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Recall from last class that ☛ to visualize electric field                                                            

2.1 Electric Field Lines

3. Magnitude of E-field at any point

2. Direction of E-field at any point is given by tangent of E-field line

1. Start on positive charges and end on negative charges

Conventions

we can use a graphical tool called electric field lines

 proportional to number of E-field lines per unit area perpendicular to lines

2Tuesday, February 4, 20



2.4. ELECTRIC FIELD LINES 19

Uniform E-field Non-uniform E-field
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2.4. ELECTRIC FIELD LINES 19

��� ~EP1

��� >
��� ~EP2

��� ~E =
+q

4⇡✏0r2
r̂
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2.4. ELECTRIC FIELD LINES 19

E =
�

2✏0

Infinite sheet of charge
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2.4. ELECTRIC FIELD LINES 20
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2.4. ELECTRIC FIELD LINES 20

~Eat pointO = 0
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2.2 Dipole in E-field
Consider force exerted on dipole in an external E-field

Assumption ☛ E-field from dipole doesn’t affect external E-field

2.6. DIPOLE IN E-FIELD 22

Vertical motion: |q ⇥E|⇤ |m⇥g|, q is negative,

� Net force = �qE = ma (Newton’s 2nd Law)

� a = �qE

m
(2.2)

Vertical distance travelled:

y =
1

2
at2

2.6 Dipole in E-field

Consider the force exerted on the dipole in an external E-field:

Assumption: E-field from dipole doesn’t a�ect the external E-field.

• Dipole moment:

⇥p = q⇥d

• Force due to the E-field on +ve
and �ve charge are equal and
opposite in direction. Total ex-
ternal force on dipole = 0.

BUT: There is an external torque on
the center of the dipole.

Reminder:

Force ⇥F exerts at point P.
The force exerts a torque
⇥� = ⇥r ⇥ ⇥F on point P with
respect to point O.

Direction of the torque vector ⇥� is determined from the right-hand rule.

• Dipole moment

• Force due to E-field on       and       charge 
are equal and opposite in direction

Total external force on dipole = 0

BUT ☛
 There is an external torque on center of dipole
Reminder

2.6. DIPOLE IN E-FIELD 22

Vertical motion: |q ⇥E|⇤ |m⇥g|, q is negative,

� Net force = �qE = ma (Newton’s 2nd Law)

� a = �qE

m
(2.2)

Vertical distance travelled:

y =
1

2
at2

2.6 Dipole in E-field

Consider the force exerted on the dipole in an external E-field:

Assumption: E-field from dipole doesn’t a�ect the external E-field.

• Dipole moment:

⇥p = q⇥d

• Force due to the E-field on +ve
and �ve charge are equal and
opposite in direction. Total ex-
ternal force on dipole = 0.

BUT: There is an external torque on
the center of the dipole.

Reminder:

Force ⇥F exerts at point P.
The force exerts a torque
⇥� = ⇥r ⇥ ⇥F on point P with
respect to point O.

Direction of the torque vector ⇥� is determined from the right-hand rule.Direction of torque vector     is determined from right-hand rule~⌧

Force    exerts at point 
~⌧ = ~r ⇥ ~F

P O

P~F

force exerts a torque

on point    with respect to point

+q �q

~p = q~d
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2.6. DIPOLE IN E-FIELD 23

Reference: Halliday Vol.1 Chap 9.1 (Pg.175) torque
Chap 11.7 (Pg.243) work done

Net torque ⇤⇥

• direction: clockwise
torque

• magnitude:

⇥ = ⇥+ve + ⇥�ve

= F · d

2
sin � + F · d

2
sin �

= qE · d sin �

= pE sin �

⇤⇥ = ⇤p⇥ ⇤E

Energy Consideration:

When the dipole ⇤p rotates d�, the E-field does work.

Work done by external E-field on the dipole:

dW = �⇥ d�

Negative sign here because torque by E-field acts to decrease �.

