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9.1 Inductance
An inductor stores energy in magnetic field 

A changing B-field will lead to an induced emf in a circuit

Question
If a circuit generates a changing magnetic field 

YES! Self-Inductance

Inductance L of any current element is

Negative sign comes from Lenz LawEL = �VL = �L
di

dt

Unit of L : Henry (H) 1H = 1 · VS

A
• All circuit elements (including resistors) have some inductance
• Commonly used inductors: solenoids and toroids

• circuit symbol

Chapter 9

Inductance

9.1 Inductance

An inductor stores energy in the magnetic field just as a capacitor stores energy
in the electric field.

We have shown earlier that a changing B-field will lead to an induced emf in
a circuit.

Question : If a circuit generates a changing magnetic field, does it lead to an
induced emf in the same circuit? YES! Self-Inductance

The inductance L of any current element is

EL = �VL = �L
di

dt
The negative sign
comes from Lenz Law.

Unit of L: Henry(H) 1H=1·Vs
A

• All circuit elements (including resistors) have some inductance.

• Commonly used inductors: solenoids, toroids

• circuit symbol:

Example : Solenoid

EL = VB � VA = �L
di

dt
< 0 EL = VB � VA = �L

di

dt
> 0

� VB < VA VB > VA

just as a capacitor stores energy in electric field

does it lead to an induced emf in same circuit?

1 H = 1
Vs

A

1 H = 1
Vs

A
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Chapter 9

Inductance

9.1 Inductance

An inductor stores energy in the magnetic field just as a capacitor stores energy
in the electric field.

We have shown earlier that a changing B-field will lead to an induced emf in
a circuit.

Question : If a circuit generates a changing magnetic field, does it lead to an
induced emf in the same circuit? YES! Self-Inductance

The inductance L of any current element is

EL = �VL = �L
di

dt
The negative sign
comes from Lenz Law.

Unit of L: Henry(H) 1H=1·Vs
A

• All circuit elements (including resistors) have some inductance.

• Commonly used inductors: solenoids, toroids

• circuit symbol:

Example : Solenoid

EL = VB � VA = �L
di

dt
< 0 EL = VB � VA = �L

di

dt
> 0

� VB < VA VB > VA

Example Solenoid

Recall Faraday’s Law

where      is magnetic flux ☛         is flux linkage

Inductance is also flux linkage per unit current

Alternative definition of Inductance

)

)

EL = �N
d�B

dt
= � d

dt
(N�B)

� d

dt
(N�B) = �L

di

dt
) L =

N�B

i

N�B�B
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Calculating Inductance:
① Solenoid
To first order approximation

☛ number of coils per unit length

Consider a subsection of length   of solenoid
Flux linkage

where      is cross-sectional area

Inductance per unit length

9.1. INDUCTANCE 108

Recall Faraday’s Law,

EL = �N
d�B

dt
= � d

dt
(N�B)

where �B is magnetic flux, N�B is flux linkage.
� Alternative definition of Inductance:

� d

dt
(N�B) = �L

di

dt
⇥ L =

N�B

i

� Inductance is also flux linkage per unit current.

Calculating Inductance:

(1) Solenoid:
To first order approximation,

B = µ0ni

where n = N/L = Number of
coils per unit length.

Consider a subsection of length l of the solenoid:

Flux linkage = N �B

= nl · BA where A is
cross-sectional area

�
L =

N�B

i
= µ0n

2lA

L

l
= µ0n

2A = Inductance per unit length

Notice :

(i) L ⇤ n2

(ii) The inductance, like the capacitance, depends only on geometric
factors, not on i.

l

= N �B

= nl · BA A

L =
N�B

i
= µ0n

2lA)

Note

❑Inductance (like capacitance) depends only on geometric factors (not on )
❑

i
L / n2

B = µ0ni

n = N/`

L

l
= µ0n

2A =
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9.1. INDUCTANCE 109

(2) Toroid:

Recall: B-field lines are concentric cir-
cles.
Inside the toroid:

B =
µ0iN

2⇥r
(NOT a constant)

where r is the distance from center.
Outside the toroid:

