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11.1 Displacement Current
We can use Ampere’ s law to calculate magnetic fields due to currents

Integral 7{ E . d§ around any close loop (' is equal to Uo%incl
C

where %, = current passing an area bounded by closed curve C

Capacitor plates

>
I

Flat surface bounded by loop ('

0 = Curved surface bounded by loop (

If Ampere’ s law is true all time

then %inci determined should beindependent of surface chosen
2
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Consider a simple case: charging a capacitor

. E _
We know there is a current flowing i(t) = —e Y/EC

R

which leads fo a magnetic field observed B

With Ampere’ s law ]{ B - d5 = pgiine [

C ¥ "
BUT WHAT IS finc ? T
If we look at O bine = (1) ’

[
If we look at O tine = 0
loop C
\

"."There is no charge flow between capacitor plates U

.. Ampere’ s law is either WRONG or INCOMPLETE
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Two observations

@® While there is no current between capacitors plates
there is a time-varying electric field between plates of capacitor

® We know Ampere's law is mostly correct

from measurements of B-field around circuits

U
Can we revise Ampere’s law to fix it?
. . o Q
Electric field between capacitors plates EF=—=—
€0 €A
() = charge on capacitors plates

A = area of capacitors plates

' —en - A=¢en®
. Q €0, . — €O¥E
Electric flux
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.". We can define

dQ _ d%g
a

where 1dis is called Displacement Current (first proposed by Maxwell)

— 1dis

Maxwell first proposed that this is missing term for Amperes law

dPp
dt

)  Ampere-Maxwell law

% é - ds = “O(iinc + €0
C

linc = current through any surface bounded by C

®p = electric flux through that same surface bounded by curve C

@E:/E-da
S
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11.2 Induced Magnetic Field
m Charges

Electric field can be generated by
w changing magnetic flux

Ampere-Maxwell law that a magnetic field can be generated by
w moving charges (current)

w changing electric flux
A change in electric flux through a surface bounded by (O

can lead to an induced magnetic field along loop C

B induced

SRS
wof!

++‘
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Notes Induced magnetic field is along same direction as caused by

w changing electric flux
Example What is magnetic field strength inside a circular plate capacitor
of radius 2 with a currentl(t) charging it?
Answer Electric field of capacitor B Q Q

e0A  egmR?

Electric flux inside capacitor through a loop (' of radius r B,,,., (toop©)
Ampere-Maxwell Law inside capacitor:

_ - d(I)E x X x Assumg an
% B - ds = :LLO(Zincl + € dt ) r * % :En—cfrii?dSIinnqto
\»C? J X . X x the page
éinduced‘ |d§ d Q/r2
2mr B; = [L0€0 R
induced M0 €0 dt 60R2
Length of loop C 9
B re dQ@)
- MR
N~
LT I(t)
. Binduced = 2 R2 I(t) for r <R
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Outside capacitor plate

Electric flux through loop C

<I>E:E-7TR2:Q
€0

. d®
B-d5= o | iinc

1 d
27"-r'aBinduced — H0€0 ) Q
€0 dt

pol (t)
27T

. Binduced —

AB induced

—

induced

Assume an
increasing
E-field into
the page

> T
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11.3 Maxwell’s Equations

Four equations that completely describe
behaviors of electric and magnetic fields

= g inc 1
%E-dA:Q =— [ pdV
S €0 €0 Jv

%E-M:o
S

fﬁ.dg:_i/g.dg
C dt Js

~ d - N
7{ B - ds = pgtine + po€o— / E-dA
C dt Js

One equation that describes w
how matter reacts to electric and magnetic fields

F = gq(E + 7 x B)
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Maxwell's equations

]{ﬁ.dg:/pdv
S V

—

H -ds

]{E-d,?:—i/é.dff
C dt Js
di

o= A
C S

J - -dA+ —
Electric displacement field m D

vacuum m [) — EOE

in matter

D-dA
S
:GQE+ﬁ

isotropic linear dielectric @ D = ¢F

Boundary conditions

Component | General materials Linear materials
Electric displacement | Perpendicular | Dy | — Dy | =0~ Dy, —Di,=o-
Parallel Dyy— Dy =7 E%%ﬂ _ E%?ﬂ
Electric field Perpendicular | eoFy | —e1Fy ) =7 | eaBy | — 1By =0~
Parallel By = By Ey) = B
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Maxwell’s equations may also be writtem L differential form

V-D=p
V-B =20

_ 0B
VxE=-%

VxH=J+ 9>

ot
mportant consequence of Maxwell’s equations

prediction electromagwnetic waves that travel @ speed of Light

Reasow is due to the fact that

changing electric field produces a magnetic field and vice versa

Coupling between 2 fields Leads to generation of electromagnetic waves
Prediction was confirmed by Hertz tn 1287
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11.4 Plane Traveling Electromagnetic Waves
Consider elecfromagnehc wave propagating in —I—:E direction
with uniform E pom’rlng in +Y -direction and B in +2direction