BUT: Because E-field is a conservative force field 1 2 , we can define a
potential energy (U) for the system, so that

dU = �dW

� For the dipole in external E-field:

dU = �dW = pE sin � d�

� U(�) =

ˆ
dU =

ˆ
pE sin � d�

= �pE cos � + U0

1more to come in Chap.4 of notes
2ref. Halliday Vol.1 Pg.257, Chap 12.1

Net torque ~⌧

• direction ☛
clockwise torque 
  

• magnitude ☛

= F · d

2
sin ✓ + F · d

2
sin ✓

= qE · d sin ✓

= pE sin ✓

~⌧ = ~p ⇥ ~E

⌧ = ⌧+q + ⌧�q
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Energy Consideration

When dipole    rotates     ☛   -field does work~p Ed✓

Work done by external    -field on dipoleE

✓

(U)

E

dW = �⌧ d✓
Negative sign here because torque by   -field acts to decrease

BUT ☛ Because   -field is a conservative force field                                                 
we can define a  potential energy      for system so that

E

dU = �dW = pE sin ✓ d✓

dU = �dW

For dipole in external    -fieldE)

) U(✓) =

Z
dU =

Z
pE sin ✓ d✓

= �pE cos ✓ + U0
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Potential energy

set

)

U(✓ = 90�) = 0

) 0 = �pE cos 90� + U0

) U0 = 0

2.6. DIPOLE IN E-FIELD 24

set U(� = 90�) = 0,
� 0 = �pE cos 90� + U0

� U0 = 0

� Potential energy:

U = �pE cos � = �⇥p · ⇥E

Minimum energy configuration

U = �pE cos ✓ = �~p · ~E
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2.3 Electric Flux

Latin ☛ flux = “to flow”

Graphically ☛ Electric flux     �E
crossing a surface

Mathematically ☛

Chapter 3

Electric Flux and Gauss’ Law

3.1 Electric Flux

Latin: flux = ”to flow”

Graphically:
Electric flux �E represents the number of E-field lines
crossing a surface.

Mathematically:

Reminder: Vector of the area �A is perpendicular to the area A.

For non-uniform E-field & surface, direction of the area vector �A is not
uniform.

d �A = Area vector for
small area element
dA

Reminder ☛ Vector of area     is perpendicular to area~A A
For non-uniform E-field & surface

~A

Chapter 3

Electric Flux and Gauss’ Law

3.1 Electric Flux

Latin: flux = ”to flow”

Graphically:
Electric flux �E represents the number of E-field lines
crossing a surface.

Mathematically:

Reminder: Vector of the area �A is perpendicular to the area A.

For non-uniform E-field & surface, direction of the area vector �A is not
uniform.

d �A = Area vector for
small area element
dA

direction of area vector    is not uniform

represents number of E-field lines

740

In the preceding chapter we showed how to calculate the electric field generated by
a given charge distribution. In this chapter, we describe Gauss’s law and an alterna-
tive procedure for calculating electric fields. The law is based on the fact that the
fundamental electrostatic force between point charges exhibits an inverse-square
behavior. Although a consequence of Coulomb’s law, Gauss’s law is more convenient
for calculating the electric fields of highly symmetric charge distributions and
makes possible useful qualitative reasoning when dealing with complicated
problems.

24.1 Electric Flux

The concept of electric field lines was described qualitatively in Chapter 23. We now
treat electric field lines in a more quantitative way.

Consider an electric field that is uniform in both magnitude and direction, as
shown in Figure 24.1. The field lines penetrate a rectangular surface of area A, whose
plane is oriented perpendicular to the field. Recall from Section 23.6 that the number
of lines per unit area (in other words, the line density) is proportional to the magnitude
of the electric field. Therefore, the total number of lines penetrating the surface is
proportional to the product EA. This product of the magnitude of the electric field E
and surface area A perpendicular to the field is called the electric flux !E (uppercase
Greek phi):

(24.1)

From the SI units of E and A, we see that !E has units of newton-meters squared per
coulomb (N " m2/C.) Electric flux is proportional to the number of electric field
lines penetrating some surface.

!E # E A

Example 24.1 Electric Flux Through a Sphere

What is the electric flux through a sphere that has a
radius of 1.00 m and carries a charge of $ 1.00 %C at its
center?

Solution The magnitude of the electric field 1.00 m
from this charge is found using Equation 23.9:

# 8.99 & 103 N/C

E # ke   
q
r  

2  # (8.99 & 109 N"m2/C2) 
1.00 & 10' 6 C

(1.00 m)2

The field points radially outward and is therefore every-
where perpendicular to the surface of the sphere. The flux
through the sphere (whose surface area A # 4 (r 2 #
12.6 m2) is thus

# 1.13 & 105  N"m2/C

!E # EA # (8.99 & 103 N/C)(12.6 m2)

Figure 24.1 Field lines
representing a uniform electric
field penetrating a plane of area A
perpendicular to the field. The
electric flux !E through this area is
equal to EA.

