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11.1 Displacement Current

Chapter 11

Displacement Current and
Maxwell’s Equations

11.1 Displacement Current

We saw in Chap.7 that we can use
Ampère’s law to calculate magnetic
fields due to currents.
We know that the integral

¸
C

�B · d�s
around any close loop C is equal to
µ0iincl, where iincl = current passing an
area bounded by the closed curve C.

e.g.

= Flat surface bounded by loop C

= Curved surface bounded by loop C

If Ampère’s law is true all the time, then the iincl determined should be inde-
pendent of the surface chosen.
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where            current passing an area bounded by closed curve 

C

C

C µ0iincl

iincl = C

iincl independent of surface chosenthen        determined should be

 
 

13-3 

Maxwell’s Equations and Electromagnetic Waves 
 
 
13.1 The Displacement Current 
 
In Chapter 9, we learned that if a current-carrying wire possesses certain symmetry, the 
magnetic field could be obtained by using Ampere’s law:  
 
 

    

!
B ! d !s"" = µ0 Ienc . (13.1.1) 

The equation states that the line integral of a magnetic field around an arbitrary closed 
loop is equal to 0 encIµ , where encI  is the flux of the charge carries passing through the 
surface bound by the closed path. In addition, we also learned in Chapter 10 that, as a 
consequence of Faraday’s law of induction, an electric field is associated with a changing 
magnetic field, according to 

 
   

!
E ! d !s"" = #

d
dt

!
B ! d
!
A

S
"" . (13.1.2) 

  
One might then wonder whether or not the converse could be true, namely, a magnetic 
field is associated with a changing electric field. If so, then the right-hand side of Eq. 
(13.1.1) will have to be modified to reflect such “symmetry” between electric and 
magnetic fields, E

!
 and B

!
.  

 
To see how magnetic fields are associated with a time-varying electric field, consider the 
process of charging a capacitor. During the charging process, the electric field strength 
increases with time as more charge is accumulated on the plates. The conduction current 
that carries the charges also produces a magnetic field. In order to apply Ampere’s law to 
calculate this field, let us choose curve C1  as the Amperian loop, shown in Figure 13.1.1.  
 

 
 

Figure 13.1.1 Surfaces 1S  and 2S  bound by curve C1 . 
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11.1. DISPLACEMENT CURRENT 126

Let’s consider a simple case: charging a
capacitor.
From Chap.5, we know there is a current
flowing i(t) = E�

Re�t/RC , which leads

to a magnetic field observed ⇤B. With
Ampère’s law,

¸
C

⇤B · d⇤s = µ0iincl.
BUT WHAT IS iincl?

If we look at , iincl = i(t)

If we look at , iincl = 0

(⇥ There is no charge flow between the
capacitor plates.)
� Ampère’s law is either WRONG or
INCOMPLETE.

Two observations:

1. While there is no current between the capacitor’s plates, there is a time-
varying electric field between the plates of the capacitor.

2. We know Ampère’s law is mostly correct from measurements of B-field
around circuits.

�

Can we revise Ampère’s law to fix it?

Electric field between capacitor’s plates: E =
�

⇥0
=

Q

⇥0A
, where Q = charge on

capacitor’s plates, A = Area of capacitor’s plates.

� Q = ⇥0E · A⇤ ⇥� ⌅
Electric flux

= ⇥0�E

� We can define
dQ

dt
= ⇥0

d�E

dt
= idisp

where idisp is called Displacement Current (first proposed by Maxwell).
Maxwell first proposed that this is the missing term for the Ampère’s law:

˛
C

⇤B · d⇤s = µ0(iincl + ⇥0
d�E

dt
) Ampère-Maxwell law
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i(t) =
E
R
e�t/RC

I

C

~B · d~s = µ0iinc

iinc = i(t)

iinc = 0

iinc
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Two observations

① While there is no current between capacitor’s plates 
there is a time-varying electric field between plates of capacitor

② We know Ampere’s law is mostly correct                                  
from measurements of B-field around circuits

⇓
Can we revise Ampere’s law to fix it?

