Physics 169

Kítt Peak National Observatory

Thursday, February 22, 18

LUIS ANCHORDOQUI

4.2 Calculating Capacitance

4.2.1 Parallel-Plate Capacitor

(2) Recall •
$$\Delta V = V_+ - V_- = -\int_-^+ \vec{E} \cdot d\vec{s}$$
this integral is independent of path taken path is parallel to \vec{E} -field
$$\Delta V = -\int_-^+ \vec{E} \cdot d\vec{s}$$

$$= \int_+^- \vec{E} \cdot d\vec{s}$$

$$= \frac{Q}{\epsilon_0 A} \int_+^- ds$$
Length of path taken
$$= \frac{Q}{\epsilon_0 A} \cdot d$$
(3) $\therefore C = \frac{Q}{\Delta V} = \frac{\epsilon_0 A}{d}$

Consider two concentric cylindrical wires of inner and outer radii r_1 and r_2 Length of capacitor is L where $r_1 < r_2 \ll L$ (1) Using Gauss' law we determine that \vec{E} -field between conductors is

1

charge per unit length $1 \quad \Omega$

$$E = \frac{1}{2\pi\epsilon_0} \cdot \frac{1}{r} \hat{r} = \frac{1}{2\pi\epsilon_0} \frac{\zeta}{Lr} \hat{r}$$
Again \blacktriangleright we choose path of integration so that $d\vec{s} \parallel \hat{r} \parallel \vec{E}$

$$\therefore \quad \Delta V = \int_{r_1}^{r_2} E \, dr = \frac{Q}{2\pi\epsilon_0 L} \underbrace{\int_{r_1}^{r_2} \frac{dr}{r}}_{\ln(r_2/r_1)}$$

$$\therefore C = \frac{Q}{\Delta V} = 2\pi\epsilon_0 \frac{L}{\ln(r_2/r_1)}$$

4.2.3 Spherical Capacitor For space between two conductors $E = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q}{r^2}$ $r_1 < r < r_2$ $\Delta V = \int_{\perp} \vec{E} \cdot d\vec{s}$ $= \int_{r_1}^{r_2} \frac{1}{4\pi\epsilon_0} \cdot \frac{Q}{r^2} dr$ $\vec{E} \parallel \hat{r}$ Choose $d\vec{s}\parallel\hat{r}$ $= \frac{Q}{4\pi\epsilon_0} \left[\frac{1}{r_1} - \frac{1}{r_2} \right]$ $C = 4\pi\epsilon_0 \left[\frac{r_1 r_2}{r_2 - r_1} \right]$

4.4 Energy Storage in Capacitor

 $\Delta V = \frac{q}{C}$

+ q + + + + + + + +

(dq)

While charging a capacitor

positive charge is being moved

from **negative** plate to **positive** plate

ightarrow needs work done:

Suppose we move charge dq from -q to +q plate change in potential energy $racking dU = \Delta V \cdot dq = \frac{q}{C}dq$

Suppose we keep putting in a total charge $\,Q\,\,{\rm to}\,\,{\rm capacitor}\,\,$

total potential energy
$$\blacktriangleright U = \int dU = \int_0^Q \frac{q}{C} dq$$

 $\therefore U = \frac{Q^2}{2C} = \frac{1}{2} C \Delta V^2 \quad (\because Q = C \Delta V)$

Energy stored in capacitor is stored in electric field between plates

Electric **battery** - device consisting of 2 or more <u>electrochemical cells</u> that convert stored chemical energy into electrical energy

positive terminal (or <u>cathode</u>)

Each cell has:

negative terminal (or <u>anode</u>)

2 Capacitor connected to a battery

Potential difference between capacitor plates remains constant

$$U_{new} = \frac{1}{2} C_{new} \Delta V^2 = \frac{1}{2} \cdot \frac{1}{2} C_{old} \Delta V^2 = \frac{1}{2} U_{old}$$

 \therefore . In pulling plates apart work done by battery $\ < 0$

Summary 🖛

4.5 Dielectrics

Consider conductor being placed in an external E_0 -field

 E_0 In a conductor charges are free to move inside internal E'-field set up by these charges satisfies E' $E' = -E_0$ E_0 E = 0so that E-field inside conductor = 0For **dielectric** $rac{}$ atoms and molecules behave like **dip**gle in E-field

we can envision this so that in absence of \vec{E} -field direction of dipole in dielectric are randomly distributed

Aligned dipoles will generate an induced E'-field satisfying $|E'| < |E_0|$ We can observe aligned dipoles in form of **induced surface charge**

Dielectric Constant

When a dielectric is placed in an external $E_0-{\rm field}$ \vec{E} -field inside a dielectric is induced

$$\vec{E} = \frac{1}{\kappa}\vec{E}_0$$

$$\kappa \geq 1$$
 \blacktriangleright dielectric constant

Vacuum	$\kappa = 1$
Porcelain	$\kappa = 6.5$
Water	$\kappa \sim 80$
Perfect conductor	$\kappa ightarrow \infty$
Air	$\kappa = 1.00059$