Area = A

E
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Electric flux) d�E = ~E · d ~A
Electric flux of      through surface    ☛ �E =

Z

S

~E · d ~A~E S

S = hemisphere radiusR

Example

Z

S
= SSurface integral over surface

Integration of integral over all area elements on surface S=

3.1. ELECTRIC FLUX 26

� Electric flux d�E = ⇤E · d ⇤A

Electric flux of ⇤E through surface S: �E =

ˆ
S

⇤E · d ⇤A

ˆ
S

= Surface integral over surface S

= Integration of integral over all area elements on surface S

Example:

⇤E =
1

4⇥�0
· �2q

r2
r̂ =

�q

2⇥�0R2
r̂

For a hemisphere, d ⇤A = dA r̂

�E =

ˆ
S

�q

2⇥�0R2
r̂ · (dA r̂) (⇥ r̂ · r̂ = 1)

= � q

2⇥�0R2

ˆ
S

dA
⇤ ⇥� ⌅
2�R2

=
�q

�0

For a closed surface:

Recall: Direction of area vector d ⇤A
goes from inside to outside of closed
surface S.

~E =
1

4⇡✏0
· �2q

r2
r̂ =

�q

2⇡✏0R2
r̂

For a hemisphere, d ~A = dA r̂

�E =

Z

S

�q

2⇡✏0R2
r̂ · (dA r̂) (* r̂ · r̂ = 1)

= � q

2⇡✏0R2

Z

S
dA

| {z }
2⇡R2

=
�q

✏0
13Tuesday, February 4, 20



3.1. ELECTRIC FLUX 26

� Electric flux d�E = ⇤E · d ⇤A

Electric flux of ⇤E through surface S: �E =

ˆ
S

⇤E · d ⇤A

ˆ
S

= Surface integral over surface S

= Integration of integral over all area elements on surface S

Example:

⇤E =
1

4⇥�0
· �2q

r2
r̂ =

�q

2⇥�0R2
r̂

For a hemisphere, d ⇤A = dA r̂

�E =

ˆ
S

�q

2⇥�0R2
r̂ · (dA r̂) (⇥ r̂ · r̂ = 1)

= � q

2⇥�0R2

ˆ
S

dA
⇤ ⇥� ⌅
2�R2

=
�q

�0

For a closed surface:

Recall: Direction of area vector d ⇤A
goes from inside to outside of closed
surface S.

For a closed surface

Recall☛ Direction of area vector      goes 
from inside to outside of closed surface S

d ~A

Electric flux over closed surfaceS

Surface integral over closed surface S

I

S
=

�E =

I

S

~E · d ~A
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Example

3.1. ELECTRIC FLUX 27

Electric flux over closed surface S: �E =

˛
S

⇤E · d ⇤A

˛
S

= Surface integral over closed surface S

Example:

Electric flux of charge q over closed
spherical surface of radius R.

⇤E =
1

4⇥�0
· q

r2
r̂ =

q

4⇥�0R2
r̂ at the surface

Again, d ⇤A = dA · r̂

� �E =

˛
S

�E� ⌅⇤ ⇥
q

4⇥�0R2
r̂ ·

d �A� ⌅⇤ ⇥
dA r̂

=
q

4⇥�0R2

˛
S

dA
⇤ ⇥� ⌅

Total surface area of S = 4⇥R2

�E =
q

�0

IMPORTANT POINT:
If we remove the spherical symmetry of closed surface S, the total number of

E-field lines crossing the surface remains the same.
� The electric flux �E

Electric flux of charge    over closed 
spherical surface of radius R

q

at surface

Again, d ~A = dA · r̂

~E =
1

4⇡✏0
· q

r2
r̂ =

q

4⇡✏0R2
r̂

) �E =

I

S

~Ez }| {
q

4⇡✏0R2
r̂ ·

d ~Az}|{
dAr̂

=
q

4⇡✏0R2

I

S
dA

| {z }
Total surface area of S = 4⇡R2

�E =
q

✏0
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If we remove spherical symmetry of closed surface    
IMPORTANT POINT

E

S

total number of   -field lines crossing surface remains same

) �Eelectric flux

�E =

I

S

~E · d ~A =

I

S0

~E · d ~A =
q

✏0

3.1. ELECTRIC FLUX 27

Electric flux over closed surface S: �E =

˛
S

⇤E · d ⇤A

˛
S

= Surface integral over closed surface S

Example:

Electric flux of charge q over closed
spherical surface of radius R.