B = 0

Flux linkage through the toroid

N�B = N

ˆ
⇤B · d⇤a

⇤
Notice ⇤B ⇤ d⇤a
Write da = h dr

⌅

KEY

=
µ0iN2

2⇥

ˆ b

a

h dr

r

=
µ0iN2h

2⇥
ln

� b

a

⇥

� Inductance L =
N�B

i
=

µ0N2h

2⇥
ln

� b

a

⇥

Again, L ⇥ N2

Inductance with magnetic materials :
We showed earlier that for capacitors:

⇤
⇤E � ⇤E/�e

C � �eC
(after insertion of
dielectric �e > 1)

For inductors, we first know that

⇤B � �m
⇤B

(after insertion of
magnetic material)

Inductance L =
N�B

i

However �B =

ˆ
⇤B · d ⇤A � �m�B

Recall ☛ B-field lines are concentric circles

Outside toroid

Flux linkage through toroid

Inductance 

Inside toroid

Again

)

KEY

B =
µ0iN

2⇡r

B = 0

N �B = N

Z
~B · d~a

~B k d~a

da = h dr

n +

L / N2

L =
N�B

i
=

µ0N2h

2⇡
ln

⇣ b

a

⌘
=

µ0iN2h

2⇡
ln

⇣ b

a

⌘
=

µ0iN2

2⇡

Z b

a

h dr

r
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Compute the self-inductance of a solenoid with  N  turns, length  l , and radius  R  with a 
current  I  flowing through each turn, as shown in Figure 11.2.2. 

 
 

Figure 11.2.2 Solenoid 
 
Solution: Ignoring edge effects and applying Ampere’s law, the magnetic field inside a 
solenoid is given by Eq. (9.4.3) 

 
    

!
B =

µ0 NI
l

k̂ = µ0nI  k̂ , (11.2.4) 

 
where   n = N / l  is the number of turns per unit length. The magnetic flux through each 
turn is 
   !B = BA = µ0nI " (#R2 ) = µ0nI#R2 . (11.2.5) 
 
Thus, the self-inductance is 

 
  
L =

N!B

I
= µ0n2"R2l . (11.2.6) 

 
We see that  L  depends only on the geometrical factors ( n , R  and  l ) and is independent 
of the current  I . 
 
Example 11.3 Self-Inductance of a Toroid 
 

(a) (b) 

 
Figure 11.2.3  A toroid with N turns 

 

② Toroid
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9. 2 LR Circuits
(A) Charging an inductor

When switch is adjusted to position 

By loop rule (clockwise)

a

E0 � �VR + �VL = 0

E0 � iR � L
di

dt
= 0

) di

dt
+

R

L
i =

E0
L

First Order Differential 
Equation

Similar to equation for charging a capacitor!
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U B =

1
2

LI 2 . (11.13.27) 

  
Thus, when the current is at its maximum, all the energy originally stored in the capacitor 
is now in the inductor 

 
  
1
2

C! 2 =
1
2

LI0
2 . (11.13.28) 

 
This implies a maximum current 

 
  
I0 = ! C

L
. (11.13.29) 

 
(d) At any time, the total energy in the circuit would be equal to the initial energy that the 
capacitance stored, that is 

 
  
U =U E +U B =

1
2

C! 2 . (11.13.30) 

 
11.14 Conceptual Questions 
 

1. How would you shape a wire of fixed length to obtain the greatest and the 
smallest inductance?  

 
2. If the wire of a tightly wound solenoid is unwound and made into another tightly 

wound solenoid with a diameter 3 times that of the original one, by what factor 
does the inductance change? 

 
3. What analogies can you draw between an ideal solenoid and a parallel-plate 

capacitor? 
 

4. In the  RL  circuit show in Figure 11.14.1, can the self-induced emf ever be greater 
than the emf supplied by the battery? 

