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5.1 Ohm’s Law and Resistance

ELECTRIC CURRENT ☛ 

i =
dQ

dt
Unit ☛ Ampere   

Convention

② Current is NOT a vector ☛ but the current density is a vector

charge flow per unit time per unit area

① Direction of current is direction of flow of positive charge

~j =

i =

Z
~j · d ~A

is defined as flow of electric charge through a cross-sectional area

[A = C/s]
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Consider a current   flowing through a cross-sectional area

Drift Velocity

5.8. OHM’S LAW AND RESISTANCE 62

i =
dQ

dt
Unit: Ampere (A)
= C/second

Convention :

(1) Direction of current is the direction of flow of positive charge.

(2) Current is NOT a vector, but the current density is a vector.

�j = charge flow per unit time per unit area

i =

ˆ
�j · d �A

Drift Velocity :

Consider a current i flowing through
a cross-sectional area A:

� In time �t, total charges passing through segment:

�Q = q A(Vd�t)
⇤ ⇥� ⌅

Volume of charge
passing through

n

where q is charge of the current carrier, n is density of charge carrier
per unit volume

� Current: i =
�Q

�t
= nqAvd

Current Density: �j = nq�vd

Note : For metal, the charge carriers are the free electrons inside.
� �j = �ne�vd for metals
� Inside metals, �j and �vd are in opposite direction.

We define a general property, conductivity (�), of a material as:

�j = � �E

In time       ☛ total charges passing through segment

      
      ☛ charge of current carrier  

�t)

Ai

q
n

Current

Current Density

i =
�Q

�t
= nqAvd)

~j = nq~vd

  ☛ density of charge carrier per unit volume

�Q = qA(vd�t)n
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For metals ☛ charge carriers are free electrons insideNote

for metals

Inside metals    and     are in opposite direction

We define a general property of materials ☛ conductivity     

) ~j = �ne~vd

~j = � ~E

(�)

) ~j ~vd

In general    is NOT a constant number

Resistivity (   ) is more commonly used property defined as

Unit of    : Ohm-meter (     ) where Ohm (   ) = Volt/Ampere

Ohmic materials have resistivity 

Note

OHM’S LAW

�

⇢ ⇢ =
1

�
⇢ ⌦m ⌦

but rather a function of position and applied   -field~E

that are independent of applied electric field

 e.g. metals (in not too high    -field)~E
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Example

Consider a resistor (ohmic material)      
of length     and cross-sectional area

5.8. OHM’S LAW AND RESISTANCE 63

Note : In general, ⇥ is NOT a constant number, but rather a function of position
and applied E-field.

A more commonly used property, resistivity (�), is defined as � =
1

⇥

� ⇤E = �⇤j

Unit of � : Ohm-meter (⇥m)
where Ohm (⇥) = Volt/Ampere

OHM’S LAW:
Ohmic materials have resistivity that are independent of the applied electric field.
i.e. metals (in not too high E-field)

Example :

Consider a resistor (ohmic material) of
length L and cross-sectional area A.

� Electric field inside conductor:

�V =

ˆ
⇤E · d⇤s = E · L � E =

�V

L

Current density: j =
i

A

� � =
E

j

� =
�V

L
· 1

i/A

�V

i
= R = �

L

A

where R is the resistance of the conductor.

Note: �V = iR is NOT a statement of Ohm’s Law. It’s just a definition for
resistance.

L A

Electric field inside conductor)

Current density

        ☛ resistance of conductor

but it’s just a definition for resistance

) ⇢ =
E

j

Note

j =
i

A

⇢ =
�V

L
· 1

i/A

�V

i
= R = ⇢

L

A
R

�V = iR is NOT a statement of Ohm’s Law

Vb � Va = �
Z b

a

~

E · d~s = E

Z L

0
dx = EL ) E =

�V

L
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5.9. DC CIRCUITS 64

ENERGY IN CURRENT:

Assuming a charge �Q enters
with potential V1 and leaves with
potential V2 :

� Potential energy lost in the wire:

�U = �QV2 ��QV1

�U = �Q(V2 � V1)

� Rate of energy lost per unit time

�U

�t
=

�Q

�t
(V2 � V1)

Joule’s heating P = i · �V = Power dissipated
in conductor

For a resistor R, P = i2R =
�V 2

R

5.9 DC Circuits

A battery is a device that supplies electrical energy to maintain a current in a
circuit.

