�case,�the�kinetic�energy�is�always�positive:�

⎧ 
⎪⎨ 

⎪⎩ 

ψ(x)− !
2 d2 

=�Eψ(x)� in�Region�I�2m dx2 
2 d2 ψ(x)− !2m dx2 =�(E +�VH )ψ(x)� in�Region�II�

ψ(x)− !
2 d2 

=�Eψ(x)� in�Region�III�2m dx2 

2d2�

Hψ(x) =�− ψ(x) + V (x)ψ(x) =�Eψ(x)� → 
2mdx2

so�we�expect�to�find�a�solution�in�terms�of�traveling�waves.�This�is�not�so�interesting,�we�only�note�that�this�describes�
the�case of an unbound particle. The solutions�will be similar to scattering�solutions (see�mathematica demonstration).�
In�the�second�case,�the�kinetic�energy�is�greater�than�zero�for�|x| ≤ a and�negative�otherwise�(since�the�total�energy�
is�negative).�Notice�that�I�set�E to�be�a�positive�quantity,�and�the�system’s�energy�is�−E.�We�also�assume�that�
E < VH .�The�equations�are�thus�rewritten�as:�

⎧ 
⎪⎨ 

⎪⎩ 

ψ(x)− !
2 d2 

=�−Eψ(x)� in�Region�I�2m dx22d2�
2 d2 ψ(x)− !2m 

Hψ(x) =�− ψ(x) + V (x)ψ(x) =�Eψ(x)� → =�(VH − E)ψ(x)� in�Region�II�
2mdx2 dx2 

ψ(x)− !
2 d2 

=�−Eψ(x)� in�Region�III�2m dx2 

√ 

Then�we�expect�waves�inside�the�well�and�an�imaginary�momentum�(yielding�exponentially�decaying�probability�of�
finding�the�particle)�in�the�outside�regions.�More�precisely,�in�the�3�regions�we�find:�

Region�I� Region�II� Region�III�
2m(VH+E2)k ′�=�iκ, k =� !2 k ′�=�iκ, √√√ √ 

−2mE2 2mE =�!2 !2 =� 2m(VH−E)�
!2 κ =� 2mE 

!2κ =�

��

E1 = +E⇒





− h̄2

2m
d2ψ(x)

dx = Eψ(x) in region I
− h̄2

2m
d2ψ(x)

dx = (E + VH)ψ(x) in region II
− h̄2

2m
d2ψ(x)

dx = Eψ(x) in region III

E2 = −E⇒





− h̄2

2m
d2ψ(x)

dx = −Eψ(x) in region I
− h̄2

2m
d2ψ(x)

dx = (VH − E)ψ(x) in region II
− h̄2

2m
d2ψ(x)

dx = −Eψ(x) in region III
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Schrödinger Equation Finite square well

E1 * Expect to find solution in terms of travelling waves
Not so interesting + describes case of unbound particle
E2 * Expect waves inside the well and imaginary momentum
(yielding exponentially decaying probability of finding particle)

in outside regions
More precisely

Region I: k′ = iκ ⇒ κ =
√
−2mE2

h̄2 =
√
−2mE

h̄2

Region II: k =
√

2m(VH+E2)

h̄2 =
√

2m(VH+E)
h̄2

Region III: k′ = iκ ⇒ κ =
√
−2mE2

h̄2 =
√
−2mE

h̄2

And wave function is
Region I: C′e−κ|x|

Region II: A′eikx + B′e−ikx

Region III: D′e−κx

In first region can write either C′e−κ|x| or C′eκx

First notation makes it clear we have exponential decay
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Schrödinger Equation Finite square well

Potential even function of x
Differential operator also even function of x
Solution has to be odd or even for equation to hold
A and B must be chosen such that

ψ(x) = A′eikx + B′e−ikx

is either even or odd
Even solution * ψ(x) = A cos(kx)
Odd solution * ψ(x) = A sin(kx)

Odd solution
ψ(−x) = −ψ(x) setting C′ = −D′ * rewrite −C′ = D′ = C

Region I ψ(x) = −Ceκx and ψ′(x) = −κCeκx

Region II ψ(x) = A sin(kx) and ψ′(x) = kA cos(kx)
Region III ψ(x) = Ce−κx and ψ′(x) = −κCe−κx
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Schrödinger Equation Finite square well

Since ψ(−x) = −ψ(x) + consider boundary condition @ x = a
Two equations are

{
A sin(ka) = Ce−κa

Ak cos(ka) = −κCe−κa

Substituting first equation into second

Ak cos(ka) = −κA sin(ka)