 

 
 

Figure 11.14.1 
 

a
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x+
L

R

dx

dt

= 0

Z
x

x

o

dx

0

x

0 = �R

L

Z
t

0
dt

ln(x/x0) = �Rt/L

x = x0e
�Rt/L

dx = �di

x = (E0/R)� i

changing variables

i = 0 @ t = 0 ) x0 = E0/R
E0
R

� i =
E0
R
e�Rt/L
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Solution ☛

9.2. LR CIRCUITS 110

� L ⇤ �mL
(after insertion of
magnetic material)

� To increase inductance, fill the interior of inductor with ferromagnetic
materials. (⇥103 � 104)

9.2 LR Circuits

(A) ”Charging” an inductor

When the switch is adjusted to position a,
By loop rule (clockwise) :

E0 � �VR + �VL = 0
⌅ ⌅

E0 � iR � L
di

dt
= 0

�
di

dt
+

R

L
i =

E0

L
First Order Di�er-
ential Equation

Similar to the equation for charging a capacitor! (Chap5)

Solution: i(t) =
E0

R

�
1� e�t/�L

⇥

where ⇥L = Inductive time constant = L/R

� |�VR| = iR = E0(1� e�t/�L)

|�VL| = L
di

dt
= L · E0

R
· 1

⇥L
· e�t/�L = E0 e�t/�L

= L/R ☛ Inductive time constant

|�VL| = L
di

dt
= L · E0

R
· 1

⌧L
· e�t/⌧L = E0e�t/⌧L)

|�VR| = iR = E0(1 � e�t/⌧L)

i(t) =
E0
R

(1 � e�t/⌧L)

⌧L
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(B) Discharging an inductor
When switch is adjusted at position    after inductor has been charged
i.e. current              is flowing in circuit
By loop rule

Treat inductor as source of emf

Discharging an inductor

9.2. LR CIRCUITS 111

(B) ”Discharging” an inductor
When the switch is adjusted at position b after the inductor has been
”charged” (i.e. current i = E0/R is flowing in the circuit.).

By loop rule:

�VL � �VR = 0
⇤ ⇤

�L
di

dt
� iR = 0

(Treat inductor as source of emf)

�
di

dt
+

R

L
i = 0

Discharging a capacitor
(Chap5)

i(t) = i0 e�t/�L

where i0 = i(t = 0) = Current when the circuit just switch to position b.

Summary : During charging of inductor,

1. At t = 0, inductor acts like open circuit when current flowing is zero.

2. At t ⇥ ⌅, inductor acts like short circuit when current flowing is
stablized at maximum.

3. Inductors are used everyday in switches for safety concerns.

i = E0/R
b

�VL � �VR = 0

�L
di

dt
� iR = 0

) di

dt
+

R

L
i = 0

i(t) = i0 e
�t/⌧L

where                        Current when circuit just switch to positioni0 = i(t = 0) = b
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9.2. LR CIRCUITS 111

(B) ”Discharging” an inductor
When the switch is adjusted at position b after the inductor has been
”charged” (i.e. current i = E0/R is flowing in the circuit.).

By loop rule:

�VL � �VR = 0
⇤ ⇤

�L
di

dt
� iR = 0

(Treat inductor as source of emf)

�
di

dt
+

R

L
i = 0

Discharging a capacitor
(Chap5)

i(t) = i0 e�t/�L

where i0 = i(t = 0) = Current when the circuit just switch to position b.

Summary : During charging of inductor,

1. At t = 0, inductor acts like open circuit when current flowing is zero.

2. At t ⇥ ⌅, inductor acts like short circuit when current flowing is
stablized at maximum.

3. Inductors are used everyday in switches for safety concerns.

Summary
During charging of inductor

1. At          inductor acts like open circuit when current flowing is zero

2. At           inductor acts like short circuit when current flowing

3. Inductors are used everyday in switches for safety concerns

9.2. LR CIRCUITS 111

(B) ”Discharging” an inductor
When the switch is adjusted at position b after the inductor has been
”charged” (i.e. current i = E0/R is flowing in the circuit.).

By loop rule:

�VL � �VR = 0
⇤ ⇤

�L
di

dt
� iR = 0

(Treat inductor as source of emf)

�
di

dt
+

R

L
i = 0

Discharging a capacitor
(Chap5)

i(t) = i0 e�t/�L

where i0 = i(t = 0) = Current when the circuit just switch to position b.

Summary : During charging of inductor,

1. At t = 0, inductor acts like open circuit when current flowing is zero.

2. At t ⇥ ⌅, inductor acts like short circuit when current flowing is
stablized at maximum.

3. Inductors are used everyday in switches for safety concerns.

t = 0

t ! 1
is stabilized at maximum
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11.6.1 Rising Current 
 

  
 
Figure 11.6.2 (a) RL Circuit with rising current. (b) Equivalent circuit using the modified 
Kirchhoff’s loop rule. 
 
