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4.1 Capacitors

A capacitor is a system of two conductors
that carries equal and opposite charges

A capacitor stores charge and energy in the form of electro-static field

</

We define capacitance as C = Unit = Farad(F)

() = Charge on one plate

V' = Potential difference between plates

Note w=

capacitor's C' is a constant that depends only on its shape and material

i.e. If we increase V' for a capacitor we increase () stored
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4.2 Calculating Capacitance

4.2.1 Parallel-Plate Capacitor
+0
/

d ds

eyl

B Q\/

Area of conducting

- o
@D Recall = |E| = — = o
€0 €A
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_|_
@ Recall w AV:V+—V_:—/ E - ds

this integral is independent of path taken
path is parallel to E -field

— / E - ds
_|_
_Q [ 4
N——
Length of path taken
@
— — . d
GQA
QA
RN
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4.2.2 Cylindrical Capacitor
Consider two concentric cylindrical wires

\ /4 of inner and outer radii 71 and 79

N Length of capacitor is [, where 1 < 12 < L
— Z @ Using Gauss’ law we determine that
ds :

J l \ FE -field between conductors is

. charge per unit length

i L1 T PQ g

E = = r
2meq T 2meq Lr

@ AV:/ E - d§
_|_

Again = we choose path of integration so that d5 || 7 || E

r2 T2
AV:/ Edr = @ @

27T€()L r1 T

1

N——
T2
C = = 2 = IH(E>
AV e In(ry/ry)
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4.2.3 Spherical Capacitor

V. /

\1/
/l\

For space between two conductors

E = 1 Q ry <r<nry
U

AV:/ E - ds
_|_

[ e
— . r
. Admey 12

{ 1 1 }

47’(’60 1 T2

C' = 4rmeg { nre }
To — T
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4.3 Capacitors in Parallel and Series

(a) Capacitors in Parallel = potential difference V =1 — 1}

[ e IS same across capacitors

BUT = Charge on each capacitor different

Total Charge Q= Q1 + Q-

— Cﬂ/ -+ C2V

Q= (Ci + Cr)V
Equivalent capacitance

.". For capacitors in parallel m C' = C7 + C3
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(b) Capacitors in Series = charge across capacitors are same

i I
vi [ v 1y,
Cl C2
BUT = pPotential difference (P.D.) across capacitors different
AV, =V, — V. = Q P.D. across ('
Ch
AVy = V. — V, = CQ P.D. across (5
2
.". Potential difference
AV =V, —V,
= AV; + AV,
1 1 Q
v =g+ ) - &
“\ey " &) T ¢
( = Equivalent Capacitance
111
cC Cy
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4.4 Energy Storage in Capacitor

rq While charging a capacitor

AV =
from negative plate to positive plate
—4 — NEEDS WORK DONE!

Suppose we move charge dq from —q to +¢q plate
4
C

Suppose we keep putting in a total charge () to capacitor

positive charge is being moved

Q=

change in potential energy ™ [/ = AV . dg = =dq

Q
total potential energy = [/ = / dU = / %dq
0

U = Q_2 — l(jm/? (.- Q = CAV)
2C 2

Energy stored in capacitor is stored in electric field between plates
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total energy stored

density u = =
total volume with E—field
U
T Ad
~~
Rectangular volume
_ “o4
¢= d
Recall w AV
E = — = AV = FEd
C ,  Volums
1 A (f"Q 1
— Ed )2 .
w= o (25 (BdP -
1 2
Energy per unit volume of electrostatic field m» u = 5 eoly

Note: In parallel-plate capacitor E-field is constant between plates

Thursday, February 22, 18

10




Example Changing capacitance by pulling plates apart

+ -0 +0 -0
S %q
< —>l l—
(D Isolated Capacitor d 2d
Charge on capacitor plates remains constant
BUT™ Crew = ol _ 1 old
2d , 2 ,
Unew © @ = 2Uo14q

B 2C(new B 26(old/z
In pulling plates apart work done W > 0
Summary =

Q — @ cC — ()2

v
v==%=v o o E > B (E=-)
%EOEQZ u o — U U — 2U (U= u-volume)
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Electric battery m device consisting of 2 or more electrochemical cells

that convert stored chemical energy into electrical energy

positive terminal (or cathode)

Each cell has:
negative terminal (or anode)

N M n N
gEE Ry, g Ry, gl Ry

+ . 2 .
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(@) Capacitor connected to a battery

Potential difference between capacitor plates remains constant

1 1 1 1
Unew — A Cnew AVQ — 5 X 0) AVQ — S Uo
9 9 9 ld 9 ld

. In pulling plates apart work done by battery < (

Summary =

Q — Q)2 cC — ()2
V = V E — FE/2
u = u/4 Uu — U/2
4 |4
[ 1
—
*Q|| A
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4.5 Dielectrics
Consider conductor being placed in an external F-field

In a conductor charges are free to move inside

ET T T internal E'-field set up by these charges satisfies

E = —F,

so that E-field inside conductor = ()

b

For dielectric = atoms and molecules behave like dipole in E-field
E

N
7

—p
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we can envision this so that in absence of F/ -field

direction of dipole in dielectric are randomly distributed

S e =
e By = ~~5a
- S a | \ — Ny — ES
o > + = -‘X
— > 2 \_‘ __&= S a—
.._:,k &' w0
X‘.) * %
B
> { » + EO X % X
p— T - e
£ ! -
=t = =+ =
 ak? b Sy &Y N - “f=:
+ = = =
i =+ 3= + I~ + = + O - = o +B
i — > i i D>< B
E, ) = > B
B -+ —~4 —-4 -4 + — Ly 4 =
=+ = + =i