In moving from point 1 to 2, elec-
tric potential energy increase by
�U = �Q(V2 � V1) = Work done by E

Define E = Work done/charge = V2 � V1

ENERGY IN CURRENT
Assuming a charge               
enters with potential                 
and leaves with potential 

5.9. DC CIRCUITS 64

ENERGY IN CURRENT:

Assuming a charge �Q enters
with potential V1 and leaves with
potential V2 :

� Potential energy lost in the wire:

�U = �QV2 ��QV1

�U = �Q(V2 � V1)

� Rate of energy lost per unit time

�U

�t
=

�Q

�t
(V2 � V1)

Joule’s heating P = i · �V = Power dissipated
in conductor

For a resistor R, P = i2R =
�V 2

R

5.9 DC Circuits

A battery is a device that supplies electrical energy to maintain a current in a
circuit.

In moving from point 1 to 2, elec-
tric potential energy increase by
�U = �Q(V2 � V1) = Work done by E

Define E = Work done/charge = V2 � V1

Potential energy lost in wire

Rate of energy lost per unit time

Joule’s heating

For a resistor

Power dissipated in conductorP = i · �V =

R, P = i2R =
�V 2

R

�U

�t
=

�Q

�t
(V2 � V1)

�U = �QV2 � �QV1

�U = �Q(V2 � V1)

)

)

�Q

V1

V2

R

☛
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5.2 DC Circuits

A battery is a device that supplies electrical energy                          

In moving from point 1 to 2                                

5.9. DC CIRCUITS 64

ENERGY IN CURRENT:

Assuming a charge �Q enters
with potential V1 and leaves with
potential V2 :

� Potential energy lost in the wire:

�U = �QV2 ��QV1

�U = �Q(V2 � V1)

� Rate of energy lost per unit time

�U

�t
=

�Q

�t
(V2 � V1)

Joule’s heating P = i · �V = Power dissipated
in conductor

For a resistor R, P = i2R =
�V 2

R

5.9 DC Circuits

A battery is a device that supplies electrical energy to maintain a current in a
circuit.

In moving from point 1 to 2, elec-
tric potential energy increase by
�U = �Q(V2 � V1) = Work done by E

Define E = Work done/charge = V2 � V1

�U = �Q(V2 � V1) = Work done by

electric potential energy increase by                                

E

E =Define Work done/charge = V2 � V1

to maintain a current in a circuit
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By Definition

Also ☛ we have assumed zero resistance inside battery

Vc � Vd = iR

Va � Vb = E

) E = iR ) i =
E
R

Example

5.9. DC CIRCUITS 65

Example :

Va = Vc

Vb = Vd

�

assuming(1) perfect conducting wires.

By Definition: Vc � Vd = iR

Va � Vb = E

� E = iR ⇥ i =
E
R

Also, we have assumed(2) zero resistance inside battery.

Resistance in combination :

Potential di�erece (P.D.)

Va � Vb = (Va � Vc) + (Vc � Vb)

= iR1 + iR2

� Equivalent Resistance

R = R1 + R2 for resistors in series
1

R
=

1

R1
+

1

R2
for resistors in parallel

Va = Vc

Vb = Vd

o

assuming perfect conducting wires
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Potential difference

Equivalent Resistance for resistors in series

for resistors in parallel

5.9. DC CIRCUITS 65

Example :

Va = Vc

Vb = Vd

�

assuming(1) perfect conducting wires.

By Definition: Vc � Vd = iR

Va � Vb = E

� E = iR ⇥ i =
E
R

Also, we have assumed(2) zero resistance inside battery.

Resistance in combination :

Potential di�erece (P.D.)