⇤E =
1

4⇥�0
· q

r2
r̂ =

q

4⇥�0R2
r̂ at the surface

Again, d ⇤A = dA · r̂

� �E =

˛
S

�E� ⌅⇤ ⇥
q

4⇥�0R2
r̂ ·

d �A� ⌅⇤ ⇥
dA r̂

=
q

4⇥�0R2

˛
S

dA
⇤ ⇥� ⌅

Total surface area of S = 4⇥R2

�E =
q

�0

IMPORTANT POINT:
If we remove the spherical symmetry of closed surface S, the total number of

E-field lines crossing the surface remains the same.
� The electric flux �E

~ES S0over surface over surfaceis not~E k d ~A k r k d ~A
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2.4 Gauss’ Law

�E =

I

S

~E · d ~A =
q

✏0

Solid angle subtended at center of the sphere by this element is defined to be

rConsider spherical surface of radius    containing area element                                                                  �A

Because surface area of sphere is 

total solid angle subtended by the sphere is

4⇡r2

�⌦ =
�A

r2

⌦ =
4⇡r2

r2
= 4⇡ sterradians

The net flux through any closed surface is

    represents the net charge inside the surface                                          
~E    represents the electric field at any point on the surface

PROOF

q
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Total electric flux through this surface can be obtained

surface area of a sphere is 4!r 2, the total solid angle subtended by the sphere is

Now consider a point charge q surrounded by a closed surface of arbitrary shape
(Fig. 24.22). The total electric flux through this surface can be obtained by evaluating
E " #A for each small area element #A and summing over all elements. The flux
through each element is

where r is the distance from the charge to the area element, $ is the angle between the
electric field E and #A for the element, and E % keq/r 2 for a point charge. In Figure
24.23, we see that the projection of the area element perpendicular to the radius
vector is #A cos $. Thus, the quantity (#A cos $)/r 2 is equal to the solid angle #& that
the surface element #A subtends at the charge q. We also see that #& is equal to the
solid angle subtended by the area element of a spherical surface of radius r. Because
the total solid angle at a point is 4! steradians, the total flux through the closed
surface is

Thus we have derived Gauss’s law, Equation 24.6. Note that this result is independent
of the shape of the closed surface and independent of the position of the charge
within the surface.

'E % ke q   !  
dA cos $

r 
2 % ke q   ! d & % 4!ke q %

q
(0

#'E % E"# A % (E cos $)#A % ke q   
#A cos $

r  
2

& %
4!r 

2

r 
2 % 4! steradians

Summary 753

Electric flux is proportional to the number of electric field lines that penetrate a
surface. If the electric field is uniform and makes an angle $ with the normal to a
surface of area A, the electric flux through the surface is

(24.2)

In general, the electric flux through a surface is

(24.3)'E % "
surface

E"d A

'E % EA cos $

S U M M A RY

Figure 24.23 The area element #A subtends a solid angle #& % (#A cos $)/r 2 at the
charge q.

∆ Ω
q

r

∆A

∆A cos θ ∆A

θ
E

θ

Figure 24.22 A closed surface of
arbitrary shape surrounds a point
charge q. The net electric flux
through the surface is independent
of the shape of the surface.

θ

∆A

∆Ω
q

E

Take a practice test for
this chapter by clicking on
the Practice Test link at
http://www.pse6.com.

by evaluating              for each small area element 
and summing over all elements

Consider point charge    surrounded by closed surface of arbitrary shape

~E ·� ~A �A

The flux through each element is

��E = ~E ·� ~A = E�A cos ✓ =
q

4⇡✏0r2
�A cos ✓

                                   for point charge

  ☛ distance from charge to area element   

➣

r

q

☛ angle between electric field   and       for the element✓ ~E � ~A

E =
1

4⇡✏0

q

r2
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Projection of area element perpendicular to radius vector is �A cos ✓

solid angle       that surface element       subtends at charge �A cos ✓

r2
�A�⌦ q

is also solid angle subtended by area element of spherical surface of radius �⌦ r

Because total solid angle at a point is      steradians

 total flux through the closed surface is
4⇡

➣

☛

�E =
1

4⇡✏0
q

I
dA cos ✓

r2
=

1

4⇡✏0

I
d⌦ =

q

✏0

Note that this result is independent of the shape of the closed surface              
and independent of the position of the charge within the surface
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I

S

~E · d ~A =
Total charge

✏0
=

�L

✏0
Gauss’ Law ☛

3.2. GAUSS’ LAW 28

�E =

˛
S

⇤E · d ⇤A =

˛
S�

⇤E · d ⇤A =
q

�0

3.2 Gauss’ Law

�E =

˛
S

⇤E · d ⇤A =
q

�0
for any closed surface S

And q is the net electric charge enclosed in closed surface S.