Consider the  RL  circuit shown in Figure 11.6.2. At    t = 0  the switch is closed. We find 
that the current does not rise immediately to its maximum value   ! / R . This is due to the 
presence of the self-induced emf in the inductor. Using the modified Kirchhoff’s rule for 
increasing current,   dI / dt > 0 , the  RL  circuit is described by the following differential 
equation: 

 
  
! " IR" |!L | = ! " IR" L dI

dt
= 0 . (11.6.1) 

 
Note that there is an important distinction between an inductor and a resistor. The 
potential difference across a resistor depends on  I , while the potential difference across 
an inductor depends on dI / dt . The self-induced emf does not oppose the current itself, 
but the change of current dI / dt . Eq. (11.6.1) can be rewritten as  
 

 
  

dI
I ! " / R

= !
dt

L / R
. (11.6.2) 

 
Integrating over both sides and imposing the condition   I(t = 0) = 0 , the solution to the 
differential equation is 

 
  
I(t) = !

R
(1" e" t/# ) . (11.6.3) 

 
This solution reduces to what we expect for large times, that is   I(!) = " / R , but it also 
shows a continuous rise of the current from   I(t = 0) = 0  initially to this final value, with a 
characteristic time L!  defined by 

 
 
! L =

L
R

. (11.6.4) 

 
This time constant is known as the inductive time constant.  This is the effect of having a 
non-zero inductance in a circuit, that is, of taking into account the “induced” electric 

Summary
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I! = I 2 R+ LI dI

dt
. (11.6.6) 

 
The left-hand side represents the rate at which the battery delivers energy to the circuit. 
On the other hand, the first term on the right-hand side is the power dissipated in the 
resistor in the form of heat, and the second term is the rate at which energy is stored in 
the inductor. While the energy dissipated through the resistor is irrecoverable, the 
magnetic energy stored in the inductor can be released later.  
 
 
11.6.2 Decaying Current 
 
Next we consider the  RL  circuit shown in Figure 11.6.5. Suppose the switch   S1  has been 
closed for a long time so that the current is at its equilibrium value   ! / R . What happens 
to the current when at   t = 0  switches   S1  is opened and   S2  closed?  

  
     

Figure 11.6.5 (a)  RL  circuit with decaying current, and (b) equivalent circuit. 
 
Applying the modified Kirchhoff’s loop rule to the right loop for decreasing current, 
  dI / dt < 0 , yields 

 
  
|!L |" IR = "L dI

dt
" IR = 0 , (11.6.7) 

which can be rewritten as 

 
  
dI
I
= !

dt
L / R

. (11.6.8) 

 
The solution to the above differential equation is 
 

 
  
I(t) = !

R
e" t/# , (11.6.9) 

 
where   ! = L / R  is the same time constant as in the case of rising current. A plot of the 
current as a function of time is shown in Figure 11.6.6. 
 

RL circuit with decaying current and equivalent circuit

RL circuit with rising current and equivalent circuit
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(a) (b) 

 
Figure 11.6.1 Modified Kirchhoff’s rule for inductors (a) with increasing current, and (b) 
with decreasing current.  See Section 11.4.2 for cautions about the use of this modified 
rule. 
 
The modified rule for inductors may be obtained as follows: The polarity of the self-
induced emf is such as to oppose the change in current, in accord with Lenz’s law. If the 
rate of change of current is positive, as shown in Figure 11.6.1(a), the self-induced emf 

 !L sets up an induced current   Iind  moving in the opposite direction of the current  I  to 
oppose such an increase. The inductor could be replaced by an emf 

  | !L |= L | dI / dt |= +L(dI / dt)  with the polarity shown in Figure 11.6.1(a). On the other 
hand, if   dI / dt < 0 , as shown in Figure 11.6.1(b), the induced current   Iind  set up by the 

self-induced emf  !L  flows in the same direction as  I  to oppose such a decrease. 
 