Va � Vb = (Va � Vc) + (Vc � Vb)

= iR1 + iR2

� Equivalent Resistance

R = R1 + R2 for resistors in series
1

R
=

1

R1
+

1

R2
for resistors in parallel

)

Va � Vb = (Va � Vc) + (Vc � Vb)

= iR1 + iR2

R = R1 + R2

1

R
=

1

R1
+

1

R2

Resistance in combination

5.9. DC CIRCUITS 65

Example :

Va = Vc

Vb = Vd

�

assuming(1) perfect conducting wires.

By Definition: Vc � Vd = iR

Va � Vb = E

� E = iR ⇥ i =
E
R

Also, we have assumed(2) zero resistance inside battery.

Resistance in combination :

Potential di�erece (P.D.)

Va � Vb = (Va � Vc) + (Vc � Vb)

= iR1 + iR2

� Equivalent Resistance

R = R1 + R2 for resistors in series
1

R
=

1

R1
+

1

R2
for resistors in parallel

Equivalent Resistance

Resistors in parallel carry same voltage
Current flowing through each resistor could be different

Resistors in series

Resistors in parallel

= V

✓
1

R1
+

1

R2

◆
R1

R2

i = i1 + i2
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Example

5.9. DC CIRCUITS 66

Example :

For real battery, there is an
internal resistance that
we cannot ignore.

� E = i(R + r)

i =
E

R + r

Joule’s heating in resistor R :

P = i · (P.D. across resistor R)

= i2R

P =
E2R

(R + r)2

Question: What is the value of R to obtain maximum Joule’s heating?

Answer: We want to find R to maximize P.

dP

dR
=

E2

(R + r)2
� E2 2R

(R + r)3

Setting
dP

dR
= 0 ⇥ E2

(R + r)3
[(R + r)� 2R] = 0

⇥ r �R = 0

⇥ R = r

For real battery ☛ there is an internal resistance

Joule’s heating in resistor (P.D. across resistor   )

Question ☛ What is value of    to obtain maximum Joule’s heating?
Answer ☛ We want to find    that maximizes 

Setting

R R

R

R P

) E = i(R + r)

i =
E

R + r

P =
E2R

(R + r)2

P = i ·
= i2R

dP

dR
=

E2

(R + r)2
� E22R

(R + r)3

dP

dR
= 0 ) E2

(R + r)3
[(R + r) � 2R] = 0

) r � R = 0

) R = r

that we cannot ignore

S ECT I O N  28 . 1 •  Electromotive Force 861

Example 28.1 Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of
0.05 !. Its terminals are connected to a load resistance of
3.00 !.

(A) Find the current in the circuit and the terminal voltage
of the battery.

Solution Equation 28.3 gives us the current:

and from Equation 28.1, we find the terminal voltage:

"V # $ Ir # 12.0 V $ (3.93 A)(0.05 !) #

To check this result, we can calculate the voltage across the
load resistance R :

"V # IR # (3.93 A)(3.00 !) # 11.8 V

(B) Calculate the power delivered to the load resistor, the
power delivered to the internal resistance of the battery, and
the power delivered by the battery.

Solution The power delivered to the load resistor is

!R # I 2R # (3.93 A)2 (3.00 !) #

The power delivered to the internal resistance is

!r # I 2r # (3.93 A)2 (0.05 !) # 0.772 W

46.3 W

11.8 V%

3.93 AI #
%

R & r
#

12.0 V
3.05 !

#

Hence, the power delivered by the battery is the sum
of these quantities, or 47.1 W. You should check this result,
using the expression ! # I .

What If? As a battery ages, its internal resistance
increases. Suppose the internal resistance of this battery
rises to 2.00 ! toward the end of its useful life. How does
this alter the ability of the battery to deliver energy?

Answer Let us connect the same 3.00-! load resistor to the
battery. The current in the battery now is

and the terminal voltage is

"V # $ Ir # 12.0 V $ (2.40 A) (2.00 !) # 7.2 V

Notice that the terminal voltage is only 60% of the emf. The
powers delivered to the load resistor and internal resistance
are

!R # I 2R # (2.40 A)2 (3.00 !) #

!r # I 2r # (2.40 A)2 (2.00 !) # 11.5 W

Notice that 40% of the power from the battery is delivered
to the internal resistance. In part (B), this percentage is
1.6%. Consequently, even though the emf remains fixed,
the increasing internal resistance significantly reduces the
ability of the battery to deliver energy.