Electric field between capacitor’s plates

charge on capacitor’s plates 
area of capacitor’s plates

Q =
A =

Electric flux

E =
�

✏0
=

Q

✏0A

) Q = ✏0 E ·A| {z } = ✏0�E

4Tuesday, April 24, 18



We can define)

where        is called Displacement Current (first proposed by Maxwell)
Maxwell first proposed that this is missing term for Ampere’s law

Ampere-Maxwell law

           current through any surface bounded by 

electric flux through that same surface bounded by curve�E =

C

�E =

Z

S

~E · d~a

C

dQ

dt
= ✏0

d�E

dt
= idis

idis

I

C

~B · d~s = µ0(iinc + ✏0
d�E

dt
)

iinc =
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11.2 Induced Magnetic Field

Electric field can be generated by
charges

changing magnetic flux

Ampere-Maxwell law that a magnetic field can be generated by 
moving charges (current)
changing electric flux

A change in electric flux through a surface bounded by 

can lead to an induced magnetic field along loop

11.2. INDUCED MAGNETIC FIELD 127

Where iincl = current through any surface bounded by C,
�E = electric flux through that same surface bounded by curve C, �E =

´
S

⇤E ·d⇤a.

11.2 Induced Magnetic Field

We learn earlier that electric field can be generated by�
charges
changing magnetic flux

.

We see from Ampère-Maxwell law that a magnetic field can be generated by�
moving charges (current)
changing electric flux

.

That is, a change in electric flux through a surface bounded by C can lead to an
induced magnetic field along the loop C.

Notes The induced magnetic field is along the same direction as caused by the
changing electric flux.

Example What is the magnetic field strength inside a circular plate capacitor
of radius R with a current I(t) charging it?

Answer Electric field of capacitor

E =
Q

⇥0A
=

Q

⇥0�R2

C

C

☛
☛

☛

☛
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Notes Induced magnetic field is along same direction as caused by 

Example What is magnetic field strength inside a circular plate capacitor 
of radius    with a current      charging it?
Answer Electric field of capacitor

I(t)R

☛ changing electric flux

Electric flux inside capacitor through a loop    of radius 
Ampere-Maxwell Law inside capacitor:

11.3. MAXWELL’S EQUATIONS 128

Electric flux inside capacitor through a
loop C of radius r:

�E = E · �r2 =
Qr2

⇥0R2

Ampère-Maxwell Law inside capacitor:
˛

C

⇤B · d⇤s
⇧ ⌅⇤ ⌃

* �Binduced�d�s

= µ0(���iincl + ⇥0
d�E

dt
)

2�r⇧⌅⇤⌃
Length of loop C

Binduced = µ0⇥0
d

dt

� Qr2

⇥0R2

⇥

= µ0
r2

R2

dQ

dt⇧⌅⇤⌃
I(t)

� Binduced =
µ0r

2�R2
I(t) for r < R

Outside the capacitor plate:
Electric flux through loop C: �E = E ·
�R2 =

Q

⇥0˛
C

⇤B · d⇤s = µ0(iincl + ⇥0
d�E

dt
)

2�rBinduced = µ0⇥0

� 1

⇥0
· dQ

dt

⇥

� Binduced =
µ0I(t)

2�r

11.3 Maxwell’s Equations

The four equations that completely describe the behaviors of electric and magnetic
fields.

C r

I

C

~B · d~s
| {z }

= µ0(iincl + ✏0
d�E

dt
)

* ~Binduced||d~s

= µ0
r2

R2

dQ

dt|{z}
I(t)

CLength of loop

for r < R

E =
Q

✏0A
=

Q

✏0⇡R2

2⇡r|{z}Binduced = µ0✏0
d

dt

✓
Qr2

✏0R2

◆

) Binduced =
µ0r

2⇡R2
I(t)
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Outside capacitor plate ☛
Electric flux through loop

11.3. MAXWELL’S EQUATIONS 128

Electric flux inside capacitor through a
loop C of radius r:

�E = E · �r2 =
Qr2

⇥0R2

Ampère-Maxwell Law inside capacitor:
˛

C

⇤B · d⇤s
⇧ ⌅⇤ ⌃

* �Binduced�d�s

= µ0(���iincl + ⇥0
d�E

dt
)

2�r⇧⌅⇤⌃
Length of loop C

Binduced = µ0⇥0
d

dt

� Qr2

⇥0R2

⇥

= µ0
r2

R2

dQ

dt⇧⌅⇤⌃
I(t)

� Binduced =
µ0r

2�R2
I(t) for r < R

Outside the capacitor plate:
Electric flux through loop C: �E = E ·
�R2 =

Q

⇥0˛
C

⇤B · d⇤s = µ0(iincl + ⇥0
d�E

dt
)

2�rBinduced = µ0⇥0

� 1

⇥0
· dQ

dt

⇥

� Binduced =
µ0I(t)

2�r

11.3 Maxwell’s Equations

The four equations that completely describe the behaviors of electric and magnetic
fields.

