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4.1 Capacitors

A capacitor is a system of two conductors

A capacitor stores charge and energy in the form of electro-static field

We define capacitance as Unit ☛ Farad(F)

i.e. If we increase    for a capacitor  we  increase     stored

Note ☛
capacitor’s     is a constant that depends only on its shape and material

Charge on one plate

Potential difference between plates

C =
Q

V

Q =

V =

V Q

that carries equal and opposite charges

C
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4.2 Calculating Capacitance

Chapter 5

Capacitance and DC Circuits

5.1 Capacitors

A capacitor is a system of two conductors that carries equal and opposite
charges. A capacitor stores charge and energy in the form of electro-static field.

We define capacitance as

C =
Q

V
Unit: Farad(F)

where

Q = Charge on one plate

V = Potential di�erence between the plates

Note: The C of a capacitor is a constant that depends only on its shape and
material.
i.e. If we increase V for a capacitor, we can increase Q stored.

5.2 Calculating Capacitance

5.2.1 Parallel-Plate Capacitor4.2.1 Parallel-Plate Capacitor

① Recall ☛ | ~E| = �

✏0
=

Q

✏0A
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② Recall ☛ �V = V+ � V� = �
Z +

�
~E · d~s

this integral is independent of path taken
path is parallel to    -field~E

③ ) C =
Q

�V
=

✏0A

d

=
Q

✏0A

Z �

+
ds

| {z }

=
Q

✏0A
· d

Length of path taken

�V = �
Z +

�
~E · d~s

=

Z �

+

~E · d~s
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4.2.2  Cylindrical Capacitor

5.2. CALCULATING CAPACITANCE 52

(1) Recall from Chapter 3 note,

| ⇤E| =
⇥

�0
=

Q

�0A

(2) Recall from Chapter 4 note,

�V = V+ � V� = �
ˆ +

�

⇤E · d⇤s

Again, notice that this integral is independent of the path taken.
� We can take the path that is parallel to the ⇤E-field.

� �V =

ˆ �

+

⇤E · d⇤s

=

ˆ �

+

E · ds

=
Q

�0A

ˆ �

+

ds
⇤ ⇥� ⌅

Length of path taken

=
Q

�0A
· d

(3) � C =
Q

�V
=

�0A

d

5.2.2 Cylindrical Capacitor

Consider two concentric cylindrical wire
of innner and outer radii r1 and r2 re-
spectively. The length of the capacitor
is L where r1 < r2 ⇥ L.

Consider two concentric cylindrical wires

Length of capacitor is    where
r1 r2

r1 < r2 ⌧ LL

and outer radii    and     

① Using Gauss’ law we determine that                          

② �V =

Z �

+

~E · d~s

Again ☛ we choose path of integration so that

�V =

Z r2

r1

E dr =
Q

2⇡✏0L

Z r2

r1

dr

r
| {z }

)

ln(
r2
r1

)

) C =
Q

�V
= 2⇡✏0

L

ln(r2/r1)

charge per unit length

d~s k r̂ k ~E

 of inner

-field between conductors is ~E

~E =
1

2⇡✏0
· �
r
r̂ =

1

2⇡✏0

Q

Lr
r̂

r2
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4.2.3 Spherical Capacitor

For space between two conductors

d~s k r̂Choose

5.2. CALCULATING CAPACITANCE 53

(1) Using Gauss’ Law, we determine that the E-field between the conductors
is (cf. Chap3 note)

⌅E =
1

2⇤�0
· ⇥

r
r̂ =

1

2⇤�0
· Q

Lr
r̂

where ⇥ is charge per unit length

(2)

�V =

ˆ �

+

⌅E · d⌅s

Again, we choose the path of integration so that d⌅s ⇥ r̂ ⇥ ⌅E

� �V =

ˆ r2

r1

E dr =
Q

2⇤�0L

ˆ r2

r1

dr

r
⇧ ⌅⇤ ⌃

ln(
r2
r1

)

� C =
Q

�V
= 2⇤�0

L

ln(r2/r1)