Constraint on eigenvalues k and κ + κ = −k cot(ka)
cot z (red) and z cot z (black)

2 

4 6 

8 

Fig.�23:�cot�z (Red)�and�z cot�z (Black)�

And�the�wavefunction�is�
Region�I� Region�II� Region�III�

C ′�e−κ|x|� A ′�eikx +�B ′�e−ikx D ′�e−κx 

′� ′−κ|x| κx.�The�first�notation�makes�it�clear�that�we�have�(Notice�that�in�the�first�region�I�can�write�either�C e or�C e
an�exponential�decay).�We�now�want�to�match�the�boundary�conditions�in�order�to�find�the�coefficients.�Also,�we�
remember�from�the�infinite�well�that�the�boundary�conditions�gave�us�not�the�coefficient�A,�B but�a�condition�on�the�
allowed�values�of�the�energy.�We�expect�something�similar�here,�since�the�infinite�case�is�just�a�limit�of�the�present�
case.�
First we note that the potential is�an�even function of�x.�The�differential�operator�is�also�an�even�function�of�x.�Then�
the�solution�has�to�either�be�odd�or�even�for�the�equation�to�hold.�This�means�that�A and�B have�to�be�chosen�so�

A ′� ikx +�B ′�that�ψ(x) =� e e−ikx is�either�even�or�odd.�This�is�arranged�by�setting�ψ(x) =�A cos(kx) [even�solution] or�
′�ψ(x) =�A sin(kx) [odd solution].�Here�I�choose�the�odd�solution,�ψ(−x) =�−ψ(x).�That�also�sets�C =�−D ′�and�we�

′� D ′�rewrite�this�constant�as�−C = =�C.�
We�then�have:�

Region�I� Region�II� Region�III�
ψ(x) =�−Ceκx ψ(x) =�A sin (kx)� ψ(x) =�Ce−κx 

ψ ′�(x) =�−κCeκx ψ ′�(x) =�kA cos (kx)� ψ ′�(x) =�−κCe−κx 

Since�we�know�that�ψ(−x) =�−ψ(x) (odd solution)�we�can�consider�the�boundary�matching�condition�only�at�x =�a.�
The�two�equations�are:� { 

Ce−κa A sin(ka) =�
Ak cos(ka) =�−κCe−κa 

Substituting�the�first�equation�into�the�second�we�find:�Ak cos(ka) =�−κA sin(ka).�Then�we�obtain�an�equation�not�
for�the�coefficient�A (as�it�was�the�case�for�the�infinite�well)�but�a�constraint�on�the�eigenvalues�k and�κ:�

κ =�−k cot(ka)�

This�is�a�condition�on�the�eigenvalues�that�allows�only�a�subset�of�solutions.�This�equation�cannot�be�solved�analyt-
ically,�we�thus�search�for�a�solution�graphically�(it�could�be�done�of�course�numerically!).�
To�do�so,�we�first�make�a�change�of�variable,�multiplying�both�sides�by�a and�setting�ka =�z,�κa =�z1.�Notice�that�
2 2mE 2 2m(VH−E)� 2 2mVHa 2 2 2�

√
2z1�=� a2�and�z =� a2.�Setting�z0�=�

2 
,�we�have�z1�=�z0�− z or�κa =� z − z2�.�Then�we�can�!2 !2 !2 0�

ka 
ka cot(ka) 

√z02-(ka)2 

π 3π2π 

√z02-(ka)2 

ka tan(ka) 

π/2 3π/2 5π/ k2 a 

Fig.�24:�Graphic�solution�of�the�eigenvalue�equation.�Left:�odd solutions;�Right:�even solutions.�The�red�curves�of�different�√
2
0

√
z2 (left)�or� 2

0 z2tone�are�the�function�− z − z − (right)�for�different�(increasing)�values�of�z0.�Crossings�(solutions)�are�
marked�by�a�black�dot.�

��
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Schrödinger Equation Finite square well

Change of variable
multiply both sides by a
setting ka = z and κa = z1 + z2

1 = 2mE
h̄2 a2 and z2 = 2m(VH−E)

h̄2 a2

setting z2
0 = 2mVH

h̄2 a2+ z2
1 = z2

0 − z2 or κa =
√

z2
0 − z2

Transcendental equation for z (and hence E) as function of z0

κa = −ka cot(ka)⇒ z1 = −z cot(z)⇒
√

z0 − z2 = −z cot(z)