C

�E = E · ⇡R2 =
Q

✏0
I

C
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iinc + ✏0

d�E
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2⇡rBinduced = µ0✏0
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1
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· dQ
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◆

) Binduced =
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2⇡r
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11.3 Maxwell’s Equations

Four equations that completely describe ☛ 

One equation that describes ☛

~F = q( ~E + ~v ⇥ ~B)

how matter reacts to electric and magnetic fields

behaviors of electric and magnetic fieldsI

S

~E · d ~A =
Qinc

✏0
=

1

✏0

Z

V
⇢ dV

I

S

~B · d ~A = 0

I

C

~E · d~s = � d

dt

Z

S

~B · d ~A
I

C

~B · d~s = µ0iinc + µ0✏0
d

dt

Z

S

~E · ~Ad ~A
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~D = ✏0 ~E + ~P
~D = ✏0 ~Evacuum ☛  isotropic linear dielectric ☛

I

@⌦

~B · d ~A = 0

Maxwell's equations in matter

~D = ✏ ~E

Electric displacement field ☛ 

0.3 Summary of boundary conditions

Component General materials Linear materials
Electric displacement Perpendicular D2,⊥ − D1,⊥ = σf D2,⊥ − D1,⊥ = σf

Parallel D2,∥ − D1,∥ = ?
D2,∥

ϵ2
=

D1,∥

ϵ1

Electric field Perpendicular ϵ2E2,⊥ − ϵ1E1,⊥ =? ϵ2E2,⊥ − ϵ1E1,⊥ = σf

Parallel E2,∥ = E1,∥ E2,∥ = E1,∥

In principle, then, we know the tangential component of E and the perpendicular
component of D. The other components depend on polarisation which we don’t a priori
know (except for linear dielectrics).

4

Boundary conditions ☛

I

C

~H · d~s =
Z

S

~J · d ~A+
d

dt

Z

S

~D · d ~A

I

C

~E · d~s = � d

dt

Z

S

~B · d ~A

I

S

~D · d ~A =

Z

V
⇢ dV
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 Reason is due to the fact that

Important consequence of Maxwell’s equations

 changing electric field produces a magnetic field and vice versa

Coupling between 2 fields leads to generation of electromagnetic waves

Prediction was confirmed by Hertz in 1887

prediction  electromagnetic waves that travel @ speed of light

Maxwell’s equations may also be written in differential form 
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11.4 Plane Traveling Electromagnetic Waves
Consider electromagnetic wave propagating in
with uniform    pointing in      -direction and      in     -direction

+x

+y +z
direction

yz

(y, z)
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!
E ! d
!
A

S
""" = 0,                            

!
E ! d !s = #

d$B

dt#"  ,                   
!
B ! d
!
A

S
""" = 0,                           

!
B ! d !s = µ0%0

d$E

dt#" .       

 (13.3.2) 

 
An important consequence of Maxwell’s equations, as we shall see below, is the 
prediction of the existence of electromagnetic waves that travel with the speed of light 

0 01/c µ != . The reason is due to the fact that a changing electric field is associated with 
a magnetic field and vice versa, and the coupling between the two fields leads to the 
generation of electromagnetic waves. In 1887, H. Hertz confirmed this prediction.  
 
 
13.4 Plane Traveling Electromagnetic Waves 
 
To examine the properties of the electromagnetic waves, let’s consider an 
electromagnetic wave propagating in the   +x- direction, with a uniform electric field E

!
 

pointing in the   + y- direction and a uniform magnetic field B
!

 in the   +z- direction. At any 
instant both E

!
 and B

!
 are uniform over any  yz -plane perpendicular to the direction of 

propagation. This means that for any value of  x , the electric and magnetic fields are the 
same at all points  yz -plane perpendicular to that value of  x . The electric and magnetic 
field are independent of the   ( y, z) coordinates. Therefore the electric and magnetic fields 
are only functions of the   (x,t) coordinates, 

    
!
E(x,t) = Ey (x,t) ĵ  and     

!
B(x,t) = Bz (x,t)k̂ .  

 

 
 

Figure 13.4.1 Electric and magnetic fields at a few selected points along the  x -axis 
associated with a plane electromagnetic wave. 

