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3.1 Potential Energy and Conservative Forces

Electric force is a conservative force

Work done by electric force    as  
charge moves infinitesimal distance    
along

~F

d~s

PathA = dW

d~s PathA

dW = ~F · d~s

W =

Z 2

1

~F · d~s
PathA

PathA

Z 2

1
= Path Integral

Total work done    by force    in moving particle from Point 1 to Point 2W ~F)

25.3 Electric Potential and Potential Energy
Due to Point Charges

In Section 23.4 we discussed the fact that an isolated positive point charge q produces
an electric field that is directed radially outward from the charge. To find the electric
potential at a point located a distance r from the charge, we begin with the general
expression for potential difference:

where A and B are the two arbitrary points shown in Figure 25.7. At any point in
space, the electric field due to the point charge is (Eq. 23.9), where is
a unit vector directed from the charge toward the point. The quantity E ! ds can be
expressed as

Because the magnitude of is 1, the dot product ! ds " ds cos #, where # is the angle
between and ds. Furthermore, ds cos # is the projection of ds onto r; thus, ds cos # "
dr. That is, any displacement ds along the path from point A to point B produces a
change dr in the magnitude of r, the position vector of the point relative to the charge
creating the field. Making these substitutions, we find that E ! ds " (keq/r2)dr ; hence,
the expression for the potential difference becomes

(25.10)

This equation shows us that the integral of E ! ds is independent of the path between
points A and B. Multiplying by a charge q0 that moves between points A and B, we see
that the integral of q0E ! ds is also independent of path. This latter integral is the
work done by the electric force, which tells us that the electric force is conservative
(see Section 8.3). We define a field that is related to a conservative force as a conserv-
ative field. Thus, Equation 25.10 tells us that the electric field of a fixed point charge
is conservative. Furthermore, Equation 25.10 expresses the important result that the
potential difference between any two points A and B in a field created by a point
charge depends only on the radial coordinates rA and rB . It is customary to choose the
reference of electric potential for a point charge to be V " 0 at rA " $. With this
reference choice, the electric potential created by a point charge at any distance r
from the charge is

(25.11)V " ke   
q
r
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charge. Part (B) of the example would be meaningless if
the proton is not present. A change in potential energy is
related to a change in the charge–field system. In the
absence of the proton, the system of the electric field alone
does not change.

Answer Part (A) of the example would remain exactly the
same because the potential difference between points A
and B is established by the source charges in the parallel
plates. The potential difference does not depend on the
presence of the proton, which plays the role of a test

At the Interactive Worked Example link at http://www.pse6.com, you can predict and observe the speed of the proton as it
arrives at the negative plate for random values of the electric field.

dr ds
θ

r

A

rB

B

q

r
rA

ˆ

Figure 25.7 The potential differ-
ence between points A and B due to
a point charge q depends only on the
initial and final radial coordinates rA
and rB . The two dashed circles rep-
resent intersections of spherical
equipotential surfaces with the page.

▲ PITFALL PREVENTION 
25.4 Similar Equation

Warning
Do not confuse Equation 25.11
for the electric potential of a
point charge with Equation 23.9
for the electric field of a point
charge. Potential is proportional
to 1/r, while the field is propor-
tional to 1/r 2. The effect of a
charge on the space surrounding
it can be described in two ways.
The charge sets up a vector elec-
tric field E, which is related to
the force experienced by a test
charge placed in the field. It also
sets up a scalar potential V, which
is related to the potential energy
of the two-charge system when a
test charge is placed in the field.

1

1

2

2

path A

Note ☛    is in tangent direction of curve of 

= Integration over Path A from point 1 to point 2

2Tuesday, February 16, 21



DEFINITION

A force is conservative if work done on a particle by force is 
independent of path taken

4.1. POTENTIAL ENERGY AND CONSERVATIVE FORCES 37

DEFINITION: A force is conservative if the work done on a particle by
the force is independent of the path taken.

