

... We can define

$$\frac{dQ}{dt} = \epsilon_0 \frac{d\Phi_E}{dt} = i_{\rm dis}$$

where i_{dis} is called **Displacement Current** (first proposed by Maxwell) Maxwell first proposed that this is missing term for Ampere's law

$$\oint_C \vec{B} \cdot d\vec{s} = \mu_0 (i_{\rm inc} + \epsilon_0 \frac{d\Phi_E}{dt}) \quad \text{Ampere-Maxwell law}$$

 $i_{
m inc}=$ current through any surface bounded by C

 Φ_E = electric flux through that same surface bounded by curve C $\Phi_E = \int_S \vec{E} \cdot d\vec{a}$

11.3 Maxwell's Equations

Four equations that **completely** describe **F**

behaviors of electric and magnetic fields

$$\oint_{S} \vec{E} \cdot d\vec{A} = \frac{Q_{\text{inc}}}{\epsilon_{0}} = \frac{1}{\epsilon_{0}} \int_{V} \rho \ dV$$

$$\oint_{S} \vec{B} \cdot d\vec{A} = 0$$

$$\oint_{C} \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{A}$$

$$\oint_{C} \vec{B} \cdot d\vec{s} = \mu_{0} i_{\text{inc}} + \mu_{0} \epsilon_{0} \frac{d}{dt} \int_{S} \vec{E} \cdot d\vec{A}$$

One equation that describes 🖛

how matter reacts to electric and magnetic fields $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

Maxwell's equations in matter			er	F
$\oint_S \vec{D} \cdot d\vec{A} = \int_V \rho \ dV$				
$\oint_{\partial\Omega} \vec{B} \cdot d\vec{A} = 0$			× F	
$\oint_C \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{A}$			∇×F	
$\oint_C \vec{H} \cdot d\vec{s} = \int_S \vec{J} \cdot d\vec{A} + \frac{d}{dt} \int_S \vec{D} \cdot d\vec{A} \qquad \qquad$				
Electric displacement field 🖛 $ec{D}=\epsilon_0ec{E}+ec{P}$				
vacuum 🖛 $ec{D}=\epsilon_0ec{E}$ isotropic linear dielectric 🖛 $ec{D}=\epsilonec{E}$				
		Component	General materials	Linear materials
Poundany conditions -	Electric displacement	Perpendicular Parallel	$D_{2,\perp} - D_{1,\perp} = \sigma_{\uparrow}$	$D_{2,\perp} - D_{1,\perp} = \sigma_{1,\perp} - \frac{\mathbf{D}_{2,\parallel}}{\mathbf{D}_{2,\parallel}} - \frac{\mathbf{D}_{1,\parallel}}{\mathbf{D}_{1,\parallel}}$
boundary conditions	Electric field	Perpendicular	$\frac{D_{2,\parallel} - D_{1,\parallel} - :}{\epsilon_2 E_{2,\perp} - \epsilon_1 E_{1,\perp} = ?}$	$\frac{\overline{\epsilon_2} - \overline{\epsilon_1}}{\epsilon_2 E_2 + - \epsilon_1 E_1 + = \sigma^{-1}}$
		Parallel	$E_{2,\parallel} = E_{1,\parallel}$	$E_{2,\parallel} = E_{1,\parallel}$

Maxwell's equations may also be written in differential form

$$\nabla \cdot \mathbf{D} = \rho$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

Important consequence of Maxwell's equations

prediction electromagnetic waves that travel @ speed of light

Reason is due to the fact that

changing electric field produces a magnetic field and vice versa

Coupling between 2 fields leads to generation of electromagnetic waves Prediction was confirmed by Hertz in 1887

$$\begin{array}{c} xy^{2} & y & x & x + \Delta x \\ y & y + \Delta y \end{array}$$
Consider a rectangular loop that lies in xy -plane
left side of loop at x and right at $x + \Delta x$ y
bottom at y and top at $y + \Delta y$ as shown in \overleftarrow{p}
Unit vector normal to loop positive z-direction
 $\hat{n} = \hat{k}$
Recall Faraday's law
 $\oint \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int \int \vec{B} \cdot d\vec{A}$
To evaluate LHS of (11.4.1) \overleftarrow{p} integrate around closed path
 $\oint \vec{E} \cdot d\vec{s} = E_{y}(x + \Delta x) \Delta y - E_{y}(x) \Delta y$
 $\oint \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \iint \vec{B} \cdot dx + \cdots$
 $(\mathbf{11.4.2})$
use Taylor expansion to approximate
 $E_{y}(x + \Delta x) = E_{y}(x) + \frac{\partial E_{y}}{\partial x} \Delta x + \cdots$
 $(\mathbf{11.4.3})$
Left-hand-side of Faraday's law becomes
 $\oint \vec{E} \cdot d\vec{s} = \frac{\partial E_{y}}{\partial x} \Delta x \Delta y$
 $(\mathbf{11.4.4})$