17.3 W

%

I #
%

R & r
#

12.0 V
(3.00 ! & 2.00 !)

# 2.40 A

%

Interactive

Example 28.2 Matching the Load

Show that the maximum power delivered to the load resis-
tance R in Figure 28.2a occurs when the load resistance
matches the internal resistance—that is, when R # r.

Solution The power delivered to the load resistance is
equal to I 2R, where I is given by Equation 28.3:

When ! is plotted versus R as in Figure 28.3, we find that
! reaches a maximum value of 2/4r at R # r. When R is
large, there is very little current, so that the power I 2R
delivered to the load resistor is small. When R is small,
the current is large and there is significant loss of power
I 2r as energy is delivered to the internal resistance. When
R # r, these effects balance to give a maximum transfer of
power.

We can also prove that the power maximizes at R # r by
differentiating ! with respect to R, setting the result equal

%

! # I 2R #
%2R

(R & r)2

to zero, and solving for R. The details are left as a problem
for you to solve (Problem 57).

At the Interactive Worked Example link at http://www.pse6.com, you can vary the load resistance and internal resistance,
observing the power delivered to each.

r 2r 3r
R

!max

!

Figure 28.3 (Example 28.2) Graph of the power ! delivered
by a battery to a load resistor of resistance R as a function of R.
The power delivered to the resistor is a maximum when the
load resistance equals the internal resistance of the battery.

P
P
max
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ANALYSIS OF COMPLEX CIRCUITS
KIRCHOFF’S LAWS
① First Law (Junction Rule):
Total current entering a junction equal to total current leaving junction

5.9. DC CIRCUITS 67

ANALYSIS OF COMPLEX CIRCUITS:

KIRCHOFF’S LAWS:

(1) First Law (Junction Rule):
Total current entering a junction equal to the total current leaving the
junction.

(2) Second Law (Loop Rule):
The sum of potential di�erences around a complete circuit loop is zero.

Convention :

(i)

Va > Vb ⇥ Potential di�erence = �iR

i.e. Potential drops across resistors

(ii)

Vb > Va ⇥ Potential di�erence = +E

i.e. Potential rises across the negative plate of the battery.

Example :

② Second Law (Loop Rule):
The sum of potential differences around a complete circuit loop is zero
Convention

5.9. DC CIRCUITS 67

ANALYSIS OF COMPLEX CIRCUITS:

KIRCHOFF’S LAWS:

(1) First Law (Junction Rule):
Total current entering a junction equal to the total current leaving the
junction.

(2) Second Law (Loop Rule):
The sum of potential di�erences around a complete circuit loop is zero.

Convention :

(i)

Va > Vb ⇥ Potential di�erence = �iR

i.e. Potential drops across resistors

(ii)

Vb > Va ⇥ Potential di�erence = +E

i.e. Potential rises across the negative plate of the battery.

Example :

5.9. DC CIRCUITS 67

ANALYSIS OF COMPLEX CIRCUITS:

KIRCHOFF’S LAWS:

(1) First Law (Junction Rule):
Total current entering a junction equal to the total current leaving the
junction.

(2) Second Law (Loop Rule):
The sum of potential di�erences around a complete circuit loop is zero.

Convention :

(i)

Va > Vb ⇥ Potential di�erence = �iR

i.e. Potential drops across resistors

(ii)

Vb > Va ⇥ Potential di�erence = +E

i.e. Potential rises across the negative plate of the battery.