� For conservative forces,
ˆ 2

1

�F · d�s =

ˆ 2

1

�F · d�s

Path A Path B

Let’s consider a path starting at point
1 to 2 through Path A and from 2 to 1
through Path C

Work done =

ˆ 2

1

�F · d�s +

ˆ 1

2

�F · d�s

Path A Path C

=

ˆ 2

1

�F · d�s �
ˆ 2

1

�F · d�s

Path A Path B

DEFINITION: The work done by a conservative force on a particle when it
moves around a closed path returning to its initial position is zero.

MATHEMATICALLY, �⇤⇥ �F = 0 everywhere for conservative force �F

Conclusion: Since the work done by a conservative force �F is path-independent,
we can define a quantity, potential energy, that depends only on the
position of the particle.

Convention: We define potential energy U such that

dU = �W = �
ˆ

�F · d�s

� For particle moving from 1 to 2ˆ 2

1

dU = U2 � U1 = �
ˆ 2

1

�F · d�s

where U1, U2 are potential energy at position 1, 2.
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DEFINITION: The work done by a conservative force on a particle when it
moves around a closed path returning to its initial position is zero.

MATHEMATICALLY, �⇤⇥ �F = 0 everywhere for conservative force �F

Conclusion: Since the work done by a conservative force �F is path-independent,
we can define a quantity, potential energy, that depends only on the
position of the particle.

Convention: We define potential energy U such that

dU = �W = �
ˆ

�F · d�s

� For particle moving from 1 to 2ˆ 2

1

dU = U2 � U1 = �
ˆ 2

1

�F · d�s

where U1, U2 are potential energy at position 1, 2.

For conservative forces)

PathA

PathA

PathA PathC

PathB

PathB

Z 2

1

~F · d~s =

Z 2

1

~F · d~s

Let’s consider a path starting at point 1 to 2 
through          and from 2 to 1 through PathCPathA

=

Z 2

1

~F · d~s �
Z 2

1

~F · d~s

Work done =

Z 2

1

~F · d~s +

Z 1

2

~F · d~s
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Work done by a conservative force on a particle                                
DEFINITION

Z 2

1
dU = U2 � U1 = �

Z 2

1

~F · d~s

dU = �W = �
Z

~F · d~s

Since work done by a conservative force    is path-independent 
we can define a quantity: potential energy 

~F

We define potential energy    such thatConvention

Conclusion

U

For particle moving from 1 to 2)

where           are potential energy at position 1, 2U1, U2

when it moves around a closed path
returning to its initial position is zero

that depends only on position of particle

Alternative

4Tuesday, February 16, 21



4.1. POTENTIAL ENERGY AND CONSERVATIVE FORCES 38

Example:

Suppose charge q2

moves from point 1
to 2.

From definition: U2 � U1 = �
ˆ 2

1

⇤F · d⇤r

= �
ˆ r2

r1

F dr ( � ⇤F ⇥ d⇤r )

= �
ˆ r2

r1

1

4⇥�0

q1q2

r2
dr

( �
ˆ

dr

r2
= �1

r
+ C ) =

1

4⇥�0

q1q2

r

�����

r2

r1

��W = �U =
1

4⇥�0
q1q2

⇥
1

r2
� 1

r1

⇤

Note:

(1) This result is generally true for 2-Dimension or 3-D motion.

(2) If q2 moves away from q1,
then r2 > r1, we have

• If q1, q2 are of same sign,
then �U < 0, �W > 0
(�W = Work done by electric repulsive force)

• If q1, q2 are of di�erent sign,
then �U > 0, �W < 0
(�W = Work done by electric attractive force)

(3) If q2 moves towards q1,
then r2 < r1, we have

• If q1, q2 are of same sign,
then �U 0, �W 0

• If q1, q2 are of di�erent sign,
then �U 0, �W 0

Example

Suppose charge     moves           
from point 1 to 2

q2

From definition ☛

= �
Z r2

r1

F dr (* ~F k d~r)

U2 � U1 = �
Z 2

1

~F · d~r

= �
Z r2

r1

1

4⇡✏0

q1q2
r2

dr

��W = �U =
1

4⇡✏0
q1q2

⇣ 1

r2
� 1

r1

⌘

=
1

4⇡✏0

q1q2
r2

����
r2

r1
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① This result is generally true for 2-D and/or 3-D motion