 

~E ~B
~B~E

~

E(x, t) = Ey(x, t)|̂

~

B(x, t) = Bz(x, t)k̂

At any instant both and independent of        coordinates

This (non-physical) electric and magnetic field yield a plane wave 

because at any instant both     and                                             
are uniform over any plane perpendicular to direction of propagation

☛

~E ~B
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Recall Faraday’s law

To evaluate LHS of (11.4.1) ☛ integrate around closed path  

use Taylor expansion to approximate

(11.4.2)

I
~E · d~s = � d

dt

Z Z
~B · d ~A

I
~

E · d~s = Ey(x + �x)�y � Ey(x)�y

Ey(x + �x) = Ey(x) +
@Ey

@x

�x + · · · (11.4.3)

Left-hand-side of Faraday’s law becomes

(11.4.4)

I
~

E · d~s =
@Ey

@x

�x�y

 
 

13-8 

In the representation shown in Figure 13.4.1, at time   t = 0 , consider the vectors    
!
E(0,0)  

and    
!
B(0,0) , corresponding to the electric and magnetic fields on the plane   x = 0 . We 

show two additional pairs of electric and magnetic vectors representing     
!
E(x1,ct1)  and 

    
!
B(x1,ct1) on the plane   x1 = ct1 , and     

!
E(x2 ,ct2 )  and     

!
B(x2 ,ct2 ) on the plane   x2 = ct2 .  

 
This (non-physical) electric and magnetic field is called a plane wave because at any 
instant both E

!
 and B

!
 are uniform over any plane perpendicular to the direction of 

propagation. In addition, the wave is transverse because both fields are perpendicular to 
the direction of propagation, which points in the direction of the cross product !E B

! !
.  

 
Using Maxwell’s equations, we may obtain the relationship between the magnitudes of 
the fields and their derivatives. To see this, consider a rectangular loop that lies in the 
  xy- plane, with the left side of the loop at x  and the right at x + !x . The bottom side of 
the loop is located at y  and the top of the loop is located at y + !y  as shown in Figure 

13.4.2. Let the unit vector normal to the loop be in the positive   z- direction,  n̂ = k̂ .  
 

 
 

Figure 13.4.2 Spatial variation of the electric field E
!

 
 
Recall Faraday’s law 

 
   

!
E !d!s = "

d
dt

!
B !d
!
A##"# . (13.4.1) 

 
In order to evaluate the left-hand-side of Eq. (13.4.1), we integrate counterclockwise 
around the closed path shown in Figure 13.4.2, 
 
 

    
!
E ! d!s"" = Ey (x + #x)#y $ Ey (x)#y  (13.4.2) 

 
We can use the Taylor expansion to approximate 
 

Consider a rectangular loop that lies in     -plane   
left side of loop at    and right at

xy

x

x + �x

bottom at    and top at             as shown in ☛ y

(11.4.1)

y + �y
Unit vector normal to loop positive z-direction

n̂ = k̂
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Assume that     and      are very small such that time derivative

Rate of change of magnetic flux on right-hand-side of Eq. (11.4.1) is 

-component of magnetic field is nearly uniform over area element

�x �y

z

(11.4.5)� d

dt

Z Z
~

B · d ~A = �@Bz

@t

�x�y

(11.4.6)

Equating two sides of Faraday’s Law and dividing through by area   

@Ey

@x

= �@Bz

@t

�x�y

Eq. (11.4.6) indicates that at each point in space                        time-
varying B-field is associated with spatially varying E-field

of
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Second condition on relationship between electric and magnetic fields 
may be deduced by using Ampere-Maxwell equation

Consider a rectangular loop in     - plane depicted
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Ey (x + !x) = Ey (x) +

"Ey

"x
!x +!. (13.4.3) 

 
Then left-hand-side of Faraday’s law becomes 
 

 
    

!
E ! d!s"" #

#Ey

#x
$x.$y . (13.4.4) 

 
We assume that !x  and !y  are very small such that the time derivative of the  z -
component of the magnetic field is nearly uniform over the area element. Then the rate of 
change of magnetic flux on the right-hand-side of Eq. (13.4.1) is given by  
 

 
   
!

d
dt

!
B " d
!
A## = !