Example :

Potential difference 
i.e. Potential drops across resistors

(i)

(ii)

i.e. Potential rises across negative plate of battery
Potential difference 

Va > Vb )

Vb > Va )

= �iR

= +E
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Example
5.9. DC CIRCUITS 68

By junction rule:
i1 = i2 + i3 (5.1)

By loop rule:

Loop A ⇥ 2E0 � i1R� i2R + E0 � i1R = 0 (5.2)

Loop B ⇥ �i3R� E0 � i3R� E0 + i2R = 0 (5.3)

Loop C ⇥ 2E0 � i1R� i3R� E0 � i3R� i1R = 0 (5.4)

BUT: (5.4) = (5.2) + (5.3)
General rule: Need only 3 equations for 3 current

i1 = i2 + i3 (5.1)

3E0 � 2i1R� i2R = 0 (5.2)

�2E0 + i2R� 2i3R = 0 (5.3)

Substitute (5.1) into (5.2) :

3E0 � 2(i2 + i3)R� i2R = 0

⇥ 3E0 � 3i2R� 2i3R = 0 (5.4)

Subtract (5.3) from (5.4), i.e. (5.4)�(5.3)

3E0 � (�2E0)� 3i2R� i2R = 0

⇥ i2 =
5

4
· E0

R

Substitute i2 into (5.3) :

�2E0 +
�5

4
· E0

R

⇥
R� 2i3R = 0

By junction rule:

By loop rule:
i1 = i2 + i3

LoopA ) 2E0 � i1R � i2R + E0 � i1R = 0

LoopB ) �i3R � E0 � i3R � E0 + i2R = 0

LoopC ) 2E0 � i1R � i3R � E0 � i3R � i1R = 0

(6.1)

(6.2)

(6.3)

(6.4)

BUT ☛ (6.4) = (6.2) + (6.3)
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Need only 3 equations for 3 currentGeneral rule

i1 = i2 + i3

3E0 � 2i1R � i2R = 0

�2E0 + i2R � 2i3R = 0

Substitute (6.1) into (6.2)

 (6.1)

(6.2)

(6.3)

3E0 � 2(i2 + i3)R � i2R = 0

) 3E0 � 3i2R � 2i3R = 0

(6.4)

Subtract (6.3) from (6.4), i.e. (6.4)-(6.3)

3E0 � (�2E0) � 3i2R � i2R = 0

) i2 =
5

4
· E0
R
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A negative current means that
Note

Substitute          into (6.1)i2, i3

) i3 = �3

8
· E0
R

i1 =
⇣5
4

� 3

8

⌘ E0
R

=
7

8
· E0
R

Substitute     into (6.3)i2

�2E0 +
⇣5
4

· E0
R

⌘
R � 2i3R = 0

it is flowing in opposite direction from one assumed
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5.3 RC Circuits

(A) Charging a capacitor with battery

5.10. RC CIRCUITS 69

⇥ i3 = �3

8
· E0

R

Substitute i2, i3 into (5.1) :

i1 =
�5

4
� 3

8

⇥ E0

R
=

7

8
· E0

R

Note: A negative current means that it is flowing in opposite direction from the
one assumed.

5.10 RC Circuits

(A) Charging a capacitor with battery:

Using the loop rule:

+E0 � iR⇧⌅⇤⌃
P.D.
across R

� Q

C⇧⌅⇤⌃
P.D.
across C

= 0

Note: Direction of i is chosen so that the current represents the rate at
which the charge on the capacitor is increasing.

� E = R

i⇤⌃⇧⌅
dQ

dt
+

Q

C
1st order
di�erential eqn.

⇥ dQ

EC �Q
=

dt

RC

Integrate both sides and use the initial condition:
t = 0, Q on capacitor = 0

ˆ Q

0

dQ

EC �Q
=

ˆ t

0

dt

RC

Using loop rule

Direction of   is chosen so that current represents
Note ☛ 

i

+E0 � iR|{z} � Q

C|{z}
= 0

R
C

P.D across
P.D across

) dQ

EC � Q
=

dt

RC

) E = R

iz}|{
dQ

dt
+

Q

C

1st order 
differential eq.

rate at which charge on capacitor is increasing
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Integrate both sides and use initial condition
on capacitort = 0, Q = 0Z Q