Note

② If     moves away from      then             we have

③ If     moves towards     then             we have

q2 q1 r2 > r1

r2 < r1

q1, q2

q1, q2

q1, q2

q1, q2

�U < 0, �W > 0❏If         are of same sign then

❏If         are of different sign then

❏If         are of same sign then

❏If         are of different sign then

�U > 0, �W < 0

q2 q1

Work done by electric repulsive force)�W =(

Work done by electric attractive force)(�W =

�U > 0, �W < 0

�U < 0, �W > 0
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④ Note: It is the difference in potential energy that is important

⑤ Conservation of Mechanical Energy

REFERENCE POINT U(r = 1) = 0

) U1 � U1 =
1

4⇡✏0
q1q2

⇣ 1

r2
� 1

r2

⌘

1
U(r) =

1

4⇡✏0
· q1q2

r

If        same sign then               for all 
If         opposite sign then              for all

U(r) > 0

U(r) < 0q1, q2

q1, q2 r

r

For a system of charges with no external force,

E = K + U = Constant

Kinetic Energy Potential Energy

or �E = �K + �U = 0

r1
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Potential Energy of a System of Charges
P.E. of 3 chargesExample q1, q2, q3

Start 

Step 1

Step 2

Step 3

q1, q2, q3 r = 1, U = 0all at

4.1. POTENTIAL ENERGY AND CONSERVATIVE FORCES 39

(4) Note: It is the di�erence in potential energy that is important.

REFERENCE POINT: U(r =⌃) = 0

� U� � U1 =
1

4⇥�0
q1q2

�
1

r2
� 1

r1

⇥

⇥
⌃

U(r) =
1

4⇥�0
· q1q2

r

If q1, q2 same sign, then U(r) > 0 for all r
If q1, q2 opposite sign, then U(r) < 0 for all r

(5) Conservation of Mechanical Energy:
For a system of charges with no external force,

E = K + U = Constant
⇧ ⇤

(Kinetic Energy) (Potential Energy)

or �E = �K + �U = 0

Potential Energy of A System of Charges

Example: P.E. of 3 charges q1, q2, q3

Start: q1, q2, q3 all at r =⌃, U = 0

Step1: Move q1 from ⌃ to its position ⌅ U = 0

Step2:

Move q2 from ⌃ to new position ⌅

U =
1

4⇥�0

q1q2

r12

Step3:

Move q3 from ⌃ to new position ⌅ Total P.E.

U =
1

4⇥�0

⇤
q1q2
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q1q3

r13
+

q2q3

r23

⌅

Step4: What if there are 4 charges?

Move     from     to its position 

1

1

1
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q2

q3

Move      from     to new position 

Move     from     to new position 

) U = 0

) U =
1

4⇡✏0

q1q2
r12

4.1. POTENTIAL ENERGY AND CONSERVATIVE FORCES 39

(4) Note: It is the di�erence in potential energy that is important.
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r13
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3.2 Electric Potential
Let   be charge at the center and  consider its effect on test chargeq q0

DEFINITION We define electric potential    so thatV

�V =
�U

q0
=

��W

q0
(      is P.E. per unit charge)) V

❍ Similarly ☛ we take V (r = 1) = 0

❍ Electric Potential is a scalar

❍ Unit ☛

❍ For a single point charge

❍ Energy Unit ☛

Volt(V ) = Joules/Coulomb

V (r) =
1

4⇡✏0
· q
r

�U = q�V

elecrton� volt (eV) = 1.6⇥ 10

�19

J| {z }
charge of electron/C
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Potential For A System of Charges

4.2. ELECTRIC POTENTIAL 40

4.2 Electric Potential

Consider a charge q at center, we consider its e⇥ect on test charge q0

DEFINITION: We define electric potential V so that

�V =
�U

q0
=
��W

q0

( � V is the P.E. per unit charge)

• Similarly, we take V (r =⇤) = 0.

• Electric Potential is a scalar.