We see that whether the rate of change of current in increasing (  dI / dt > 0 ) or decreasing 
(  dI / dt < 0 ), in both cases, the change in potential when moving from  a  to  b  along the 
direction of the current  I  is   Vb ! Va = !L(dI / d t) . Thus, we have 
 

Kirchhoff's Loop Rule Modified for Inductors (Misleading, see Section 11.4.2): 
 
If an inductor is traversed in the direction of the current, the “potential change” is 
  !L(dI / dt) . On the other hand, if the inductor is traversed in the direction opposite of the 
current, the “potential change” is   +L(dI / dt) . 
 
Use of this modified Kirchhoff’s rule will give the correct equations for circuit problems 
that contain inductors.  However, keep in mind that it is misleading at best, and at some 
level wrong in terms of the physics. Again, we emphasize that Kirchhoff's loop rule was 
originally based on the fact that the line integral of   

!
E  around a closed loop was zero.  

With time-changing magnetic fields, this is no longer so, and thus the sum of the 
“potential drops” around the circuit, if we take that to mean the negative of the closed 
loop integral of   

!
E , is no longer zero − in fact it is   +L(dI / dt) .   
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9.3 Energy Stored in Inductors
Inductors stored magnetic energy through magnetic field stored in circuit
Recall equation for charging inductors

Multiply both sides by

Power stored in inductor

Integrating both sides and use initial condition

i

E0 � iR � L
di

dt
= 0

E0i|{z} = i2R|{z} + Li
di

dt| {z }

t = 0, i(t = 0) = UB(t = 0) = 0At

UB =
1

2
Li2

)

) Energy stored in inductor ☛

(Energy supplied 
one charge         )

Power input by emf
(Power dissipated 
by resistor)

Joule’s heating
Power stored in inductor

= qE0
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Energy Density Stored in Inductors
Consider an infinitely long solenoid of cross-sectional area 
For a portion   of solenoid 

Energy stored in inductor:

Energy density (= Energy stored per unit volume) inside inductor

Recall magnetic field inside solenoid

This is a general result of energy stored in a magnetic field

A

l

L = µ0n
2 lA

)

)

) uB =
B2

2µ0

B = µ0ni

uB =
UB

lA
=

1

2
µ0n

2i2

UB =
1

2
Li2 =

1

2
µ0n

2i2 lA|{z}
Volume of solenoid
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9.4 Mutual Inductance

Very often the magnetic flux through the area enclosed by a circuit varies with time

mutual inductance depends on interaction of two circuits

because of time-varying currents in nearby circuits

  We define the mutual inductance of coil 2 with respect to coil 1

I1 N1

N2

The magnetic flux caused by the current in coil 1 and passing through coil 2 is 

M12 ⌘ N2�12

I1

�12

 
 

11-3 

Inductance and Magnetic Energy 
 
 
11.1  Mutual Inductance 
 
Suppose two coils are placed near each other, as shown in Figure 11.1.1  
 

 
 

Figure 11.1.1 Changing current in coil 1 produces changing magnetic flux in coil 2. 
 
The first coil has   N1  turns and carries a current   I1  which gives rise to a magnetic field 

   
!
B1 . The second coil has   N2  turns. Because the two coils are close to each other, some of 

the magnetic field lines through coil 1 will also pass through coil 2. Let  !12 denote the 

magnetic flux through one turn of coil 2 due to   I1 . Now, by varying   I1  with time, there 
will be an induced emf associated with the changing magnetic flux in the second coil: 
 

 
    
!12 = "N2

d#12

dt
= "

d
dt

!
B1 $ d

!
A2

coil 2
%% . (11.1.1) 

 
The time rate of change of magnetic flux  !12  in coil 2 is proportional to the time rate of 
change of the current in coil 1:  

 
  
N2

d!12

dt
= M12

dI1

dt
, (11.1.2) 

 
where the proportionality constant   M12  is called the mutual inductance. It can also be 
written as 

 
  
M12 =

N2!12

I1

. (11.1.3) 

 

Consider two closely wound coils of wire shown in cross-sectional view

Current   in coil 1  which has      turns  creates a magnetic field

Some magnetic field lines pass through coil 2 which has      turns
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If current    varies with time

we see from Faraday’s law that emf induced by coil 1 in coil 2 is

I1

E2 = �N2
d�12

dt
= �N2

d

dt

✓
M12I1
N2

◆
= �M12

dI1
dt

In mutual induction emf induced in one coil                                                 

E1 = �M21
dI2
dt

I2

is always proportional to rate at which current in  other coil is changing 

It is easily seen that M12 = M21 = M
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The SI unit for inductance is the henry [H]: 
 
  1 henry =1 H =1 T !m2 /A . (11.1.4) 
 
We shall see that the mutual inductance   M12  depends only on the geometrical properties 
of the two coils such as the number of turns and the radii of the two coils. 
 