5.2.3 Spherical Capacitor

For the space between the two conductors,

E =
1

4⇤�0
· Q

r2
; r1 < r < r2

�V =

ˆ �

+

⌅E · d⌅s

Choose d⌅s ⇥ r̂ =

ˆ r2

r1

1

4⇤�0
· Q

r2
dr

=
Q

4⇤�0

�
1

r1
� 1

r2

⇥

C = 4⇤�0

�
r1r2

r2 � r1

⇥

~E k r̂

�V =

Z �

+

~E · d~s

=

Z r2

r1

1

4⇡✏0
· Q
r2

dr

=
Q

4⇡✏0

h 1

r1
� 1

r2

i

C = 4⇡✏0
h r1r2
r2 � r1

i

r1 < r < r2E =
1

4⇡✏0
· Q
r2
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4.3 Capacitors in Parallel and Series

(a) Capacitors in Parallel

5.3. CAPACITORS IN COMBINATION 54

5.3 Capacitors in Combination

(a) Capacitors in Parallel

In this case, it’s the potential di�erence
V = Va � Vb that is the same across the
capacitor.

BUT: Charge on each capacitor di⇥erent

Total charge Q = Q1 + Q2

= C1V + C2V

Q = (C1 + C2)⇤ ⇥� ⌅
Equivalent capacitance

V

� For capacitors in parallel: C = C1 + C2

(b) Capacitors in Series

The charge across capacitors are
the same.

BUT: Potential di�erence (P.D.) across capacitors di⇥erent

�V1 = Va � Vc =
Q

C1
P.D. across C1

�V2 = Vc � Vb =
Q

C2
P.D. across C2

� Potential di⇥erence

�V = Va � Vb

= �V1 + �V2

�V = Q (
1

C1
+

1

C2
) =

Q

C

where C is the Equivalent Capacitance

�
1

C
=

1

C1
+

1

C2

potential difference
 is same across capacitors

V = Va � Vb

Charge on each capacitor differentBUT ☛

Total Charge Q = Q1 + Q2

= C1V + C2V

Q = (C1 + C2)| {z }V

C = C1 + C2

Equivalent capacitance

For capacitors in parallel ☛)

☛
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(b) Capacitors in Series

5.3. CAPACITORS IN COMBINATION 54

5.3 Capacitors in Combination

(a) Capacitors in Parallel

In this case, it’s the potential di�erence
V = Va � Vb that is the same across the
capacitor.

BUT: Charge on each capacitor di⇥erent

Total charge Q = Q1 + Q2

= C1V + C2V

Q = (C1 + C2)⇤ ⇥� ⌅
Equivalent capacitance

V

� For capacitors in parallel: C = C1 + C2

(b) Capacitors in Series

The charge across capacitors are
the same.

BUT: Potential di�erence (P.D.) across capacitors di⇥erent

�V1 = Va � Vc =
Q

C1
P.D. across C1

�V2 = Vc � Vb =
Q

C2
P.D. across C2

� Potential di⇥erence

�V = Va � Vb

= �V1 + �V2

�V = Q (
1

C1
+

1

C2
) =

Q

C

where C is the Equivalent Capacitance

�
1

C
=

1

C1
+

1

C2

BUT ☛

) Potential difference

      Equivalent Capacitance

) 1

C
=

1

C1
+

1

C2

�V = Q
⇣ 1

C1
+

1

C2

⌘
=

Q

C

�V = Va � Vb

= �V1 + �V2

Potential difference (P.D.) across capacitors different

charge across capacitors are same

P.D. across �V1 = Va � Vc =
Q

C1

�V2 = Vc � Vb =
Q

C2

C

C1

C2P.D. across 

☛

☛
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4.4 Energy Storage in Capacitor

5.4. ENERGY STORAGE IN CAPACITOR 55

5.4 Energy Storage in Capacitor

In charging a capacitor, positive charge
is being moved from the negative plate
to the positive plate.
⇥ NEEDS WORK DONE!

Suppose we move charge dq from �ve to +ve plate, change in potential energy

dU = �V · dq =
q

C
dq

Suppose we keep putting in a total charge Q to the capacitor, the total potential
energy

U =

ˆ
dU =

ˆ Q

0

q

C
dq

� U =
Q2

2C
=

1

2
C�V 2

(* Q=C�V )

The energy stored in the capacitor is stored in the electric field between the
plates.

Note : In a parallel-plate capacitor, the E-field is constant between the plates.