Electric susceptibility and permittivity

It is customary in electromagnetism to **bury** effects of bound polarization in materials through electric flux displacement Polarization effects of a dielectric can be accounted for by defining \dot{D} as $\vec{D} = \epsilon_0 \vec{E} + \vec{P} \qquad [C/m^2]$ ก What we desire now is to know $ec{P}$ in terms of $ec{E}$ Basically **w** without knowing \vec{P} this theory is not very useful It has been found through experimentation that for many materials with small ${\cal E}$ $\vec{P} = \epsilon_0 \chi_e \vec{E}$ 2 $\chi_e \models$ electric susceptibility of material (dimensionless)

Substituting $\colored equation$ into $\colored equation$ gives $\vec{D} = \epsilon_0 \vec{E} + \epsilon_0 \chi_e \vec{E} = \epsilon_0 (1 + \chi_e) \vec{E}$ We can rewrite this as $\vec{D} = \epsilon \vec{E} \qquad [C/m^2]$

Constant ϵ is called **permittivity** of material

$$\epsilon = \kappa \epsilon_0 = (1 + \chi_e) \epsilon_0 \qquad [F/m]$$

with

$$\kappa = 1 + \chi_e$$

κ called
 κ called

4.6 Capacitor with Dielectric

Case I

$$\begin{array}{c|c} +Q \\ \bullet \end{array} & \begin{array}{c} -Q \\ \bullet \end{array} & \bullet \end{array} & \begin{array}{c} +Q \\ \bullet \end{array} & \begin{array}{c} -Q \\ \bullet \end{array} & \bullet \end{array} \\ \kappa \end{array}$$

Charge remains constant after dielectric is inserted

BUT
$$E_{\text{new}} = \frac{1}{\kappa} E_{\text{old}}$$
$$\therefore \quad \Delta V = Ed \Rightarrow \Delta V_{\text{new}} = \frac{1}{\kappa} \Delta V_{\text{old}}$$
$$\therefore \quad C = \frac{Q}{\Delta V} \Rightarrow C_{\text{new}} = \kappa C_{\text{old}}$$
For a parallel-plate capacitor with dielectric
$$C = \frac{\kappa \epsilon_0 A}{d}$$

We can also write
$$C = \frac{\epsilon A}{d}$$
 in general with
 $\epsilon = \kappa \epsilon_0 \quad repermittivity of dielectric
Recall $\epsilon_0 \quad repermittivity of vacuum$
Energy stored
 $U = \frac{Q^2}{2C}$
 $\therefore U_{new} = \frac{1}{\kappa} U_{old} < U_{old}$
 \therefore Work done in inserting dielectric $< 0$$

Г

Recall

For conductors $E = - \frac{\sigma}{2}$ $\Rightarrow \quad E = \frac{Q}{\epsilon_0 A} \qquad (\sigma \text{ charge per unit area} = Q/A)$ After insertion of dielectric $E' = \frac{Q'}{\kappa \epsilon_0 A}$ But \vec{E} -field remains constant $racking E' = E \Rightarrow \frac{Q'}{\kappa \epsilon_0 A} = \frac{Q}{\epsilon_0 A}$ $\Rightarrow Q' = \kappa Q > Q$ $C = Q/V \quad \Rightarrow \quad C' \to \kappa C$ Capacitor $U = \frac{1}{2}CV^2 \quad \Rightarrow \quad U' \to \kappa U$ Energy stored $U_{
m new} > U_{
m old}$ \therefore Work done to insert dielectric > 0

$$\Rightarrow \epsilon_0 \oint_S \vec{E'} \cdot d\vec{A} = Q - Q \left[1 - \frac{1}{\kappa} \right]$$

$$\Rightarrow \epsilon_0 \oint_S \vec{E'} \cdot d\vec{A} = \frac{Q}{\kappa}$$

$$\kappa \oint_S \vec{E'} \cdot d\vec{A} = \frac{Q}{\epsilon_0} \quad \Rightarrow \text{ Gauss' law in dielectric}$$

Note \Rightarrow
() This goes back to Gauss' law in vacuum with $E = \frac{E_0}{\kappa}$ for dielectric
(2) Only free charges need to be considered
even for dielectric where there are induced charges
(3) Another way to write
$$\oint_S \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon}$$

Energy stored with dielectric

Total energy stored
$$\qquad U = {1 \over 2} \, C V^2$$

With dielectric recall

$$C = \frac{\kappa \epsilon_0 A}{d}$$

$$V = Ed$$

... Energy stored per unit volume 🖛

$$u = \frac{U}{Ad} = \frac{1}{2}\kappa\epsilon_0 E^2$$

and so $racksim u_{dielectric} = \kappa u_{vacuum}$

... More energy is stored per unit volume in dielectric than in vacuum