Assume that Δx and Δy are very small such that time derivative of z-component of magnetic field is nearly uniform over area element

Rate of change of magnetic flux on right-hand-side of Eq. (11.4.1) is

$$-\frac{d}{dt} \int \int \vec{B} \cdot d\vec{A} = -\frac{\partial B_z}{\partial t} \Delta x \Delta y \qquad (11.4.5)$$

Equating two sides of Faraday's Law and dividing through by area $\Delta x \Delta y$

$$\frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t}$$
 (11.4.6)

Eq. (11.4.6) indicates that at each point in space timevarying B-field is associated with spatially varying E-field Second condition on relationship between electric and magnetic fields may be deduced by using Ampere-Maxwell equation

$$\oint_{C} \vec{B} \cdot d\vec{s} = \mu_{0} i_{\text{f}} \vec{B} \cdot d\vec{s} = \mu_{0} \epsilon_{0} \frac{d}{dt} \vec{E} \int_{d\vec{A}} \vec{E} \cdot \vec{A}$$
(11.4.7)

Consider a rectangular loop in xy – plane depicted $\hat{\mathbf{n}} = \hat{\mathbf{j}}$

Evaluating line integral of magnetic field around closed path

$$\oint \vec{B} \cdot d\vec{s} = B_z(x)\Delta z - B_z(x + \Delta x)\Delta z \quad (11.4.8)$$

Use Taylor expansion to approximate

$$B_z(x + \Delta x) = B_z(x) + \frac{\partial B_z}{\partial x} \Delta x + \cdots$$
 (11.4.9)

Left-hand-side of Maxwell-Ampere law becomes

$$\oint \vec{B} \cdot d\vec{s} = -\frac{\partial B_z}{\partial x} \Delta x \Delta z \qquad (11.4.10)$$

Assuming that Δx and Δz are very small such that time derivative of y-component of electric field is nearly uniform over area element Rate of change of electric flux on right-hand-side of Eq.(11.4.7) is

$$\mu_0 \epsilon_0 \frac{d}{dt} \int \int \vec{E} \cdot d\vec{A} = \mu_0 \epsilon_0 \frac{\partial E_y}{\partial t} \Delta x \Delta z \qquad (11.4.11)$$

Equating two sides of Maxwell-Ampere law and dividing by $\Delta x \Delta z$ yields

$$-\frac{\partial B_z}{\partial x} = \mu_0 \,\epsilon_0 \,\frac{\partial E_y}{\partial t} \tag{11.4.12}$$

Eq. (11.4.12) indicates that at each point in space

time-varying E-field is associated to spatially varying B-field

Repeat argument to find a one-dimensional wave equation satisfied by z-component of magnetic field $racktriang \partial/\partial x$ of Eq. (11.4.12) $-\frac{\partial^2 B_z}{\partial r^2} = \mu_0 \epsilon_0 \frac{\partial}{\partial r} \frac{\partial E_y}{\partial t} = \mu_0 \epsilon_0 \frac{\partial}{\partial t} \left(\frac{\partial E_y}{\partial r} \right) \quad \text{Eq. (11.4.16)}$ Substitute Eq. (11.4.6) into Eq. (11.4.16) yielding a one-dimensional wave equation satisfied by z -component of magnetic field $\frac{\partial^2 B_z}{\partial r^2} = \mu_0 \epsilon_0 \frac{\partial^2 B_z}{\partial t^2}$ Eq. (11.4.17) General form of a one-dimensional wave equation is given by $\frac{\partial^2 \Psi(x,t)}{\partial x^2} = \frac{1}{n^2} \frac{\partial^2 \Psi(x,t)}{\partial t^2}$ Eq. (11.4.18) where v is speed of propagation and $\Psi(x,t)$ is wave function E_{u} and B_{z} satisfy wave equation and propagate with speed $v = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$ Eq. (11.4.19)

And God Said $\nabla \cdot E = \frac{f}{s_0}$ $\nabla \cdot B = 0$ $\nabla x E = -\frac{\partial B}{\partial t}$ VXB= MoJt Mo Eo 2E and then there was "Light