• Gauss’ Law is valid for all charge distributions and all closed surfaces.
(Gaussian surfaces)

• Coulomb’s Law can be derived from Gauss’ Law.

• For system with high order of symmetry, E-field can be easily determined if
we construct Gaussian surfaces with the same symmetry and applies Gauss’
Law

3.3 E-field Calculation with Gauss’ Law

(A) Infinite line of charge

Linear charge density: ⇥
Cylindrical symmetry.
E-field directs radially outward from the
rod.
Construct a Gaussian surface S in the
shape of a cylinder, making up of a
curved surface S1, and the top and
bottom circles S2, S3.

Gauss’ Law:

˛
S

⇤E · d ⇤A =
Total charge

�0
=

⇥L

�0

(A) Infinite line of charge

2.5 E-field Calculation with Gauss’ Law

   -field directs radially outward from rod 
Construct Gaussian surface                          

in shape of cylinder                                        
making up of a curved surface                     
and top and bottom circles 

Linear charge density ☛ �

Cylindrical symmetry

S

S1

S2, S3

E
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I

S

~E · d ~A =

Z

S1

~E · d ~A
| {z }

~E//d ~A

+

Z

S2

~E · d ~A +

Z

S3

~E · d ~A
| {z }

=0* ~E?d ~A

) E

Z

S1

dA

| {z }
=

�L

✏0

Total area of surface S1

E(2⇡rL) =
�L

✏0

) E =
�

2⇡✏0r

~E =
�

2⇡✏0r
r̂

~E k d ~A
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(B) Infinite sheet of charge

3.3. E-FIELD CALCULATION WITH GAUSS’ LAW 29

˛
S

⇧E · d ⇧A =

ˆ
S1

⇧E · d ⇧A

⇤ ⇥� ⌅
�E⇥d �A

+

ˆ
S2

⇧E · d ⇧A +

ˆ
S3

⇧E · d ⇧A

⇤ ⇥� ⌅
= 0 * �E�d �A

� E

ˆ
S1

dA

⇤ ⇥� ⌅
Total area of surface S1

=
⇥L

�0

E(2⇤rL) =
⇥L

�0

� E =
⇥

2⇤�0r
(Compare with Chapter 2 note)

⇧E =
⇥

2⇤�0r
r̂

(B) Infinite sheet of charge

Uniform surface charge density:
⌅
Planar symmetry.
E-field directs perpendicular to
the sheet of charge.
Construct Gaussian surface S in
the shape of a cylinder (pill
box) of cross-sectional area A.

Gauss’ Law:

˛
S

⇧E · d ⇧A =
A⌅

�0ˆ
S1

⇧E · d ⇧A = 0 ⇥ ⇧E � d ⇧A over whole surface S1

ˆ
S2

⇧E · d ⇧A +

ˆ
S3

⇧E · d ⇧A = 2EA ( ⇧E ⇥ d ⇧A2, ⇧E ⇥ d ⇧A3)

Gauss’ Law ☛

Uniform surface charge density ☛
Planar symmetry

    -field directs perpendicular to sheet 
Construct a Gaussian surface                                

in shape of a cylinder                                 
of cross-sectional area

S

A

E

�

I

S

~E · d ~A =
A�

✏0

over whole surface
Z

S1

~E · d ~A = 0 * ~E ? d ~A S1

Z

S2

~E · d ~A +

Z

S3

~E · d ~A = 2EA ( ~E k d ~A2, ~E k d ~A3)

S2

S3 d ~A3

d ~A2

~E

~E

) 2EA =
A�

✏0
) E =

�

2✏0

Note ☛ For both     and       point right
both     and       point leftFor
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(C) Uniformly charged sphere
Spherical symmetry

Total charge ☛ Q

(a) For r > R

3.3. E-FIELD CALCULATION WITH GAUSS’ LAW 30

Note: For S2, both ⌅E and d ⌅A2 point up
For S3, both ⌅E and d ⌅A3 point down

� 2EA =
A⇤

�0
� E =

⇤

2�0
(Compare with Chapter 2 note)

(C) Uniformly charged sphere
Total charge = Q
Spherical symmetry.