0

dQ

EC � Q
=

Z t

0

dt

RC

� ln(EC � Q)
���
Q

0
=

t

RC

���
t

0

) � ln(EC � Q) + ln(EC) =
t

RC

) ln
⇣ 1

1 � Q
EC

⌘
=

t

RC

) 1

1 � Q
EC

= et/RC

) Q

EC = 1 � e�t/RC

) Q(t) = EC (1 � e�t/RC)
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① At

② As

Note ☛ 

③ Current

t = 0, Q(t = 0) = EC (1 � 1) = 0

t ! 1, Q(t ! 1) = EC (1 � 0) = EC

5.10. RC CIRCUITS 70

� ln(EC �Q)
���
Q

0
=

t

RC

���
t

0

⇤ � ln(EC �Q) + ln(EC) =
t

RC

⇤ ln
⇥ 1

1� Q
EC

⇤
=

t

RC

⇤ 1

1� Q
EC

= et/RC

⇤ Q

EC
= 1� e�t/RC

⇤ Q(t) = EC(1� e�t/RC)

Note: (1) At t = 0 , Q(t = 0) = EC(1� 1) = 0

(2) As t⇥⌅ , Q(t⇥⌅) = EC(1� 0) = EC
= Final charge on capacitor (Q0)

(3) Current:

i =
dQ

dt

= EC
⇥ 1

RC

⇤
e�t/RC

i(t) =
E
R

e�t/RC

⌅
⌃

⇧
i(t = 0) =

E
R

= Initial current = i0

i(t⇥⌅) = 0

(4) At time = 0, the capacitor acts like short circuit when there is
zero charge on the capacitor.

(5) As time ⇥ ⌅, the capacitor is fully charged and current = 0, it
acts like a open circuit.

i =
dQ

dt

= EC
⇣ 1

RC

⌘
e�t/RC

i(t) =
E
R

e�t/RC

n
i(t = 0)

E
R

= Initial current = i0

i(t ! 1) = 0
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④ At time        ☛ capacitor acts like short circuit

⑤ As time          ☛ capacitor is fully charged and current       

5.10. RC CIRCUITS 70

� ln(EC �Q)
���
Q

0
=

t

RC

���
t

0

⇤ � ln(EC �Q) + ln(EC) =
t

RC

⇤ ln
⇥ 1

1� Q
EC

⇤
=

t

RC

⇤ 1

1� Q
EC

= et/RC

⇤ Q

EC
= 1� e�t/RC

⇤ Q(t) = EC(1� e�t/RC)

Note: (1) At t = 0 , Q(t = 0) = EC(1� 1) = 0

(2) As t⇥⌅ , Q(t⇥⌅) = EC(1� 0) = EC
= Final charge on capacitor (Q0)

(3) Current:

i =
dQ

dt

= EC
⇥ 1

RC

⇤
e�t/RC

i(t) =
E
R

e�t/RC

⌅
⌃

⇧
i(t = 0) =

E
R

= Initial current = i0

i(t⇥⌅) = 0

(4) At time = 0, the capacitor acts like short circuit when there is
zero charge on the capacitor.

(5) As time ⇥ ⌅, the capacitor is fully charged and current = 0, it
acts like a open circuit.

= 0

= 0! 1

It is time it takes for charge to reach

is called time constant⑥ ⌧c = RC
⇣
1 � 1

e

⌘
Q0 ' 0.63Q0

when there is zero charge on capacitor

 it acts like a open circuit

wires. This current is equal to the time rate of change of the charge on the capacitor
plates. Thus, we substitute I ! dq/dt into Equation 28.11 and rearrange the equation:

To find an expression for q, we solve this separable differential equation. We first
combine the terms on the right-hand side:

Now we multiply by dt and divide by q " C to obtain

Integrating this expression, using the fact that q ! 0 at t ! 0, we obtain

From the definition of the natural logarithm, we can write this expression as

(28.14)

where e is the base of the natural logarithm and we have made the substitution from
Equation 28.13.