Aligned dipoles will generate an induced E'field satisfying |E’'| < |FEy|

We can observe aligned dipoles in form of induced surface charge
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Dielectric Constant

When a dielectric is placed in an external Eg-field

FE -field inside a dielectric is induced

— 1—»
E = —Eq
K

Kk > 1 w dielectric constant

Example
Vacuum

Porcelain

Water

Perfect conductor

Air

k=1
K = 0.9
Kk ~ &0

K — OQ
x = 1.00059
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Polarization Vector

Consider polarized volume with density of 7's

LN
A = ” A
P2

N w number of molecules in AV

Macroscopic effects of polarized dielectric material are modeled by P
which really is average dipole moment per unit volume of material
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Electric susceptibility and permittivity

It is customary in electromagnetism to bury effects
of bound polarization in materials through electric flux displacement

Polarization effects of a dielectric can be accounted for by defining D as

—

D = eFE + P [C/m?] 1)

—

What we desire now is to know P in terms of E

Basically m without knowing P this theory is not very useful

It has been found through experimentation that

for many materials with small E

2/

ey

P = €0 Xe

Xe m electric susceptibility of material (dimensionless)

Thursday, February 22, 18 18




Substituting @ into @ gives

—

D = EoE_) + GOXGE — €0 (1 + XG)E
We can rewrite this as

D = ¢E [C/m?]

Constant € wm called permittivity of material

e = keg = (1 + Xe)€o F/m]
with
k=1 xe

relative permittivity of material (dimensionless)
K wm called
or dielectric constant
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4.6 Capacitor with Dielectric

Casel

—

N
7

+Q| |—Q
T

K
Charge remains constant affer dielectric is inserted

1
BUT =~ Ernew = —FEola
K
1
... AV — Ed i AVHGW — _AVO].d
K
c O = i — Cnew — KfCOld
AV
For a parallel-plate capacitor with dielectric
Kk €0A
="
d
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eA

We can also write (' = - in general with

€ = K€y w permittivity of dielectric
Recall €y w permittivity of vacuum

Energy stored 0’
U= -
2C

1
. Unew — EUold < Uold

Work done in inserting dielectric < 0
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Case Il Capacitor connected to battery

Voltage across capacitor plates remains constant after insertion of dielectric

—

E)-field inside capacitor remains constant

(- E =V/d)
BUT = How can E-field remain constant?

ANSWER = By having extra charge on capacitor plates
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Recall

For conductors

FEF = —

—~ F = Q (o charge per unit area= Q)/A)

€0A
After insertion of dielectric
E/ — Q/
K/GOA
= Q' Q
But E-field remains constant @ [/ = [ — — v
KJGQA EoA
= Q' =rQ > Q
Capacitor C=Q/V = C —=kC
Energy stored U = %C’V2 = U — kU

Unsew > Usla .-, Work done to insert dielectric > 0
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4.7 Gauss’ Law in Dielectric

Gauss’ law we've learned is applicable in vacuum only
Lets use capacitor as an example to examine Gauss’ law in dielectric

[Gaussian surface S [Gaussian surface S +Q
/o

FFFFFFFFFF F A
Z @ — Dielectric K YF B
_________ / - NN T -
-
Free charge on plates () +Q)
Induced charge on dielectric (0 FQ'
Gauss’ Law Gauss’ Law /
]{E.OMZQ %E/°dz§:Q—Q
’ 0 ) 0
. /
= Lo = A @ R A @
but E = @ ©
K
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From D @ @ Q' Q Q'

/436014 B EQA EoA

Q' 1
Induced charge density o' = Vi o|l-— . <o

where O is free charge density

Recall Gauss’ law in Dielectric

€0 ]{ E'-dA - Q — Q'
B | |
E-field in dielectric free charge induced charge

polarization charge

7§<€05+ﬁ>.d§:7§5.d§:¢g
S S
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;»eojiﬁ’-dfi’:@—@[ul]

K
= €) % E/ . dz‘Y = Q
g K
A — Q / . .
kKo B -dA= — = Gauss’ law in dielectric
S 0
Note = 5
p : : 0 : :
@ This goes back to Gauss’ law in vacuum with £ = — for dielectric

@ Only free charges need fo be considered
even for dielectric where there are induced charges

® Another way to write
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Energy stored with dielectric

Total energy stored U — EC’V2
2
With dielectric recall keg A
O —
d
V = Ed

.". Energy stored per unit volume

_ U _ 1 2
u=— = —keg
Ad 2
and SO Udielectric — K Uvacuum

". More energy is stored per unit volume in dielectric than in vacuum
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4.7 Electrostatic Boundary Conditions

Boundary between two media

n,

A narrow rectangular contour is used in law of conservation of energy
and a coinlike closed surface is used in Gauss law
for deriving boundary conditions for vectors E and LD respectively

Boundary condition for tangential components of vector F
By = EBoy ~
Boundary condition for normal components of vector D
(unit vector normal directed into medium 1)

—

Di-n—Dy-n=0c= D, — Do, =0
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