• Unit: V olt(V ) = Joules/Coulomb

• For a single point charge:

V (r) =
1

4⇥�0
· q

r

• Energy Unit: �U = q�V

electron� V olt(eV ) = 1.6⇥ 10�19
⇧ ⌅⇤ ⌃

charge of electron

J

Potential For A System of Charges

For a total of N point charges, the po-
tential V at any point P can be derived
from the principle of superposition.

Recall that potential due to q1 at

point P: V1 =
1

4⇥�0
· q1

r1

� Total potential at point P due to N charges:

V = V1 + V2 + · · · + VN (principle of superposition)

=
1

4⇥�0

�
q1

r1
+

q2

r2
+ · · · + qN

rN

⇥

For a total of    point charges  
potential    at any point                          
can be derived from                     
principle of superposition

N
V P

Recall that potential due to    at point Pq1

V1 =
1

4⇡✏0
· q1
r1

Total potential at point    due to    chargesP N)

V = V1 + V2 + · · · + VN

principle of superposition

=
1

4⇡✏0

hq1
r1

+
q2
r2

+ · · · qN
rN

i

V =
1

4⇡✏0

NX

i=1

qi
ri
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For        we have a sum of vectors
For        we have a sum of scalars

Note

Example

Potential of an electric dipole

V, U

~E, ~F

4.2. ELECTRIC POTENTIAL 41

V =
1

4⇥�0

N⇤

i=1

qi

ri

Note: For ⇤E, ⇤F , we have a sum of vectors
For V, U , we have a sum of scalars

Example: Potential of an electric dipole

Consider the potential of
point P at distance x > d

2
from dipole.

V =
1

4⇥�0

�
+q

x� d
2

+
�q

x + d
2

⇥

Special Limiting Case: x⇤ d

1

x⇥ d
2

=
1

x
· 1

1⇥ d
2x

⌅ 1

x

�

1 ± d

2x

⇥

� V =
1

4⇥�0
· q

x

�

1 +
d

2x
� (1� d

2x
)

⇥

V =
p

4⇥�0x2
(Recall p = qd)

For a point charge E ⇧ 1

r2
V ⇧ 1

r

For a dipole E ⇧ 1

r3
V ⇧ 1

r2

For a quadrupole E ⇧ 1

r4
V ⇧ 1

r3

Electric Potential of Continuous Charge Distribution

For any charge distribution, we write the electri-
cal potential dV due to infinitesimal charge dq:

dV =
1

4⇥�0
· dq

r

Consider potential of point   at distance            from dipole P
x >

d

2

V =
1

4⇡✏0

h +q

x� d
2

+
�q

x+ d
2

i
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Special Limiting Case ☛

) V =
1

4⇡✏0
· q
x

h
1 +

d

2x
� (1� d

2x
)
i

V =
p

4⇡✏0x2
p = qdRecall ☛

x � d

1

x⌥ d

2

=
1

x

· 1

1⌥ d

2x

' 1

x

h
1± d

2x

i

For a point charge

For a dipole

For a quadrupole

E / 1

r2
V / 1

r

E / 1

r3
V / 1

r2

E / 1

r4
V / 1

r3

12Tuesday, February 16, 21



Electric Potential of Continuous Charge Distribution

4.2. ELECTRIC POTENTIAL 41

V =
1

4⇥�0

N⇤

i=1

qi

ri

Note: For ⇤E, ⇤F , we have a sum of vectors
For V, U , we have a sum of scalars

Example: Potential of an electric dipole

Consider the potential of
point P at distance x > d

2
from dipole.