$Bz

$t
%x%y . (13.4.5) 

 
Equating the two sides of Faraday’s Law and dividing through by the area !x!y  yields   
  

 
 

!Ey

!x
= "

!Bz

!t
. (13.4.6) 

 
Eq. (13.4.6) result indicates that at each point in space a time-varying magnetic field is 
associated with a spatially varying electric field.  
 
The second condition on the relationship between the electric and magnetic fields may be 
deduced by using the Ampere-Maxwell equation: 
 

 
    

!
B !d!s = µ0"0

d
dt"#

!
E !d
!
A##  (13.4.7) 

 
Consider a rectangular loop in the   xy- plane depicted in Figure 13.4.3, with a unit normal 

ˆˆ =n j .  

 
 

Figure 13.4.3 Spatial variation of the magnetic field B
!

 

(11.4.7)

I
~

B · d~s = Bz(x)�z � Bz(x + �x)�z (11.4.8)

Evaluating line integral of magnetic field around closed path

xy

I

C

~B · d~s = µ0iinc + µ0✏0
d

dt

Z

S

~E · ~A

15Tuesday, April 24, 18



Use Taylor expansion to approximate

Left-hand-side of Maxwell-Ampere law  becomes

Assuming that      and     are very small such that time derivative

Rate of change of electric flux on right-hand-side of Eq.(11.4.7) is
-component of electric field is nearly uniform over area element

Equating two sides of Maxwell-Ampere law and dividing by          yields

Eq. (11.4.12) indicates that at each point in space                                                         
time-varying E-field is associated to spatially varying B-field

(11.4.9)

(11.4.10)

(11.4.11)

(11.4.12)

Bz(x + �x) = Bz(x) +
@Bz

@x

�x + · · ·

I
~

B · d~s = �@Bz

@x

�x�z

�x

�z
y

�x�z

of

µ0 ✏0
d

dt

Z Z
~

E · d ~A = µ0 ✏0
@Ey

@t

�x�z

�@Bz

@x

= µ0 ✏0
@Ey

@t
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are coupled differential equations
To uncouple them  

with respect to   

Assumed that field     is sufficiently well behaved

Eq. (11.4.12)Eq. (11.4.6)

Eq. (11.4.6)

Eq. (11.4.14)

Eq. (11.4.13)

and

@

2
Ey

@x

2
= � @

@x

⇣
@Bz

@t

⌘
= � @

@t

⇣
@Bz

@x

⌘
x

Bz

Substitute  Eq. (11.4.12) into Eq. (11.4.13) 

Eq. (11.4.15)

@

@x

⇣
@Bz

@t

⌘
=

@

@t

⇣
@Bz

@x

⌘

One-dimensional wave equation 

By a dimensional analysis 

first take another partial derivative of 

such that partial derivatives are interchangeable

quantity         has same dimensions as speed squared
1

µ0✏0

@

2
Ey

@x

2
= µ0✏0

@

2
Ey

@t

2
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Repeat argument to find a one-dimensional wave equation satisfied by
-component of magnetic field ☛ takingz @/@x

of Eq. (11.4.12)

Eq. (11.4.16)�@

2
Bz

@x

2
= µ0E0

@

@x

@Ey

@t

= µ0@0
@

@t

⇣
@Ey

@x

⌘

Substitute Eq. (11.4.6)  into Eq. (11.4.16) yielding a one-dimensional 
wave equation satisfied by   -component of magnetic fieldz

Eq. (11.4.17)

Eq. (11.4.18)

Eq. (11.4.19)

@

2
Bz

@x

2
= µ0E0

@

2
Bz

@t

2

@

2 (x, t)

@x

2
=

1

⌫

2

@

2 (x, t)

@t

2

 (x, t)

Ey Bz

General form of a one-dimensional wave equation is given by

where     is speed of propagation and            is wave function⌫

satisfy wave equation and propagate with speedand

µ0✏0µ0✏0

µ0✏0

⌫ =
1

p
µ0 ✏0

1

v2

v

v
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!0 =

1
µ0c

2 , (13.4.21) 

 
Comparing Eqs. (13.4.21) and (13.4.20), we conclude that the speed of propagation is 
exactly equal to the speed of light, 
 
   v = c = 299792458 m1 !s-1 . (13.4.22) 
 
Thus, we conclude that Maxwell’s Equations predict that electric and magnetic field can 
propagate through space at the speed of light. The spectrum of electromagnetic waves is 
shown in Figure 13.4.4. 
 