� We can consider the E-field energy

density u =
Total energy stored

Total volume with E-field

� u =
U

Ad⌥⌃⇧�
Rectangular volume

Recall �
⌅⌅⌅⌅⇤

⌅⌅⌅⌅⇥

C =
�0A

d

E =
�V

d
⇥ �V = Ed

� u =
1

2
(

C⇧ �⌥ ⌃
�0A

d
) · (

(�V )2
⇧�⌥⌃
Ed )2 ·

1
V olume⇧�⌥⌃

1

Ad

While charging a capacitor                                     

positive charge is being moved                       

from negative plate to positive plate
NEEDS WORK DONE!)

Suppose we move charge     from        to        platedq

change in potential energy ☛ dU = �V · dq =
q

C
dq

Suppose we keep putting in a total charge     to capacitor

total potential energy ☛

Q

U =

Z
dU =

Z Q

0

q

C
dq

U =
Q2

2C
=

1

2
C�V 2) (* Q = C�V )

Energy stored in capacitor is stored in electric field between plates

+q�q
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Note: In parallel-plate capacitor ☛    -field is constant between plates

Rectangular volume

) u =
U

Ad|{z}

Recall ☛

(
C =

✏0A

d

E =
�V

d
) �V = Ed

) u =
1

2
(

Cz}|{
✏0A

d
) · (

(�V )2

z}|{
Ed )2 ·

z}|{
1

Ad

1

Volume

Energy per unit volume of electrostatic field ☛ u =
1

2
✏0E

2

~E

density u =

total energy stored

total volume with

~E�field
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Example Changing capacitance by pulling plates apart

5.4. ENERGY STORAGE IN CAPACITOR 56

u =
1

2
�0E

2 Energy per unit volume
of the electrostatic field

⇥
can be generally applied

Example : Changing capacitance

(1) Isolated Capacitor:
Charge on the capacitor plates remains constant.

BUT: Cnew =
�0A

2d
=

1

2
Cold

� Unew =
Q2

2Cnew
=

Q2

2Cold/2
= 2Uold

� In pulling the plates apart, work done W > 0

Summary :
Q � Q C � C/2

(V = Q
C ) ⇤ V � 2V E � E (E = V

d )
1
2 �0E2 = u � u U � 2U (U = u · volume)

(2) Capacitor connected to a battery:
Potential di�erence between capacitor plates remains constant.

Unew =
1

2
Cnew�V 2 =

1

2
· 1

2
Cold�V 2 =

1

2
Uold

� In pulling the plates apart, work done by battery < 0

Summary :

Q � Q/2 C � C/2
V � V E � E/2
u � u/4 U � U/2

① Isolated Capacitor
Charge on capacitor plates remains constant
BUT ☛

In pulling plates apart  work done

 

Summary ☛
)

) U
new

=
Q2

2C
new

=
Q2

2C
old

/2
= 2U

old

C
new

=
✏0A

2d
=

1

2
C

old

W > 0

(V =
Q

C
) )

1

2
✏0E

2 =

Q ! Q

V ! 2V

u ! u U ! 2U

C ! C/2

(E =
V

d
)

(U = u · volume)

E ! E
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Each cell has:  

Electric battery ☛ device consisting of 2 or more electrochemical cells 
that convert stored chemical energy into electrical energy

 negative terminal (or anode)

positive terminal (or cathode) 
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② Capacitor connected to a battery

Potential difference between capacitor plates remains constant

Summary ☛

In pulling plates apart work done by battery

5.4. ENERGY STORAGE IN CAPACITOR 56

u =
1

2
�0E

2 Energy per unit volume
of the electrostatic field

⇥
can be generally applied

Example : Changing capacitance

(1) Isolated Capacitor:
Charge on the capacitor plates remains constant.

BUT: Cnew =
�0A

2d
=

1

2
Cold

� Unew =
Q2

2Cnew
=

Q2

2Cold/2
= 2Uold

� In pulling the plates apart, work done W > 0

Summary :
Q � Q C � C/2

(V = Q
C ) ⇤ V � 2V E � E (E = V

d )
1
2 �0E2 = u � u U � 2U (U = u · volume)

(2) Capacitor connected to a battery:
Potential di�erence between capacitor plates remains constant.