V =
1

4⇥�0

�
+q

x� d
2

+
�q

x + d
2

⇥

Special Limiting Case: x⇤ d

1

x⇥ d
2

=
1

x
· 1

1⇥ d
2x

⌅ 1

x

�

1 ± d

2x

⇥

� V =
1

4⇥�0
· q

x

�

1 +
d

2x
� (1� d

2x
)

⇥

V =
p

4⇥�0x2
(Recall p = qd)

For a point charge E ⇧ 1

r2
V ⇧ 1

r

For a dipole E ⇧ 1

r3
V ⇧ 1

r2

For a quadrupole E ⇧ 1

r4
V ⇧ 1

r3

Electric Potential of Continuous Charge Distribution

For any charge distribution, we write the electri-
cal potential dV due to infinitesimal charge dq:

dV =
1

4⇥�0
· dq

r

For any charge distribution
potential    dV

dq

dV =
1

4⇡✏0
· dq
r

) V =

Z
1

4⇡✏0
· dq
r

charge distribution

Similar to previous examples on E-field for case of uniform charge distribution

) ) dq = � dx

1-D

2-D

3-D

)

)

long road

charge sheet

uniformly charge body ) dq = ⇢ dV

) dq = � dA

due to infinitesimal charge
  we write electrical

13Tuesday, February 16, 21



Example (1)
Uniformly-charged ring

4.2. ELECTRIC POTENTIAL 42

� V =

ˆ
charge

distribution

1

4⌅�0
· dq

r

Similar to the previous examples on E-field, for the case of uniform charge
distribution:

1-D ⇥ long rod ⇥ dq = ⇤ dx
2-D ⇥ charge sheet ⇥ dq = ⌃ dA
3-D ⇥ uniformly charged body ⇥ dq = ⇧ dV

Example (1): Uniformly-charged ring

Length of the infinitesimal ring element
= ds = Rd⇥

� charge dq = ⇤ ds

= ⇤R d⇥

dV =
1

4⌅�0
· dq

r
=

1

4⌅�0
· ⇤R d⇥⇤

R2 + z2

The integration is around the entire ring.

� V =

ˆ
ring

dV

=

ˆ 2�

0

1

4⌅�0
· ⇤R d⇥⇤

R2 + z2

=
⇤R

4⌅�0

⇤
R2 + z2

ˆ 2�

0

d⇥
⇤ ⇥� ⌅

2�

Total charge on the
ring = � · (2⇥R) V =

Q

4⌅�0

⇤
R2 + z2

LIMITING CASE: z � R ⇥ V =
Q

4⌅�0

⇤
z2

=
Q

4⌅�0|z|

Length of infinitesimal ring element = ds = Rd✓

dq = � ds

= �Rd✓

dV =
1

4⇡✏0
· dq

r
=

1

4⇡✏0
· �Rd✓p

R2 + z2

) charge
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 Integration is around entire ring

LIMITING CASE ☛

) V =

Z

ring
dV

=

Z 2⇡

0

1

4⇡✏0
· �Rd✓p

R2 + z2

=
�R

4⇡✏0
p
R2 + z2

Z 2⇡

0
d✓

| {z }
2⇡

Total charge 
on ring 

V =
Q

4⇡✏0
p
R2 + z2

z � R ) V =
Q

4⇡✏0
p
z2

=
Q

4⇡✏0|z|

= � · (2⇡R)
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Example (2) Uniformly-charged disk

4.2. ELECTRIC POTENTIAL 43

Example (2): Uniformly-charged disk

Using the principle of superpo-
sition, we will find the potential
of a disk of uniform charge den-
sity by integrating the potential of
concentric rings.

� dV =
1

4⇥�0

ˆ
disk

dq

r

Ring of radius x: dq = ⇤ dA = ⇤ (2⇥xdx)

� V =

ˆ R

0

1

4⇥�0
· ⇤2⇥x dx⌃

x2 + z2

=
⇤

4�0

ˆ R

0

d(x2 + z2)

(x2 + z2)1/2

V =
⇤

2�0
(
⌃

z2 + R2 �
⌃

z2)

=
⇤

2�0
(
⌃

z2 + R2 � |z|)
Recall:

|x| =
⇤

+x; x ⇥ 0
�x; x < 0

Limiting Case:

(1) If |z|⌅ R

⌃
z2 + R2 =

⌅

z2
�
1 +

R2

z2

⇥

= |z| ·
�
1 +

R2

z2

⇥ 1
2 ( (1 + x)n ⇥ 1 + nx if x⇤ 1 )

⇧ |z| ·
�
1 +

R2

2z2

⇥
(

|z|
z2

=
1

|z| )