We can find an expression for the charging current by differentiating Equation
28.14 with respect to time. Using I ! dq/dt, we find that

(28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure 28.20.
Note that the charge is zero at t ! 0 and approaches the maximum value C as t : #.
The current has its maximum value I0 ! /R at t ! 0 and decays exponentially to zero
as t : #. The quantity RC, which appears in the exponents of Equations 28.14 and
28.15, is called the time constant $ of the circuit. It represents the time interval
during which the current decreases to 1/e of its initial value; that is, in a time interval
$, I ! e"1I0 ! 0.368I 0. In a time interval 2$, I ! e" 2I 0 ! 0.135I0, and so forth.
Likewise, in a time interval $, the charge increases from zero to C [1 " e"1] ! 0.632C .%%

%
%

I(t) !
%
R

 e"t/RC

q(t ) ! C%(1 " e"t/RC) ! Q(1 " e"t/RC)

ln ! q " C%
"C% " ! "

t
RC

#q

0
  

dq
(q " C%)

 ! "
1

RC
  #t

0
  dt

dq
q " C % ! "

1
RC

 dt

%

dq
dt

!
C%
RC

"
q

RC
! "

q " C%
RC

dq
dt

!
%
R

"
q

RC
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Charge as a function of time for
a capacitor being charged

Current as a function of time for
a capacitor being charged

q

τ t

C

0.632C

(a)

I

τ t

0.368I0

(b)

I0 I0 = R

ε

ε
ε

=RCτ

Figure 28.20 (a) Plot of capacitor charge versus time for the circuit shown in Figure
28.19. After a time interval equal to one time constant $ has passed, the charge is 63.2%
of the maximum value C . The charge approaches its maximum value as t approaches
infinity. (b) Plot of current versus time for the circuit shown in Figure 28.19. The
current has its maximum value I0 ! /R at t ! 0 and decays to zero exponentially as t
approaches infinity. After a time interval equal to one time constant $ has passed, the
current is 36.8% of its initial value.

%

%
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5.10. RC CIRCUITS 71

(6) �c = RC is called the time constant. It’s the time it takes for
the charge to reach (1� 1

e) Q0 ⇥ 0.63Q0

(B) Discharging a charged capacitor:

Note: Direction of i is chosen so that the current represents the rate at
which the charge on the capacitor is decreasing.

� i = �dQ

dt

Loop Rule:
Vc � iR = 0

⇤ Q

C
+

dQ

dt
R = 0

⇤ dQ

dt
= � 1

RC
Q

Integrate both sides and use the initial condition:
t = 0, Q on capacitor = Q0

ˆ Q

Q0

dQ

Q
= � 1

RC

ˆ t

0

dt

⇤ ln Q� ln Q0 = � t

RC

⇤ ln
� Q

Q0

⇥
= � t

RC

⇤ Q

Q0
= e�t/RC

⇤ Q(t) = Q0 e�t/RC

(i = �dQ

dt
) ⇤ i(t) =

Q0

RC
e�t/RC

(At t = 0) ⇤ i(t = 0) =
1

R
· Q0

C⇧⌅⇤⌃
Initial P.D. across capacitor

i0 =
V0

R

(B) Discharging a charged capacitor

Direction of    is chosen so thati
Note ☛ 

Loop Rule

) i = �dQ

dt

Vc � iR = 0

) Q

C
+

dQ

dt
R = 0

) dQ

dt
= � 1

RC
Q

current represents rate at which charge on capacitor is decreasing
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Integrate both sides and use initial condition

on capacitor

Initial P.D. across capacitor

t0, Q = Q0Z Q

Q0

dQ

Q
= � 1

RC

Z t

0
dt

) ln Q � ln Q0 = � t

RC

) ln
⇣ Q

Q0

⌘
= � t

RC

) Q

Q0
= e�t/RC

) Q(t) = Q0 e
�t/RC

⇣
i = �dQ

dt

⌘
) i(t) =

Q0

RC
e�t/RC

( t = 0) ) i(t = 0) =
1

R
· Q0

C|{z}
At

i0 =
V0

R
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At t = RC = ⌧ Q(t = RC) =
1

e
Q0 ' 0.37Q0
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A semiconductor is a substance that can conduct electricity                                                               

making it a good medium for control of electrical current
under some conditions but not others  