 
 

Figure 13.4.4 Electromagnetic spectrum 
 
 
13.4.1 One-Dimensional Wave Equation 
 
We shall now explore the properties of wave functions ( , )x t!  that are solutions to the 
one-dimensional wave equation, Eq. (13.4.18). Many types of physical phenomena can 
be described by wave functions. We have already seen in the previous section that the 
plane transverse electric and magnetic fields,   

Ey (x,t)  and   Bz (x,t) , propagating at the 

speed of light satisfy a one-dimensional wave equations. The transverse displacement of 
a stretched string,   y(x,t)  will propagate along a string oriented along the  x -direction at s 
speed dependent on the material properties and tension of the string. In each of these 

 Electromagnetic spectrum

Taking µ0 = 4⇡ ⇥ 10�7 Tm/A

Maxwell’s Equations predict that E- and  B-fields 
propagate through space at speed of light

✏0 = 8.854⇥ 10�12 C/N/m2and
⌫ = c = 2.997⇥ 108 m/sv
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11.5 Poynting Vector

Consider plane EM wave passing through small volume element                   
of area     and thickness      as shown in ☛

Energy can also be transported by electromagnetic waves

 
 

13-21 

 
Standing electromagnetic waves can be formed by confining the electromagnetic waves 
within two perfectly reflecting conductors, as shown in Figure 13.4.8. 

 
13.6 Poynting Vector 
 
In Chapters 5 and 11 we had seen that electric and magnetic fields store energy. Energy 
can also be transported by electromagnetic waves that consist of both fields. Consider a 
plane electromagnetic wave passing through a small volume element of area A  and 
thickness dx , as shown in Figure 13.6.1. 
 

 
 

Figure 13.6.1 Electromagnetic wave passing through a volume element 
 
The total energy stored in the electromagnetic fields in the volume element is given by 
 

 
2

2
0

0

1( )
2E B

B
dU uAdx u u Adx E Adx!

µ
" #

= = + = +$ %
& '

, (13.6.1) 

where  

 
2

2
0

0

1 ,      
2 2E B

Bu E u!
µ

= = . (13.6.2) 

 
are the energy densities associated with the electric and magnetic fields. Because the 
electromagnetic wave propagates with the speed of light  c , the amount of time it takes 
for the wave  to move through the volume element is dt = dx / c .  Thus, one may obtain 
the rate of change of energy per unit area, denoted by the symbol S , as  
 

 
2

2
0

02
dU c BS E
Adt

!
µ

" #
= = +$ %

& '
. (13.6.3) 

 
The SI unit of S  is  [W !m-2] . Recall that the magnitude of the fields satisfy  E = cB  and 

  c = 1 / µ0!0 . Therefore Eq. (13.6.3) may be rewritten as  
 

A
dx

Total energy stored in electromagnetic fields 
in volume element is

Eq. (11.5.1)

Eq. (11.5.2)

dU = uAdx = (uE + uB)Adx =
1

2

⇣
E0 E2 +

B

2

µ0

⌘
Adx

uE =
1

2
E0 E2 uB =

B2

2µ0

Because electromagnetic wave propagates with speed of light          
time it takes for wave to move through volume element is 
One may obtain rate of change of energy per unit area

Eq. (11.5.3)
S =

dU

Adt
=

c

2

⇣
E0 E2 +

B2

µ0

⌘

dt = dx/c

c

✏0

✏0

✏0
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unit of    is 
Recall that magnitude of fields satisfy             and
Therefore  Eq. (11.5.3) may be rewritten as

SSI [W · m�2]

E = cB

Eq. (11.5.4) 

Turn this energy flow into a vector                                                

Rate of energy flow per unit area is called Poynting vector  
(after British physicist John Poynting) and defined by vector product

~S

~S =
1

µ0

~E ⇥ ~B Eq. (11.5.5) 

|~S| =
~E ⇥ ~B

µ0
=

EB

µ0
= S Eq. (11.5.6) 

S =
c

2

⇣
E0E2 +

B2

µ0

⌘
=

cB2

µ0
= cE0E2 =

EB

µ0

Plane transverse electromagnetic waves                                            
~E ~B ~Sfields     and    are perpendicular and magnitude of

c = 1/
p
µ0✏0

✏0 c✏0

by assigning direction as direction of propagation
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As an example, suppose electric field associated with a plane sinusoidal
electromagnetic wave is

Poynting vector is then ☛

and direction of propagation is positive   -direction

Corresponding magnetic field is

~

E = E0 cos(kx� !t) |̂

~

B = B0 cos(kx� !t)

ˆ

k

x

~

S =

1

µ0
(E0 cos(kx� !t) |̂) ⇥ (B0 cos(kx� !t)

ˆ

k) =

E0B0

µ0
cos

2
(kx � !t)̂ı

Eq. (11.5.7) 

~S
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2 2

2 2
0 0

0 0 02
c B cB EBS E c E! !