To find solutions + plot both sides and look for crossings

y1(z) = −
√

z2
0 − z2 + quarter circle of radius z0 =

√
2mVHa2/h̄2

y2(z) = z cot(z)

2 

4 6 

8 

Fig.�23:�cot�z (Red)�and�z cot�z (Black)�

And�the�wavefunction�is�
Region�I� Region�II� Region�III�

C ′�e−κ|x|� A ′�eikx +�B ′�e−ikx D ′�e−κx 

′� ′−κ|x| κx.�The�first�notation�makes�it�clear�that�we�have�(Notice�that�in�the�first�region�I�can�write�either�C e or�C e
an�exponential�decay).�We�now�want�to�match�the�boundary�conditions�in�order�to�find�the�coefficients.�Also,�we�
remember�from�the�infinite�well�that�the�boundary�conditions�gave�us�not�the�coefficient�A,�B but�a�condition�on�the�
allowed�values�of�the�energy.�We�expect�something�similar�here,�since�the�infinite�case�is�just�a�limit�of�the�present�
case.�
First we note that the potential is�an�even function of�x.�The�differential�operator�is�also�an�even�function�of�x.�Then�
the�solution�has�to�either�be�odd�or�even�for�the�equation�to�hold.�This�means�that�A and�B have�to�be�chosen�so�

A ′� ikx +�B ′�that�ψ(x) =� e e−ikx is�either�even�or�odd.�This�is�arranged�by�setting�ψ(x) =�A cos(kx) [even�solution] or�
′�ψ(x) =�A sin(kx) [odd solution].�Here�I�choose�the�odd�solution,�ψ(−x) =�−ψ(x).�That�also�sets�C =�−D ′�and�we�

′� D ′�rewrite�this�constant�as�−C = =�C.�
We�then�have:�

Region�I� Region�II� Region�III�
ψ(x) =�−Ceκx ψ(x) =�A sin (kx)� ψ(x) =�Ce−κx 

ψ ′�(x) =�−κCeκx ψ ′�(x) =�kA cos (kx)� ψ ′�(x) =�−κCe−κx 

Since�we�know�that�ψ(−x) =�−ψ(x) (odd solution)�we�can�consider�the�boundary�matching�condition�only�at�x =�a.�
The�two�equations�are:� { 

Ce−κa A sin(ka) =�
Ak cos(ka) =�−κCe−κa 

Substituting�the�first�equation�into�the�second�we�find:�Ak cos(ka) =�−κA sin(ka).�Then�we�obtain�an�equation�not�
for�the�coefficient�A (as�it�was�the�case�for�the�infinite�well)�but�a�constraint�on�the�eigenvalues�k and�κ:�

κ =�−k cot(ka)�

This�is�a�condition�on�the�eigenvalues�that�allows�only�a�subset�of�solutions.�This�equation�cannot�be�solved�analyt-
ically,�we�thus�search�for�a�solution�graphically�(it�could�be�done�of�course�numerically!).�
To�do�so,�we�first�make�a�change�of�variable,�multiplying�both�sides�by�a and�setting�ka =�z,�κa =�z1.�Notice�that�
2 2mE 2 2m(VH−E)� 2 2mVHa 2 2 2�

√
2z1�=� a2�and�z =� a2.�Setting�z0�=�

2 
,�we�have�z1�=�z0�− z or�κa =� z − z2�.�Then�we�can�!2 !2 !2 0�

ka 
ka cot(ka) 

√z02-(ka)2 

π 3π2π 

√z02-(ka)2 

ka tan(ka) 

π/2 3π/2 5π/ k2 a 

Fig.�24:�Graphic�solution�of�the�eigenvalue�equation.�Left:�odd solutions;�Right:�even solutions.�The�red�curves�of�different�√
2
0

√
z2 (left)�or� 2

0 z2tone�are�the�function�− z − z − (right)�for�different�(increasing)�values�of�z0.�Crossings�(solutions)�are�
marked�by�a�black�dot.�

��
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Schrödinger Equation Finite square well

Coefficient A (and hence C and D) can be found
(once eigenfunctions have been found)

by imposing eigenfunction is normalized
If z0 < π/2⇒ no solutions + 1st curve never crosses curves
well is too shallow⇒ no bound solutions + particle can escape
Only if VH > h̄

ma2
π2

8 there’s bound solution
For z0 > π/2 + infinite number of solutions
e.g.

for π/2 ≤ z0 ≤ 3π/2 * only one solution
for 3π/2 ≤ z0 ≤ 5π/2 * two solutions
etc.