Unew =
1

2
Cnew�V 2 =

1

2
· 1

2
Cold�V 2 =

1

2
Uold

� In pulling the plates apart, work done by battery < 0

Summary :

Q � Q/2 C � C/2
V � V E � E/2
u � u/4 U � U/2

) < 0

U
new

=
1

2
C

new

�V 2 =
1

2
· 1

2
C

old

�V 2 =
1

2
U
old

Q ! Q/2

V ! V

u ! u/4 U ! U/2

E ! E/2

C ! C/2
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4.5 Dielectrics

Consider conductor being placed in an external     -fieldE0

5.5. DIELECTRIC CONSTANT 57

5.5 Dielectric Constant

We first recall the case for a conductor being placed in an external E-field E0.

In a conductor, charges are free to move
inside so that the internal E-field E � set
up by these charges

E � = �E0

so that E-field inside conductor = 0.

Generally, for dielectric, the atoms and
molecules behave like a dipole in an E-field.

Or, we can envision this so that in the absence of E-field, the direction of dipole
in the dielectric are randomly distributed.

5.5. DIELECTRIC CONSTANT 57

5.5 Dielectric Constant

We first recall the case for a conductor being placed in an external E-field E0.

In a conductor, charges are free to move
inside so that the internal E-field E � set
up by these charges

E � = �E0

so that E-field inside conductor = 0.

Generally, for dielectric, the atoms and
molecules behave like a dipole in an E-field.

Or, we can envision this so that in the absence of E-field, the direction of dipole
in the dielectric are randomly distributed.

5.5. DIELECTRIC CONSTANT 57

5.5 Dielectric Constant

We first recall the case for a conductor being placed in an external E-field E0.

In a conductor, charges are free to move
inside so that the internal E-field E � set
up by these charges

E � = �E0

so that E-field inside conductor = 0.

Generally, for dielectric, the atoms and
molecules behave like a dipole in an E-field.

Or, we can envision this so that in the absence of E-field, the direction of dipole
in the dielectric are randomly distributed.

For dielectric ☛  atoms and molecules behave like dipole in    -field

so that E-field inside conductor = 0

In a conductor charges are free to move inside
E0 internal    -field set up by these charges satisfies

E0 = �E0

~E
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5.5. DIELECTRIC CONSTANT 57

5.5 Dielectric Constant

We first recall the case for a conductor being placed in an external E-field E0.

In a conductor, charges are free to move
inside so that the internal E-field E � set
up by these charges

E � = �E0

so that E-field inside conductor = 0.

Generally, for dielectric, the atoms and
molecules behave like a dipole in an E-field.

Or, we can envision this so that in the absence of E-field, the direction of dipole
in the dielectric are randomly distributed.

we can envision this so that in absence of   -field 

direction of dipole in dielectric are randomly distributed

Aligned dipoles will generate an induced   -field satisfyingE0 |E0| < |E0|

We can observe aligned dipoles in form of induced surface charge

~E
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Dielectric Constant

Example

When a dielectric is placed in an external    -field     E0

☛ dielectric constant

Vacuum

Porcelain

Perfect conductor
Water

Air

  -field inside a dielectric is induced~E

~E =
1


~E0

 � 1

 = 1

 = 6.5

 ⇠ 80

 ! 1
 = 1.00059
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EE 692 Lecture 2 Page 5 of 9  

where qlm is the multipole moment coefficients and lmY  is the 
spherical harmonic function. 
 
After a bit of manipulation, this equation reduces to 

 � � 3
0

1 H.O.T.
4

e
e

Q p rr
r rSH

�§ ·)  � �¨ ¸
© ¹

 

The higher order terms in this expression decay as 1/r4 or 
quicker. Hence, the potential produced by these terms is much 
smaller than the 1/r2 term. 
 
Further, if the entire distribution of charge is neutral so that 
Qe=0, then the potential is dominated by the 1/r2 term, which is 
the electric dipole term. That is why we model the bound charge 
in a material by the dipole term only. 
 