SI unit of S is $[W \cdot m^{-2}]$ Recall that magnitude of fields satisfy E = cB and $c = 1/\sqrt{\mu_0\epsilon_0}$ Therefore Eq. (11.5.3) may be rewritten as $S = \frac{c}{2} \left(\epsilon_0 E^2 + \frac{B^2}{\mu_0} \right) = \frac{cB^2}{\mu_0} = c\epsilon_0 E^2 = \frac{EB}{\mu_0}$ Eq. (11.5.4) Turn this energy flow into a vector by assigning direction as direction of propagation Rate of energy flow per unit area is called **Poynting vector** $ec{S}$ (after British physicist John Poynting) and defined by vector product $\vec{S} = \frac{1}{\vec{E}} \times \vec{B}$ Eq. (11.5.5) μ_0 Plane transverse electromagnetic waves fields $ec{E}$ and $ec{B}$ are perpendicular and magnitude of $ec{S}$ $|\vec{S}| = \frac{\vec{E} \times \vec{B}}{1} = \frac{EB}{1} = S$ Eq. (11.5.6)

$$\vec{\mathbf{E}} = E_0 \cos(kx - \omega t) \hat{\mathbf{j}}$$

As $\underline{B}_{0} = \underline{x}_{0} = \underline{x}_{$ electromagnetic wave is $\vec{E} = E_0 \cos(kx - \omega t) \hat{j}$ Corresponding magnetic field is $\vec{B} = B_0 \cos(kx - \omega t) \hat{k}$ and direction of propagation is positive x-direction $\mathbf{S} = - (E_0 \cos(kx - \omega t)\mathbf{j}) \times (B_0 \cos(kx - \omega t)\mathbf{k}) = \frac{E_0 B_0}{\mu_0} \cos(kx - \omega t)\mathbf{k}$ Poynting vector is than **Fq. (11.5.7)** $\vec{S} = \frac{1}{\mu_0} \left(E_0 \cos(kx - \omega t)\hat{j} \right) \times \left(B_0 \cos(kx - \omega t)\hat{k} \right) = \frac{E_0 B_0}{\mu_0} \cos^2(kx - \omega t)\hat{i}$ As expected $rightarrow \vec{S}$ points in direction of wave propagation Ē х $\vec{\mathbf{B}}$

Intensity of wave I is defined as time-average of S

$$I = \langle S \rangle = \frac{E_0 B_0}{\mu_0} \langle \cos^2(kx - \omega t) \rangle = \frac{E_0 B_0}{2\mu_0} = \frac{E_0^2}{2c\mu_0} = \frac{cB_0^2}{2\mu_0} \quad \text{Eq. (11.5.8)}$$

recall $\blacktriangleright \quad \langle \cos^2(kx - \omega t) \rangle = \frac{1}{2} \quad \text{Eq. (11.5.9)}$

To relate intensity to energy density

we first note equality between electric and magnetic energy densities

$$u_B = \frac{B^2}{2\mu_0} = \frac{(E/c)^2}{2\mu_0} = \frac{E^2}{2c^2\mu_0} = \frac{\epsilon_0 E^2}{2} = u_E$$
 Eq. (11.5.10)

Time-averaged energy density of wave is then

$$\langle u \rangle = \langle u_E + u_B \rangle = \epsilon_0 \langle E^2 \rangle = \frac{\epsilon_0}{2} E_0^2 = \frac{1}{\mu_0} \langle B^2 \rangle = \frac{B_0^2}{2\mu_0}$$
 Eq. (11.5.11)

Comparing Eqs. (11.5.8) and Eq. (11.5.11) we can conclude that intensity is related to average energy density by

$$I = \langle S \rangle = c \langle u \rangle$$
 Eq. (11.5.12)

11.6 Momentum and Radiation Pressure

An electromagnetic wave transports not only energy but also momentum and hence can exert a radiation pressure on a surface

due to absorption and reflection of momentum

When a plane electromagnetic wave is completely absorbed by a surface momentum transferred is related to energy absorbed by

 $\Delta p = \frac{\Delta U}{c}$ complete absorption Eq. (11.6.1)

(We shall not prove this result as it involves a more complicated description of energy and momentum stored in electromagnetic fields)

If EM wave is completely reflected by a surface such as a mirror

$$\Delta p = rac{2\Delta U}{c}$$
 complete reflection Eq. (11.6.2)

For a wave that is completely absorbed

time-averaged radiation pressure (force per unit area) is given by

$$P = \frac{\langle F \rangle}{A} = \frac{1}{A} \left\langle \frac{dp}{dt} \right\rangle = \frac{1}{Ac} \left\langle \frac{dU}{dt} \right\rangle$$
 Eq. (11.6.3)

Because time-averaged rate that energy delivered to surface is

$$\left\langle \frac{dU}{dt} \right\rangle = \langle S \rangle A$$
 Eq. (11.6.4)

Substitute Eq. (11.6.4) into Eq. (11.6.3) yielding

$$P = \frac{\langle S \rangle}{c}$$
 complete absorption Eq. (11.6.5)

If radiation is completely reflected

radiation pressure is twice as great as case of complete absorption

$$P = \frac{2\langle S \rangle}{c}$$
 complete reflection Eq. (11.6.6)