� At large z, V ⇧ ⇤

2�0
· R2

2|z| =
Q

4⇥�0|z| (like a point charge)

where Q = total charge on disk = ⇤ · ⇥R2

Using principle of superposition 
we will find potential of disk                    
of uniform charge density                        
by integrating potential of concentric rings

) dV =
1

4⇡✏0

Z

disk

dq

r

Ring of radius   ☛
dq = � dA = �(2⇡xdx)

) V =

Z R

0

1

4⇡✏0
· �2⇡xdxp

x

2 + z

2

=
�

4✏0

Z R

0

d(x2 + z

2)

(x2 + z

2)1/2

V =
�

2✏0
(
p

z2 +R2 �
p
z2)

=
�

2✏0
(
p
z2 +R2 � |z|) Recall |x| =

n
+x; x � 0
�x; x < 0

x
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LIMITING CASE ☛

|z| � R① If

p
z2 +R2 =

r
z2(1 +

R2

z2
)

= |z| · (1 +
R

2

z

2
)

1
2 ((1 + x)n ⇡ 1 + nx if x ⌧ 1)

' |z| · (1 +
R2

2z2
) (

|z|
z2

=
1

|z| )

) At large (like a point charge)

where

z, V ' �

2✏0
· R2

2|z| =
Q

4⇡✏0|z|

Q = total charge on disk = � · ⇡R2

17Tuesday, February 16, 21



② If |z| ⌧ Rp
z2 + R2 = R ·

⇣
1 +

z2

R2

⌘ 1
2

' R
⇣
1 +

z2

2R2

⌘

) V ' �

2✏0

h
R � |z| + z2

2R

i

z = 0, V =
�R

2✏0
At Let’s call this V0

) V (z) =
�R

2✏0

h
1 � |z|

R
+

z2

2R2

i

V (z) = V0

h
1 � |z|

R
+

z2

2R2

i
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V (z) � V0 = � |z|
R

V0 +
z2

2R2
V0

A convenience reference point to compare in this example 
of charged disk

Important quantity here is

V (z) � V0 = �V0

R
|z|

)

)

z ⌧ Rneglected as

4.2. ELECTRIC POTENTIAL 44

(2) If |z|⇥ R

⇧
z2 + R2 = R ·

�
1 +

z2

R2

⇥ 1
2

⇤ R
�
1 +

z2

2R2

⇥

� V ⇤ ⇥

2�0

⇤
R� |z| +

z2

2R

⌅

At z = 0, V =
⇥R

2�0
; Let’s call this V0

� V (z) =
⇥R

2�0

⇤
1� |z|

R
+

z2

2R2

⌅

V (z) = V0

⇤
1� |z|

R
+

z2

2R2

⌅

The key here is that it is the di�erence between potentials of two points
that is important.
⌅ A convenience reference point to compare in this example is the
potential of the charged disk.
� The important quantity here is

V (z)� V0 = � |z|
R

V0 +
�

�
��z2

2R2
V0

neglected as z ⇥ R

V (z)� V0 = �V0

R
|z|

is potential 
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3.3 Relation Between Electric Field E and Electric Potential V

(A) To get    from
 Recall our definition of potential V

V ~E

�V =
�U

q0
= �W12

q0

 ☛ work done in bringing charge     from point 1 to 2
           ☛  is change in P.E. 

) �V = V2 � V1 =
�
R 2
1

~F · d~s
q0

) �V = V2 � V1 = �
Z 2

1

~E · d~s

Using definition of   -field

Note ☛ Integral on right hand side of above can be calculated

Convention V1 = 0 ) VP = �
Z P

1
~E · d~s

�U
�W q0

~E

along any path from point 1 to 2 (Path-Independent)
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(B) To get    from V~E

4.3. RELATION BETWEEN ELECTRIC FIELD E AND ELECTRIC
POTENTIAL V 45

4.3 Relation Between Electric Field E and Elec-
tric Potential V

(A) To get V from �E:
Recall our definition of the potential V:

�V =
�U

q0
= �W12

q0

where �U is the change in P.E.; W12 is the work done in bringing charge
q0 from point 1 to 2.