 

Polarization Vector 
 
Consider a polarized volume with a density of p ’s: 

ip

v'

 
A polarization vector P  is defined as 

~pi

�V

Polarization Vector

Consider polarized volume with density of ~p 0s ☛

 Polarization vector      defined as~P

~P = lim
�V!0

PN
i=1 ~pi
�V

[C/m2]

      ☛ number of molecules in 

Macroscopic effects of polarized dielectric material are modeled by     
which really is average dipole moment per unit volume of material

~P

�VN
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It is customary in electromagnetism to bury effects                         
of bound polarization in materials through electric flux displacement

Polarization effects of a dielectric can be accounted for by defining    as~D

~D = ✏0 ~E + ~P [C/m2]

Electric susceptibility and permittivity

What we desire now is to know     in terms of

Basically ☛ without knowing     this theory is not very useful

It has been found through experimentation that
for many materials with small   

~P = ✏0�e
~E

�e

~P

~P

~E

~E

      ☛ electric susceptibility of material (dimensionless)

❶

❷
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✏ = ✏0 = (1 + �e)✏0 [F/m]

 = 1 + �e

Substituting	❷	into	❶	gives

We can rewrite this as

Constant    ☛ called permittivity of material

with

 relative permittivity of material (dimensionless)

✏

~D = ✏0 ~E + ✏0�e
~E = ✏0 (1 + �e) ~E

~D = ✏ ~E [C/m2]

 ☛
or dielectric constant

called

19Thursday, February 22, 18



4.6 Capacitor with Dielectric

Case I

5.6. CAPACITOR WITH DIELECTRIC 58

The aligned dipoles will generate an induced E-field E �, where |E �| < |E0|.
We can observe the aligned dipoles in the form of induced surface charge.

Dielectric Constant : When a dielectric is placed in an external E-field E0,
the E-field inside a dielectric is induced.
E-field in dielectric

E =
1

Ke
E0

Ke = dielectric constant � 1

Example :

Vacuum Ke = 1
Porcelain Ke = 6.5
Water Ke ⇥ 80
Perfect conductor Ke =⌅
Air Ke = 1.00059

5.6 Capacitor with Dielectric

Case I :

Again, the charge remains constant after dielectric is inserted.

BUT: Enew =
1

Ke
Eold

� �V = Ed ⇤ �Vnew =
1

Ke
�Vold

� C =
Q

�V
⇤ Cnew = Ke Cold

For a parallel-plate capacitor with dielectric:

C =
Ke�0A

d

Charge remains constant after dielectric is inserted

For a parallel-plate capacitor with dielectric

BUT ☛



E
new

=
1


E

old

) �V = Ed ) �V
new

=
1


�V

old

) C =
Q

�V
) C

new

= C
old

C =
 ✏0A

d
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We can also write

☛ permittivity of dielectric

in general withC =
✏A

d

Recall       ☛  permittivity of vacuum

Energy stored

Work done in inserting dielectric) < 0

U =
Q2

2C

✏ =  ✏0
✏0

) U
new

=
1


U
old

< U
old
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Case II Capacitor connected to battery

5.6. CAPACITOR WITH DIELECTRIC 59

We can also write C =
�A

d
in general with

� = Ke �0 (called permittivity of dielectric)

(Recall �0 = Permittivity of free space)

Energy stored U =
Q2

2C
;

� Unew =
1

Ke
Uold < Uold

� Work done in inserting dielectric < 0

Case II : Capacitor connected to a battery

Voltage across capacitor plates remains constant after insertion of dielec-
tric.
In both scenarios, the E-field inside capacitor remains constant
(⇥ E = V/d)

BUT: How can E-field remain constant?
ANSWER: By having extra charge on capacitor plates.

Recall: For conductors,

E =
⇥

�0
(Chapter 3 note)

� E =
Q

�0A
(� = charge per unit area = Q/A)

After insertion of dielectric:

E � =
E

Ke
=

Q�

Ke�0A

But E-field remains constant!

� E � = E � Q�

Ke�0A
=

Q

�0A

� Q� = KeQ > Q

Voltage across capacitor plates remains constant after insertion of dielectric

   -field inside capacitor remains constant

(* E = V/d)

BUT ☛

ANSWER ☛

How can E-field remain constant?