In a similar manner, suppose instead there is a current   I2  in the second coil and it is 
varying with time (Figure 11.1.2). Then the induced emf in coil 1 becomes 
 

 
    
!21 = "N1

d#21

dt
= "

d
dt

!
B2 $ d

!
A1

coil 1
%% , (11.1.5) 

 
and a current is induced in coil 1.  

 

 
 

Figure 11.1.2 Changing current in coil 2 produces changing magnetic flux in coil 1. 
 
This changing flux in coil 1 is proportional to the changing current in coil 2, 
 

 
  
N1

d!21

dt
= M21

dI2

dt
, (11.1.6) 

 
where the proportionality constant   M21  is another mutual inductance and can be written 
as 

 
  
M21 =

N1!21

I2

. (11.1.7) 

 
The mutual inductance reciprocity theorem states that the constants are equal  
 
   M12 = M21 ! M . (11.1.8) 
 

If  current    varies with time ☛ emf induced by coil 2 in coil 1 is
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11.13.6 LC Circuit 
 
Consider the circuit shown in Figure 11.13.6. Suppose the switch that has been connected 
to point  a  for a long time is suddenly thrown to  b  at   t = 0 .  
 

               
 

Figure 11.13.6  LC  circuit 
 
Find the following quantities: 
  
(a) the frequency of oscillation of the  LC  circuit. 
 
(b) the maximum charge that appears on the capacitor. 
 
(c) the maximum current in the inductor. 
 
(d) the total energy the circuit possesses at any time  t . 
 
 
Solution: 
 
(a) The angular frequency of oscillation of the  LC  circuit is given by 

  ! = 2" f = 1 / LC . Therefore, the frequency is  
 

 
  
f =

1
2! LC

. (11.13.24) 

 
(b) The maximum charge stored in the capacitor before the switch is thrown to  b  is  
 
  Q = C! . (11.13.25) 
 
(c) The energy stored in the capacitor before the switch is thrown is  
 

 
  
U E =

1
2

C! 2 . (11.13.26) 

 
On the other hand, the magnetic energy stored in the inductor is  
 

9. 5 LC Circuit (Electromagnetic Oscillator)

After the capacitor is charged we move the switch to position b
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9.4. LC CIRCUIT (ELECTROMAGNETIC OSCILLATOR) 113

9.4 LC Circuit (Electromagnetic Oscillator)

Initial charge on capacitor = Q
Initial current = 0
No battery.

Assume current i to be in the direction that increases charge on the positive
capacitor plate.

⇤ i =
dQ

dt
(9.1)

By Lenz Law, we also know the ”poles” of the inductor.

Loop rule: VC + VL = 0

�Q

C
� L

di

dt
= 0 (9.2)

Combining equations (9.1) and (9.2), we get

d2Q

dt2
+

1

LC
Q = 0

This is similar to the equation of motion
of a simple harmonic oscillator:

d2x

dt2
+

k

m
x = 0

Another approach (conservation of energy)
Total energy stored in circuit:

U = UE + UB

⇥ ⇥

U =
Q2

2C
+

1

2
Li2

Since the resistance in the circuit is zero, no energy is dissipated in the circuit.
� Energy contained in the circuit is conserved.

�
dU

dt
= 0

⇤ Q

C
·
⇥

⇥
⇥dQ

dt
+ L�i

di

dt
= 0 (⇥ i =

dQ

dt
)

Initial charge on capacitor

Initial current
No battery

= Q

= 0

Assume current   to be in direction that decreases chargei

By Lenz Law  we also know poles of inductor

Loop rule ☛

Combining equations (10.1) and (10.2) we get

) i =
dQ

dt

VC + VL = 0

�Q

C
� L

di

dt
= 0

d2Q

dt2
+

1

LC
Q = 0

(10.1)

(10.2)

on positive capacitor plate
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This is similar to equation of motion of 

a simple harmonic oscillator

Another approach (conservation of energy)

9.4. LC CIRCUIT (ELECTROMAGNETIC OSCILLATOR) 113

9.4 LC Circuit (Electromagnetic Oscillator)

Initial charge on capacitor = Q
Initial current = 0
No battery.