� �V = V2 � V1 =
�
´ 2

1
�F · d�s

q0

However, the definition of E-field: �F = q0
�E

� �V = V2 � V1 = �
ˆ 2

1

�E · d�s

Note: The integral on the right hand side of the above can be calculated
along any path from point 1 to 2. (Path-Independent)

Convention: V� = 0 ⇥ VP = �
ˆ P

�

�E · d�s

(B) To get �E from V :

Again, use the definition of V :

�U = q0�V = �W⇤ ⇥� ⌅
Work done

However,

W = q0
�E⇤⇥�⌅

Electric force

· ��s

= q0 Es �s

where Es is the E-field component along
the path ��s.

� q0�V = �q0Es�s

☛ use definition of V

            ☛   -field component along path

) q0�V = �q0 Es �s

Es �~s

) Es = ��V

�s

) Es = �dV

ds

�sFor infinitesimal

~E

�U = q
0

�V = ��W| {z }
work done

�W = q
0

~E|{z}
electric force

·�~s

21Tuesday, February 16, 21



(1)   -field component along any direction 
of potential along same direction

(2) If d~s ? ~E then �V = 0

�V d~s k ~Eis biggest/smallest if (3)

Generally  for a potential             relation between             and    is
V (x, y, z) ~

E(x, y, z) V

E

x

= �@V

@x

E

y

= �@V

@y

E

z

= �@V

@z

are partial derivatives@

@x

,

@

@y

,

@

@z

For                  everything       are treated like a constant@

@x

V (x, y, z)

only take derivative with respect to 

y, z

x

~E
is negative derivative

All in all...

and we
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Example If
V (x, y, z) = x

2
y � z

@V

@x

=

@V

@y
=

@V

@z
=

For other co-ordinate systems

① Cylindrical:
Er = �@V

@r

E✓ = �1

r
· @V
@✓

Ez = �@V

@z

V (r, ✓, z)

(

2xy

x

2

�1
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② Spherical:

(
V (r, ✓,�)

Er = �@V

@r

E✓ = �1

r
· �@V

@✓

E� = � 1

r sin ✓
· @V

@�

Calculating    involves summation of scalars                            
which is easier than

V
Note ☛

adding vectors for calculating E-field

To find   -field of a general charge system

V and then derive     from partial derivative~E

) ~E

  we first calculate   

24Tuesday, February 16, 21



Uniformly charged disk From potential calculationsExample

)

From potential calculations

for a point along z-axis

For

V =
�

2✏0
(
p
R2 + z2 � |z|)

Ez = �@V

@z
=

�

2✏0
[1� zp

R2 + z2

i

z > 0, |z| = z
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3.4 Equipotential Surfaces
Equipotential surface is a surface on which potential is constant

) (�V = 0)

4.4. EQUIPOTENTIAL SURFACES 48

4.4 Equipotential Surfaces

Equipotential surface is a surface on which the potential is constant.
⇤ (�V = 0)

V (r) =
1

4⇥�0
· +q

r
= const

⇤ r = const

⇤ Equipotential surfaces are
circles/spherical surfaces

Note: (1) A charge can move freely on an equipotential surface without any
work done.

(2) The electric field lines must be perpendicular to the equipotential
surfaces. (Why?)
On an equipotential surface, V = constant
⇤ �V = 0 ⇤ ⌅E ·d⌅l = 0, where d⌅l is tangent to equipotential surface
� ⌅E must be perpendicular to equipotential surfaces.