µ µ µ
" #

= + = = =$ %
& '

. (13.6.4) 

 
We can turn this energy flow into a vector by assigning the direction as the direction of 
propagation. The rate of energy flow per unit area is called the Poynting vector  

!
S   (after 

the British physicist John Poynting), and defined by the vector product 
 

 
0

1
µ

= !S E B
! ! !

. (13.6.5) 

 
For our plane transverse electromagnetic waves, the fields E

!
and B
!

 are perpendicular, 
and the magnitude of  

!
S  is 

 
    

!
S =

!
E!
!
B

µ0

=
EB
µ0

= S . (13.6.6) 

 
As an example, suppose the electric field associated with a plane sinusoidal 
electromagnetic wave is 0

ˆcos( )E kx t!= "E j
!

. The corresponding magnetic field is 

0
ˆcos( )B kx t!= "B k

!
, and the direction of propagation is the positive   x -direction. The 

Poynting vector is then 
 

 
    

!
S =

1
µ0

(E0 cos(kx !"t) ĵ)# (B0 cos(kx !"t)k̂) =
E0 B0

µ0

cos2(kx !"t)î  (13.6.7) 

 
As expected,  

!
S  points in the direction of wave propagation (Figure 13.6.2).  

 

 
 

Figure 13.6.2 Electric and magnetic fields, and the Poynting vector for a plane wave on 
the plane   x = 0 . 

 
The intensity of the wave,  I , is defined as the time-average of  S , and is given by 
 

 
  
I = S =

E0 B0

µ0

cos2(kx !"t) =
E0 B0

2µ0

=
E0

2

2cµ0

=
cB0

2

2µ0

, (13.6.8) 

 

As expected  ☛    points in direction of wave propagation
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Intensity of wave    is defined as time-average of   

I = hSi =

E0B0

µ0
hcos2(kx � !t)i =

E0B0

2µ0
=

E

2
0

2cµ0
=

cB

2
0

2µ0

Eq. (11.5.8) 

I S

recall ☛ Eq. (11.5.9) 

To relate intensity to energy density

Eq. (11.5.10) uB =
B2

2µ0
=

(E/c)2

2µ0
=

E2

2c2µ0
=

E0E2

2
= uE

hcos2(kx � !t)i =

1

2

we first note equality between electric and magnetic energy densities

Time-averaged energy density of wave is then

hui = huE + uBi = E0hE2i = E0
2
E2

0 =
1

µ0
hB2i =

B2
0

2µ0
Eq. (11.5.11)

Comparing Eqs. (11.5.8) and Eq. (11.5.11) 
we can conclude that intensity is related to average energy density by

I = hSi = chui Eq. (11.5.12)

✏0✏0

✏0
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11.6 Momentum and Radiation Pressure

An electromagnetic wave transports not only energy but also momentum 
and hence can exert a radiation pressure on a surface

When a plane electromagnetic wave is completely absorbed by a surface 
momentum transferred is related to energy absorbed by

(We shall not prove this result as it involves a more complicated 
description of energy and momentum stored in electromagnetic fields)

Eq. (11.6.1)�p =
�U

c

If EM wave is completely reflected by a surface such as a mirror 

complete absorption

complete reflection Eq. (11.6.2)�p =
2�U

c

due to absorption and reflection of momentum
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For a wave that is completely absorbed                                          
time-averaged radiation pressure (force per unit area) is given by

Because time-averaged rate that energy delivered to surface is

Eq. (11.6.3)

Eq. (11.6.4)

Eq. (11.6.5)

Eq. (11.6.6)

Substitute Eq. (11.6.4) into Eq. (11.6.3) yielding

complete absorption

complete reflection

P =
hF i
A

=
1

A

D dp

dt

E
=

1

Ac

DdU
dt

E

P =
hSi
c

P =
2hSi
c

DdU
dt

E
= hSiA

If radiation is completely reflected                                           
radiation pressure is twice as great as case of complete absorption
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