Assume current i to be in the direction that increases charge on the positive
capacitor plate.

⇤ i =
dQ

dt
(9.1)

By Lenz Law, we also know the ”poles” of the inductor.

Loop rule: VC + VL = 0

�Q

C
� L

di

dt
= 0 (9.2)

Combining equations (9.1) and (9.2), we get

d2Q

dt2
+

1

LC
Q = 0

This is similar to the equation of motion
of a simple harmonic oscillator:

d2x

dt2
+

k

m
x = 0

Another approach (conservation of energy)
Total energy stored in circuit:

U = UE + UB

⇥ ⇥

U =
Q2

2C
+

1

2
Li2

Since the resistance in the circuit is zero, no energy is dissipated in the circuit.
� Energy contained in the circuit is conserved.

�
dU

dt
= 0

⇤ Q

C
·
⇥

⇥
⇥dQ

dt
+ L�i

di

dt
= 0 (⇥ i =

dQ

dt
)

Total energy stored in circuit

d

2
x

dt

2
+

k

m

x = 0

U =
Q2

2C
+

1

2
Li2

U = UE + UB

Since resistance in circuit is zero no energy is dissipated in circuit
Energy contained in circuit is conserved)

) dU

dt
= 0

) Q

C
· dQ

dt
+ Li

di

dt
= 0

⇣
* i =

dQ

dt

⌘
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Solution to this differential equation is in form

) L
di

dt
+

Q

C
= 0

) d2Q

dt2
+

1

LC
Q = 0

) d2Q

dt2
= �!2Q0 cos(!t + �)

) d2Q

dt2
+ !2Q = 0

) !2 =
1

LC

= �!2Q

Q(t) = Q0 cos(!t + �)

) dQ

dt
= �!Q0 sin(!t + �)

Angular frequency of      oscillatorLC

19Tuesday, April 6, 21



9.4. LC CIRCUIT (ELECTROMAGNETIC OSCILLATOR) 114

⇥ L
di

dt
+

Q

C
= 0

⇥ d2Q

dt2
+

1

LC
Q = 0

The solution to this di�erential equation is in the form

Q(t) = Q0 cos(⇥t + �)

�
dQ

dt
= �⇥Q0 sin(⇥t + �)

d2Q

dt2
= �⇥2Q0 cos(⇥t + �)

= �⇥2Q

�
d2Q

dt2
+ ⇥2Q = 0

� ⇥2 =
1

LC
Angular frequency
of the LC oscillator

Also, Q0, � are constants derived from the initial conditions. (Two initial condi-

tions, e.g. Q(t = 0), and i(t = 0) = dQ
dt

���
t=0

are required.)

Energy stored in C =
Q2

2C
=

Q2
0

2C
cos2(⇥t + �)

Energy stored in L =
1

2
Li2 =

1

2
L⇥2Q2

0 sin2(⇥t + �)

⇥ L⇥2 =
1

C
=

Q2
0

2C
sin2(⇥t + �)

� Total energy stored =
Q2

0

2C
= Initial energy stored in capacitor

are constants derived from initial conditions
(Two initial conditions, e.g. are required)and
Q0,�

Q(t = 0) i(t = 0) =
dQ

dt

���
t=0

Total energy stored

Initial energy stored in capacitor

)
=

C =

Q2

2C
=

Q2
0

2C
cos

2
(!t + �)

L =
1

2
Li2 =

1

2
L!2Q2

0 sin
2(!t + �)

* L!2 =
1

C =
Q2

0

2C
sin2(!t + �)

=
Q2

0

2C

Energy stored in capacitor

Energy stored in inductance

( Since              )
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LC Circuit 
 

 
Mass-spring System 

 
Energy 

 

 
 

  
 

   

   

   

 
  

 
Figure 11.7.5 Energy oscillations in the  LC  Circuit and the mass-spring system 

In Figure 11.7.5 we illustrate the energy oscillations in the  LC  Circuit and the mass-
spring system (harmonic oscillator). 
 