Example: Uniformly charged surface (infinite)

Recall V = V0 �
⇤

2�0
|z|

⇥
Potential at z = 0

Equipotential surface means

V = const ⇤ V0 �
⇤

2�0
|z| = C

⇤ |z| = constant

Note ☛

V (r) =
1

4⇡✏0
· +q

r

= const

) r = const

circles /spherical surface

) Equipotential surface are

① A charge can move freely on an equipotential surface without any

② Electric field lines must be perpendicular to equipotential surfaces 
(Why?)On an equipotential surface

work done

V = constant

where    is tangent to equipotential surfaced~l

must be perpendicular to equipotential surfaces
) �V = 0 ) ~E · d~l = 0

) ~E
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Example

Uniformly charged surface (infinite)

4.4. EQUIPOTENTIAL SURFACES 48

4.4 Equipotential Surfaces

Equipotential surface is a surface on which the potential is constant.
⇤ (�V = 0)

V (r) =
1

4⇥�0
· +q

r
= const

⇤ r = const

⇤ Equipotential surfaces are
circles/spherical surfaces

Note: (1) A charge can move freely on an equipotential surface without any
work done.

(2) The electric field lines must be perpendicular to the equipotential
surfaces. (Why?)
On an equipotential surface, V = constant
⇤ �V = 0 ⇤ ⌅E ·d⌅l = 0, where d⌅l is tangent to equipotential surface
� ⌅E must be perpendicular to equipotential surfaces.

Example: Uniformly charged surface (infinite)

Recall V = V0 �
⇤

2�0
|z|

⇥
Potential at z = 0

Equipotential surface means

V = const ⇤ V0 �
⇤

2�0
|z| = C

⇤ |z| = constant

Equipotential surface means

Recall

Potential at

V = V0 � �

2✏0
|z|

V = const ) V0 � �

2✏0
|z| = C

) |z| = constant

z = 0
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Example
Isolated spherical charged conductors

4.4. EQUIPOTENTIAL SURFACES 49

Example: Isolated spherical charged conductors

Recall:

(1) E-field inside = 0

(2) charge distributed on the
outside of conductors.

(i) Inside conductor:

E = 0 � �V = 0 everywhere in conductor

� V = constant everywhere in conductor

� The entire conductor is at the same potential

(ii) Outside conductor:

V =
Q

4⇥�0r

� Spherically symmetric (Just like a point charge.)
BUT not true for conductors of arbitrary shape.

Example: Connected conducting spheres

Two conductors con-
nected can be seen as a
single conductor

Recall
① E-field inside = 0
② charge distributed on outside of conductors

(i) Inside conductor

Spherically symmetric 

BUT not true for conductors 
of arbitrary shape

4.4. EQUIPOTENTIAL SURFACES 49

Example: Isolated spherical charged conductors

Recall:

(1) E-field inside = 0

(2) charge distributed on the
outside of conductors.

(i) Inside conductor:

E = 0 � �V = 0 everywhere in conductor

� V = constant everywhere in conductor

� The entire conductor is at the same potential

(ii) Outside conductor:

V =
Q

4⇥�0r

� Spherically symmetric (Just like a point charge.)
BUT not true for conductors of arbitrary shape.

Example: Connected conducting spheres

Two conductors con-
nected can be seen as a
single conductor

(ii) Outside conductor

*
V =

Q

4⇡✏0r

(Just like a point charge)

)

everywhere in conductor

everywhere in conductor) V = constant

E = 0 ) �V = 0

 entire conductor is at same potential
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Example Connected conducting spheres

4.4. EQUIPOTENTIAL SURFACES 49

Example: Isolated spherical charged conductors

Recall:

(1) E-field inside = 0

(2) charge distributed on the
outside of conductors.

(i) Inside conductor:

E = 0 � �V = 0 everywhere in conductor

� V = constant everywhere in conductor

� The entire conductor is at the same potential

(ii) Outside conductor:

V =
Q

4⇥�0r

� Spherically symmetric (Just like a point charge.)
BUT not true for conductors of arbitrary shape.

Example: Connected conducting spheres

Two conductors con-
nected can be seen as a
single conductor

Two conductors connected can be seen as a single conductor

Potential everywhere is identical)

R1

R2

V1 = V2

V1 =
q1

4⇡✏0R1

V2 =
q2

4⇡✏0R2

) q1
R1

=
q2
R2

) q1
q2

=
R1

R2

Potential of radius      sphere ☛

Potential of radius      sphere ☛

29Tuesday, February 16, 21



30Tuesday, February 16, 21



31Tuesday, February 16, 21



32Tuesday, February 16, 21