By having extra charge on capacitor plates



~E
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For conductors
Recall

charge per unit area 

E =
�

✏0

) E =
Q

✏0A
(� = Q/A)

After insertion of dielectric

But   -field remains constant ☛

Capacitor

Energy stored

Work done to insert dielectric > 0)

E0 =
Q0

✏0A

E0 = E ) Q0

✏0A
=

Q

✏0A
~E

) Q0 = Q > Q

C = Q/V ) C 0 ! C

U =
1

2
CV 2 ) U 0 ! U

U
new

> U
old
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4.7 Gauss’ Law in Dielectric

Gauss’ law we’ve learned is applicable in vacuum only
Let’s use capacitor as an example to examine Gauss’ law in dielectric

5.7. GAUSS’ LAW IN DIELECTRIC 60

� Capacitor C = Q/V ⇧ C � ⇤ KeC
Energy stored U = 1

2 CV 2 ⇧ U � ⇤ KeU
(i.e. Unew > Uold)

� Work done to insert dielectric > 0

5.7 Gauss’ Law in Dielectric

The Gauss’ Law we’ve learned is applicable in vacuum only. Let’s use the capac-
itor as an example to examine Gauss’ Law in dielectric.

Free charge
on plates

±Q ±Q

Induced charge
on dielectric

0 ⇥Q�

Gauss’ Law Gauss’ Law:˛
S

⇤E · d ⇤A =
Q

�0

˛
S

⇤E � · d ⇤A =
Q�Q�

�0

⇧ E0 =
Q

�0A
(1) � E � =

Q�Q�

�0A
(2)

However, we define E � =
E0

Ke
(3)

From (1), (2), (3) �
Q

Ke�0A
=

Q

�0A
� Q�

�0A

� Induced charge density ⇥� =
Q�

A
= ⇥

�
1� 1

Ke

⇥
< ⇥

where ⇥ is free charge density.

Recall Gauss’ Law in Dielectric:

�0

˛
S

⇤E � · d ⇤A = Q � Q�

⌅ ⌅ ⌅
E-field in dielectric free charge induced charge

Free charge on plates
Induced charge on dielectric

Gauss’ Law Gauss’ Law

±Q±Q

0

I

S

~E · d ~A =
Q

✏0

I

S

~E0 · d ~A =
Q�Q0

✏0

) E0 =
Q

✏0A
) E0 =

Q�Q0

✏0A

but

①

③

②



E0 =
E0



⌥Q0
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From ① ② ③

Induced charge density

where    is free charge density

)

�

Recall Gauss’ law in Dielectric

E-field in dielectric         free charge           induced charge 

✏0

I

S

~E0 · d ~A = Q � Q0

Q0

✏0A
=

Q

✏0A
� Q0

✏0A

�0 =
Q0

A
= �

✓
1� 1



◆
< �

I

S
(✏0 ~E + ~P ) · d~S =

I

S

~D · d~S = Q

polarization charge
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☛ Gauss’ law in dielectric

Note ☛
 ① This goes back to Gauss’ law in vacuum with               for dielectric

②  Only free charges need to be considered 
there are induced charges

③ Another way to write
I

S

~E · d ~A =
Q

✏

even for dielectric where

) ✏0

I

S

~E0 · d ~A = Q�Q


1� 1



�

) ✏0

I

S

~E0 · d ~A =
Q





I

S

~E0 · d ~A =
Q

✏0

E =
E0


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Energy stored with dielectric

Total energy stored

With dielectric recall

Energy stored per unit volume ☛

More energy is stored per unit volume in dielectric than in vacuum

and so ☛

U =
1

2
CV 2

V = Ed

)

)

C =
✏0A

d

u =
U

Ad
=

1

2
✏0E

2

udielectric = uvacuum
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4.7 Electrostatic Boundary Conditions

A narrow rectangular contour is used in law of conservation of energy 
and a coinlike closed surface is used in Gauss law                         
for deriving boundary conditions for vectors     and     respectively

Boundary between two media

~E ~D

E1t = E2t

Boundary condition for tangential components of vector  ~E

Boundary condition for normal components of vector ~D
(unit vector normal directed into medium 1)

~D1 · n̂� ~D2 · n̂ = � ) D1n �D2n = �
28Thursday, February 22, 18



29Thursday, February 22, 18



30Thursday, February 22, 18