(a) For r > R:

Consider a spherical Gaussian surface S of
radius r:

⌅E ⇥ d ⌅A ⇥ r̂

Gauss’ Law:

˛
S

⌅E · d ⌅A =
Q

�0

˛
S

E · dA =
Q

�0

E

˛
S

dA
⇤ ⇥� ⌅

surface area of S = 4⇥r2

=
Q

�0

� ⌅E =
Q

4⇥�0r2
r̂ ; for r > R

(b) For r < R:

Consider a spherical Gaussian surface S � of
radius r < R, then total charge included q is
proportional to the volume included by S �

�
q

Q
=

Volume enclosed by S �

Total volume of sphere

Consider a spherical Gaussian surface    of radiusS r

Gauss’ Law ☛

~E k d ~A k r̂
I

S

~E · d ~A =
Q

✏0
I

S
E · dA =

Q

✏0

E

I

S
dA

| {z }
=

Q

✏0

surface area of S = 4⇡r2

r > R) ~E =
Q

4⇡✏0r2
r̂ for
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r < R(b) For

3.3. E-FIELD CALCULATION WITH GAUSS’ LAW 30

Note: For S2, both ⌅E and d ⌅A2 point up
For S3, both ⌅E and d ⌅A3 point down

� 2EA =
A⇤

�0
� E =

⇤

2�0
(Compare with Chapter 2 note)

(C) Uniformly charged sphere
Total charge = Q
Spherical symmetry.

(a) For r > R:

Consider a spherical Gaussian surface S of
radius r:

⌅E ⇥ d ⌅A ⇥ r̂

Gauss’ Law:

˛
S

⌅E · d ⌅A =
Q

�0

˛
S

E · dA =
Q

�0

E

˛
S

dA
⇤ ⇥� ⌅

surface area of S = 4⇥r2

=
Q

�0

� ⌅E =
Q

4⇥�0r2
r̂ ; for r > R

(b) For r < R:

Consider a spherical Gaussian surface S � of
radius r < R, then total charge included q is
proportional to the volume included by S �

�
q

Q
=

Volume enclosed by S �

Total volume of sphere

) q

Q
=

Volume enclosed byS0

Total volume of sphere

Consider a spherical Gaussian surface    of radius           S0

S0
r < R

q proportional to volume included intotal charge included   is 
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) ~E =
1

4⇡✏0
· Q

R3
r r̂ r  Rfor

Gauss’ Law ☛

3.4. GAUSS’ LAW AND CONDUCTORS 31

q

Q
=

4/3 ⇥r3

4/3 ⇥R3
⇥ q =

r3

R3
Q

Gauss’ Law:

˛
S�

⌅E · d ⌅A =
q

�0

E

˛
S�

dA
⇤ ⇥� ⌅

surface area of S � = 4⇥r2

=
r3

R3

1

�0
· Q

� ⌅E =
1

4⇥�0
· Q

R3
r r̂ ; for r � R

3.4 Gauss’ Law and Conductors

For isolated conductors, charges are free
to move until all charges lie outside the
surface of the conductor. Also, the E-
field at the surface of a conductor is per-
pendicular to its surface. (Why?)

Consider Gaussian surface S of shape of cylinder:
˛

S

⌅E · d ⌅A =
⇤A

�0

q

Q
=

4/3⇡r3

4/3⇡R3
) q =

r3

R3
Q

I

S0

~E · d ~A =
q

✏0

E

I

S0
dA

| {z }
=

r3

R3

1

✏0
· Q

surface area of S0 = 4⇡r2
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2.6 Conductors in electrostatic equilibrium

 4. On an irregularly shaped conductor ➣ surface charge density is greatest

Electrical conductors contain charges (electrons) that are not bound to any atom
and therefore are free to move about within the material

When there is no net motion of charge within a conductor 
the conductor is in electrostatic equilibrium

A conductor in electrostatic equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor

2. If an isolated conductor carries a charge the charge resides on its surface

3. The electric field just outside a charged conductor 
 is perpendicular to the surface of the conductor and has a magnitude

       ☛  surface charge density at that point
�/✏0

�

at locations where the radius of curvature of the surface is smallest
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Z

S1

~E · d ~A = 0 (* ~E ? d ~A)
Z

S3

~E · d ~A = 0 (* ~E = 0 inside conductor)

Z

S2

~E · d ~A = E

Z

S2

dA

| {z }
Area of S2

(* ~E k d ~A) = EA

) ) EA =
�A

✏0
Gauss’ Law

E =
�

✏0
) On conductor surface

BUT there is no charge inside conductors 

E = 0) Inside conductors Always!

Notice:
 Surface charge density on a conductor’s surface is not uniform

Consider a Gaussian surface    of shape of cylinder 
I

S

~E · d ~A =
�A

✏0

3.4. GAUSS’ LAW AND CONDUCTORS 31

q

Q
=

4/3 ⇥r3

4/3 ⇥R3
⇥ q =

r3

R3
Q

Gauss’ Law:

˛
S�

⌅E · d ⌅A =
q

�0

E

˛
S�

dA
⇤ ⇥� ⌅

surface area of S � = 4⇥r2

=
r3

R3

1

�0
· Q

� ⌅E =
1

4⇥�0
· Q

R3
r r̂ ; for r � R

3.4 Gauss’ Law and Conductors

For isolated conductors, charges are free
to move until all charges lie outside the
surface of the conductor. Also, the E-
field at the surface of a conductor is per-
pendicular to its surface. (Why?)