 
 
 

Energy oscillations in LC system and mass-spring system
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9. 6 RLC Circuit (Damped Oscillator)

In real life circuit ☛ there’s always resistance
energy stored in       oscillator is NOT conservedLC

and

Power dissipated in resistor
dU

dt
= = �i2R

Joule’s heating

Negative sign shows that energy     is decreasingU

) Li
di

dt
+

Q

C
·

iz}|{
dQ

dt
= �i2R

) d2Q

dt2
+

R

L
· dQ

dt
+

1

LC
Q = 0
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11.8 The RLC Series Circuit 
 
We now consider a series  RLC  circuit that contains a resistor, an inductor and a 
capacitor, as shown in Figure 11.8.1. 

 
 

Figure 11.8.1 A series  RLC  circuit 
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This is similar to equation of motion of a damped harmonic oscillator 
(e.g. if a mass-spring system faces a frictional force                )~F = �b~v

Solution to equation is of form

oscillating termexponential 
decay term

� =
R

2L
damping factor

There are three possible scenarios depending on the relative values of    and  � !0

Q(t) = Q0 e�
R
2L t

| {z } cos(!
0t+ �)| {z }

!0 =

s
1

LC
�

✓
R

2L

◆2

!0 =

s

!2
0 �

✓
R

2L

◆2
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Underdamped oscillator always oscillates
at a lower frequency than natural frequency of oscillator

 
 

11-40 

There are three possible scenarios, depending on the relative values of !  and  !0 . 
 
Case 1: Underdamping 
 
When  !0 > " , or equivalently,  ! '  is real and positive, the system is said to be 
underdamped. This is the case when the resistance is small. Charge oscillates (the cosine 
function) with exponentially decaying amplitude   Q0e

!" t . However, the frequency of this 
damped oscillation is less than the undamped oscillation,  ! ' <!0 .  The qualitative 
behavior of the charge on the capacitor as a function of time is shown in Figure 11.10.1. 
 

                  
 

Figure 11.10.1 Underdamped oscillations 
 

As an example, suppose the initial condition is   Q(t = 0) = Q0 . The phase constant is then 

 ! = 0 , and  
   Q(t) = Q0e

!" t cos(# 't) . (11.10.5) 
The corresponding current is  
 

 
  
I(t) = !

dQ
dt

= Q0" 'e!# t sin(" 't)+ (# /" ')cos(" 't)$% &' . (11.10.6) 

 
For small  R , the above expression may be approximated as  
 

 
  
I(t) !

Q0

LC
e"# t sin($ 't +% )  (11.10.7) 

where  

 
 
! = tan"1 #

$ '
%
&'

(
)*

. (11.10.8) 

 
The derivation is left to the readers as an exercise. 
 

Case I: Underdamping !0 > �
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Case 2: Overdamping 
 
In the overdamped case,  !0 < " , implying that  ! '  is imaginary. There is no oscillation in 

this case. By writing   ! ' = i" , where  ! = " 2 #$0
2 , one may show that the most general 

solution can be written as 
   Q(t) = Q1e

!(" +# )t +Q2e
!(" !# )t , (11.10.9) 

 
where the constants   Q1  and   Q2  can be determined from the initial conditions. 
 

 
 

Figure 11.10.2 Overdamping and critical damping 
 
Case 3: Critical damping 
 
When the system is critically damped,  !0 = " ,  ! ' = 0 . Again there is no oscillation. The 
general solution is  
   Q(t) = (Q1 +Q2t)e

!" t , (11.10.10) 
 
where   Q1  and   Q2  are constants which can be determined from the initial conditions. In 
this case one may show that the energy of the system decays most rapidly with time. The 
qualitative behavior of   Q(t)  in overdamping and critical damping is depicted in Figure 
11.10.2. 
 
 
11.10.1 Quality Factor 
 
When the resistance is small, the system is underdamped, and the charge oscillates with 
decaying amplitude   Q0e

!" t . The “quality” of this underdamped oscillation is measured by 
the so-called “quality factor,”   

Qqual  (not to be confused with charge.) The larger the value 

of   
Qqual , the less the damping and the higher the quality. Mathematically,   

Qqual  is defined 
as 

Case II: Overdamping 

Case III: Critical damping 

!0 < �

!0 = �
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