N-type semiconductor carries current in form of negatively-charged 
in a manner similar to conduction of current in a wire

e�

P-type semiconductor carries current predominantly as     deficiencies
called holes

e�

A hole has a positive electric charge equal and opposite to charge on 

In a semiconductor material flow of holes occurs
in a direction opposite to flow of electrons

e�

5.4 Semiconductors

Specific properties of a semiconductor depend on impurities added to it 
(or dopants) 
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Acronym LED stands for Light Emitting Diode

A diode is a combination of two semiconductors                                                                                                                                                 

they can recombine to liberate energy

(region between n-type and p-type material)  

When electrons and holes meet in junction  

one of which is doped n-type and other p-type
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Each of the 12 edges of a cube contain a 1 Ω resistor

 Calculate the equivalent resistance between two opposing corners

5.5 Intuition
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1/28/15 10:35 AMThe Resistor Cube Equivalent Resistance Conundrum - RF Cafe

Page 2 of 6http://www.rfcafe.com/miscellany/factoids/kirts-cogitations-256.htm

Here is where the intuition comes into play. Color coding is used to help keep track of the resistors and associated nodes
(below). Due to symmetry, the potential (voltage) at the three nodes labeled "α" are equal. Since no current flows between
nodes with a potential difference of 0 V, they can be shorted together without affecting the circuit's integrity. The same can
be done for the nodes labeled "β."

Once you short those nodes, you obtain the equivalent circuit shown below. As you can see, there are two sets of three
resistors in parallel, in series with one set of six resistors in parallel. So, you have 1/3 Ω in series with 1/6 Ω in series with
1/3 Ω, which equals 5/6 Ω.

 

RF Cafe Method of Solving the Resistor Cube Problem

Now I will present my method of solving the resistor cube problem. The structure is repeated again here.

Your RF Cafe
Progenitor & Webmaster

Kirt Blattenberger...
single-handedly
redefining what an
engineering website
should be.

 Carpe Diem!
(Seize the Day!)

5th MOB: My USAF radar shop

Airplanes and Rockets: My
personal hobby website
Equine Kingdom: My daughter
Sally's horse riding website

Here is where the intuition comes into play                                                    
Color coding is used to help keep track of the resistors and associated nodes 
Due to symmetry P.D. at the three nodes labeled "α" are equal                          
Since no current flows between nodes with a potential difference of zero V,               
they can be shorted together without affecting the circuit's integrity                          
The same can be done for the nodes labeled "β"

Once you short those nodes ☛ you obtain the following equivalent circuit 
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1/28/15 10:35 AMThe Resistor Cube Equivalent Resistance Conundrum - RF Cafe

Page 2 of 6http://www.rfcafe.com/miscellany/factoids/kirts-cogitations-256.htm

Here is where the intuition comes into play. Color coding is used to help keep track of the resistors and associated nodes
(below). Due to symmetry, the potential (voltage) at the three nodes labeled "α" are equal. Since no current flows between
nodes with a potential difference of 0 V, they can be shorted together without affecting the circuit's integrity. The same can
be done for the nodes labeled "β."

Once you short those nodes, you obtain the equivalent circuit shown below. As you can see, there are two sets of three
resistors in parallel, in series with one set of six resistors in parallel. So, you have 1/3 Ω in series with 1/6 Ω in series with
1/3 Ω, which equals 5/6 Ω.

 

RF Cafe Method of Solving the Resistor Cube Problem

Now I will present my method of solving the resistor cube problem. The structure is repeated again here.

Your RF Cafe
Progenitor & Webmaster

Kirt Blattenberger...
single-handedly
redefining what an
engineering website
should be.

 Carpe Diem!
(Seize the Day!)

5th MOB: My USAF radar shop

Airplanes and Rockets: My
personal hobby website
Equine Kingdom: My daughter
Sally's horse riding website

There are two sets of three resistors in parallel 

So ☛ you have 1/3 Ω in series with 1/6 Ω in series with 1/3 Ω     which equals 5/6 Ω

in series with one set of six resistors in parallel 
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