Consider Gaussian surface S of shape of cylinder:
˛

S

⌅E · d ⌅A =
⇤A

�0

S

28Tuesday, February 4, 20



Conductor with a charge inside
Example

Note ☛ This is not an isolated system (because of charge inside)

3.4. GAUSS’ LAW AND CONDUCTORS 32

BUT

ˆ
S1

⇤E · d ⇤A = 0 ( ⇥ ⇤E ⇥ d ⇤A )ˆ
S3

⇤E · d ⇤A = 0 ( ⇥ ⇤E = 0 inside conductor )

ˆ
S2

⇤E · d ⇤A = E

ˆ
S2

dA

⇤ ⇥� ⌅
Area of S2

( ⇥ ⇤E ⇤ d ⇤A )

= EA

� Gauss’ Law � EA =
⇥A

�0

� On conductor’s surface E =
⇥

�0

BUT, there’s no charge inside conductors.

� Inside conductors E = 0 Always!

Notice: Surface charge density on a conductor’s surface is not uniform.

Example: Conductor with a charge inside
Note: This is not an isolated system (because of the charge inside).

Example:

~E =
1

4⇡✏0
· q

r2
r̂Note ☛ In Both cases outside
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Example
I. Charge sprayed on a conductor sphere

3.4. GAUSS’ LAW AND CONDUCTORS 33

I. Charge sprayed on a conductor sphere:

First, we know that charges all move
to the surface of conductors.

(i) For r < R:
Consider Gaussian surface S2˛

S2

⇤E · d ⇤A = 0 ( � no charge inside )

⇥ E = 0 everywhere.

(ii) For r � R:
Consider Gaussian surface S1:˛

S1

⇤E · d ⇤A =
Q

�0

E

˛
S1

d ⇤A

⇤ ⇥� ⌅
4�r2

=
Q

�0
(

For a conductor� ⌅⇤ ⇥
⇤E ⇤ d ⇤A ⇤ r̂

⇤⇥�⌅
Spherically symmetric

)

E =
Q

4⇥�0r2

II. Conductor sphere with hole inside:

all charges move to surface of conductors

Total charges =Q

(i) For 

Consider Gaussian surface 

S2r < R

3.4. GAUSS’ LAW AND CONDUCTORS 33

I. Charge sprayed on a conductor sphere:

First, we know that charges all move
to the surface of conductors.

(i) For r < R:
Consider Gaussian surface S2˛

S2

⇤E · d ⇤A = 0 ( � no charge inside )

⇥ E = 0 everywhere.

(ii) For r � R:
Consider Gaussian surface S1:˛

S1

⇤E · d ⇤A =
Q

�0

E

˛
S1

d ⇤A

⇤ ⇥� ⌅
4�r2

=
Q

�0
(

For a conductor� ⌅⇤ ⇥
⇤E ⇤ d ⇤A ⇤ r̂

⇤⇥�⌅
Spherically symmetric

)

E =
Q

4⇥�0r2

II. Conductor sphere with hole inside:

I

S1

~E · d ~A =
Q

✏0

E

I

S1

d ~A

| {z }
4⇡r2

=
Q

✏0
(
z }| {
~E k d ~A k r̂|{z})

For a conductor

Spherically symmetric

E =
Q

4⇡✏0r2

consider Gaussian surface I

S2

~E · d ~A = 0 ) ~E = 0 everywhere

S1
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II. Conductor sphere with hole inside
3.4. GAUSS’ LAW AND CONDUCTORS 34

Consider Gaussian surface S1: Total
charge included = 0

� E-field = 0 inside

The E-field is identical to the case of a
solid conductor!!

III. A long hollow cylindrical conductor:

Example:
Inside hollow cylinder ( +2q )

�
Inner radius a
Outer radius b

Outside hollow cylinder ( �3q )
�

Inner radius c
Outer radius d

Question: Find the charge on each surface of the conductor.

For the inside hollow cylinder, charges distribute only on the sur-
face.
� Inner radius a surface, charge = 0
and Outer radius b surface, charge = +2q

For the outside hollow cylinder, charges do not distribute only on
outside.
⇥ It’s not an isolated system. (There are charges inside!)