Bound state is always possible if we consider even solution
Equation to be solved for even solution is

κa = ka tan(ka)
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Schrödinger Equation Finite square well

Odd solutions

RegRegRegion II

!

Region I Region IIion IIion II Region III 

Fig.�25:�Left:�Odd�solution�for�the�finite�barrier�potential,�for�two�potential�depth.�Ground�state�of�the�wavefunction.�The�
wavefunction�is�a�sinusoidal�in�Region�II�(Black)�and�an�exponential�decay�in�regions�I�and�III�(Blue).�Notice�that�for�the�
shallower�potential�(dashed�lines)�the�wavefunction�just�barely�“fit”�inside�the�well.�Right:�Odd�solution,�for�larger�k vector�
(higher�quantum�number),�allowing�two�oscillations.�

√
2�− z2rewrite�the�equation�κa =�−ka cot(ka)� → z1�=�−z cot(z) as� z =�−z cot(z),�or:0�

√ 
2z − z2�=�−z cot(z)0�

This�is�a�transcendental�equation�for�z (and�hence�E) as�a�function�of�z0,�which�gives�the�depth�of�the�well�(via�VH ).�√
2To�find�solutions�we�plot�both�sides�of�the�equation�and�look�for�crossings.�That�is,�we�plot�y1(z) =�− z − z2�,0�√ 

2mVHa2 
which�represent�a�quarter�circle�(as�z is�positive)�of�radius�z0�=� !2 and�y2(z) =�z cot(z).�

Obs.�1�The�coefficient�A (and�thus C and�D) can�be�found�(once�the�eigenfunctions�have�been�found�numerically�or�
graphically) by�imposing�that�the�eigenfunction�is�normalized.�
Obs.�2�Notice�that�the�first�red�curve�never�crosses�the�blue�curves.�That�means�that�there�are�no�solutions.�If�
z0�< π/2�there�are�no�solutions�(That�is,�if�the�well�is�too�shallow�there�are�no�bound�solutions,�the�particle�can�

π2 
escape).�Only�if�VH > there’s�a�bound�solution.8�
Obs.�3�There’s�a�finite�number�of�solutions,�given�a�value�of�z0�> π/2.�For�example,�for�π/2�≤ z0�≤ 3π/2�there’s�only�
one�solution,�2�for�3π/2�≤ z0�≤ 5π/2,�etc.�
Remember�however�that�we�only�considered�the�odd�solutions. A bound�solution is�always possible if we�consider the�
even�solutions.,�since�the�equation�to�be�solved�is�

√ 
2κa =�ka tan(ka) =� z − z2�.0�
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Fig.�26:�Even�solution�for�the�finite�barrier�potential.�The�wavefunction�is�∝�cos(kx) in�Region�II�(Black)�and�an�exponential�
decay�in�regions�I�and�III�(Blue).�Left:�any�wavefunction�can�“fit”�in�the�well�and�satisfy�the�boundary�condition�(there’s�no�
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Fig.�25:�Left:�Odd�solution�for�the�finite�barrier�potential,�for�two�potential�depth.�Ground�state�of�the�wavefunction.�The�
wavefunction�is�a�sinusoidal�in�Region�II�(Black)�and�an�exponential�decay�in�regions�I�and�III�(Blue).�Notice�that�for�the�
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Schrödinger Equation Superposition and time dependence

Expansion in orthogonal eigenfunctions
Time dependence of quantum states

ψn(x, t) = ψne−iEnt/h̄ (60)

Solution for “particle in a box”
can be expressed as a sum of different solutions

Ψ(x, t) =
∞

∑
n=1

cnψn(x, t) (61)

cn must obey normalization condition + ∑∞
n=1 |cn|2 = 1

Modulus squared of each coefficient
gives probability to find particle in that state

Pn = |cn|2 (62)
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Schrödinger Equation Superposition and time dependence

Example
Particle initially prepared
in symmetric superposition of ground and first excited states

Ψ(+)(x, t = 0) =
1√
2
[ψ1(x) + ψ2(x)] (63)

Probability to find particle in state 1 or 2 is 1/2
State will then evolve in time according to

Ψ(+)(x, t) =
1√
2

[
ψ1(x)e−iω1t + ψ2(x)e−iω2t

]

= e−iω1t 1√
2

[
ψ1(x) + ψ2(x)e−i∆ωt

]
(64)

Probability to find particle in initial superposition state
is not time independent
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