Consider Gaussian surface S � inside the conductor:
E-field always = 0

� Need charge �2q on radius c surface to balance the charge of inner
cylinder.
So charge on radius d surface = �q. (Why?)

IV. Large sheets of charge:
Total charge Q on sheet of area A,

Conducting materials 
removed inside

Consider Gaussian surface S1

= 0Total charge included

= 0) E-field inside

E-field is identical to case of a solid conductor!!

III. A long hollow cylindrical conductor

3.4. GAUSS’ LAW AND CONDUCTORS 34

Consider Gaussian surface S1: Total
charge included = 0

� E-field = 0 inside

The E-field is identical to the case of a
solid conductor!!

III. A long hollow cylindrical conductor:

Example:
Inside hollow cylinder ( +2q )

�
Inner radius a
Outer radius b

Outside hollow cylinder ( �3q )
�

Inner radius c
Outer radius d

Question: Find the charge on each surface of the conductor.

For the inside hollow cylinder, charges distribute only on the sur-
face.
� Inner radius a surface, charge = 0
and Outer radius b surface, charge = +2q

For the outside hollow cylinder, charges do not distribute only on
outside.
⇥ It’s not an isolated system. (There are charges inside!)

Consider Gaussian surface S � inside the conductor:
E-field always = 0

� Need charge �2q on radius c surface to balance the charge of inner
cylinder.
So charge on radius d surface = �q. (Why?)

IV. Large sheets of charge:
Total charge Q on sheet of area A,

Inside hollow cylinder 
Example

(+ 2q)

Outside hollow cylinder (� 3q)

(

(

Inner radius

Outer radius

Inner radius

Outer radius

a

b

c

d

3.4. GAUSS’ LAW AND CONDUCTORS 34

Consider Gaussian surface S1: Total
charge included = 0

) E-field = 0 inside

The E-field is identical to the case of a
solid conductor!!

III. A long hollow cylindrical conductor:

Example:
Inside hollow cylinder ( +2q )

(
Inner radius a
Outer radius b

Outside hollow cylinder ( °3q )
(

Inner radius c
Outer radius d

Question: Find the charge on each surface of the conductor.

For the inside hollow cylinder, charges distribute only on the sur-
face.
) Inner radius a surface, charge = 0
and Outer radius b surface, charge = +2q

For the outside hollow cylinder, charges do not distribute only on
outside.
* It’s not an isolated system. (There are charges inside!)

Consider Gaussian surface S 0 inside the conductor:
E-field always = 0

) Need charge °2q on radius c surface to balance the charge of inner
cylinder.
So charge on radius d surface = °q. (Why?)

IV. Large sheets of charge:
Total charge Q on sheet of area A,
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Find charge on each surface of conductor ?
Question

For inside hollow cylinder charges distribute only on surface

Inner radius   surface ☛  charge) a

Outer radius   surface ☛  chargeb

= 0

= +2q
For outside hollow cylinder

It’s not an isolated system (There are charges inside!)*
Consider Gaussian surface     inside conductorS0

E-field always = 0

)

�2q

= �q

cNeed charge        on radius   surface to balance charge of inner cylinder

    charge on radius    surface d

charges do not distribute only on outside surface
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Total charge    on sheet of area IV. Large sheets of charge
Q A

By principle of superposition
Surface charge density � =

Q

A

3.4. GAUSS’ LAW AND CONDUCTORS 35

� Surface charge density ⇥ =
Q

A

By principle of superposition

Region A: E = 0 E = 0

Region B: E =
Q

�0A
E =

Q

�0A
Region C: E = 0 E = 0E =

Q

✏0A
E =

Q

✏0A

E = 0

E = 0

E = 0

E = 0

RegionA

RegionB

RegionC
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1/30/2019 Sam Adams creates Patriots beer called ‘Too Old, Too Slow, Still Here’ ahead of Super Bowl 2019 | masslive.com

https://www.masslive.com/boston/2019/01/sam-adams-creates-patriots-beer-called-too-old-too-slow-still-here-ahead-of-super-bowl-2019.html 1/5

Sam Adams creates Patriots beer
called ʻToo Old, Too Slow, Still Here’
ahead of Super Bowl 2019
Updated 9ÿ13 AMĀ
Posted 8ÿ14 AM

BOSTON

Sam Adams released a specialty "Too Old,
Too Slow, Still Here" beer in honor of
Patriots quarterback Tom Brady ahead of
the 2019 Super Bowl matchup on Feb. 3.
(Samuel Adams )

0

1
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