At any instant both E and B = independent of (¥, 2) coordinates

E(x,t) = E,(x,1)j :
= A E(0.0
B(z,t) = B,(z,t)k (0,0) b o)

l_i’](x2 ,CL, )

]HB(x2 ; ct2)

This (non-physical) electric and magnetic field yield a plane wave

because at any instant both E and B
are uniform over any plane perpendicular fo direction of propagation

12
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Consider a rectangular loop that lies in LY -plane

left side of loop at * and right at =z + Az v .
bottom at ¥ and top at ¥y + Ay as shown in w s (x)i‘\\
Unit vector normal to loop positive z-direction ' T E (x+ Ax)
n =k ‘n/ 1 Ay
Recall Faradays law N__\L
j{ E - / / B - dA a (11.4.1)
To evaluate LHS of (11.4.1) m integrate around closed path
7{ E - ds= E,(z + Ax) Ay — Ey(x) Ay (11.4.2)
use Taylor expansion fo approximate
OF
x
Left-hand-side of Faradays law becomes
-~ ., OF
7{ E - ds = o —4 AzAy (11.4.4)
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Assume that Az and Ay are very small such that time derivative

of Z-component of magnetic field is nearly uniform over area element

Rate of change of magnetic flux on right-hand-side of Eq. (11.4.1) is

d - - 0B
—— B -dA = —-—"—"2AzA 11.4.5
- / / d 5 x Ay ( )

Equating two sides of Faraday's Law and dividing through by area AzAy

0E,  OB.
Eq. (11.4.6) indicates that at each point in space time-

varying B-field is associated with spatially varying E-field
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Second condition on relationship between electric and magnetic fields

may be deduced by using Ampere-Maxwell equation
]{ B - ds = potine + Ho€o— / E-A (11.4.7)
e dt Js

Consider a rectangular loop in XY - plane depicted

Evaluating line integral of magnetic field around closed path

7{5 - d§ = B,(x)Az — B,(x + Az) Az (11.4.8)

Tuesday, April 24, 18

15




Use Taylor expansion to approximate

0B

B.(x + Az) = B,(x) + 8—Z Az + --- (11.4.9)
x
Left-hand-side of Maxwell-Ampere law becomes
- B,
743 a5 = — 952 agn (11.4-10)
Ox

Assuming that Ax and Az are very small such that time derivative

of Y -component of electric field is nearly uniform over area element
Rate of change of electric flux on right-hand-side of Eq.(11.4.7) is

d - - oF
- E . dA = Y AzA
Ho €0 — / / d Ho €0 —~ ATAZ (11.4.11)

Equating two sides of Maxwell-Ampere law and dividing by Az Az yields

0B, IE,

Eq. (11.4.12) indicates that at each point in space

time-varying E-field is associated to spatially varying B-field
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Eq. (11.4.6) and Eq. (11.4.12) are coupled differential equations

To uncouple them
first take another partial derivative of Eq. (11.4.6) with respect to *

2
o = a (o) = ala)

Assumed that field B is sufficiently well behaved
such that partial derivatives are interchangeable

0 (0B, 0 (0B,
(933(875)_ 875(8:6)
Substitute Eq. (11.4.12) into Eq. (11.4.13)

Eq. (11.4.13)

Eq. (11.4.14)

One-dimensional wave equation

2 2
0"E, — M()an By Eq. (11.4.15)
Ox? ot?
By a dimensional analysis
quantity has same dimensions as speed squared

Ho€o
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Repeat argument to find a one-dimensional wave equation satisfied by
z-component of magnetic field m taking 0/0x of Eq. (11.4.12)

2

_8 B, _ o€ 0 0By 140 €0 0 (aEy> Eq. (11.4.16)
Ox? Ox Ot Ot \ Ox

Substitute Eq. (11.4.6) info Eq. (11.4.16) yielding a one-dimensional

wave equation satisfied by 2 -component of magnetic field
2 2
B e, OB
O0x? ot?

General form of a one-dimensional wave equation is given by

0*¥(z,t) 1 0*¥(z,1) Eq. (11.4.18)

Ox? V2 Ot?

where U is speed of propagation and \If(a:, t) is wave function

Eq. (11.4.17)

Ey and B, satisfy wave equation and propagate with speed

V = L E(lo (1104019)

v/ M0 €0
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Taking po =47 x 1077 Tm/A and ¢y = 8.854 x 10~ "% C/N/m?
v =c=2.997 x 10° m/s
Maxwells Equations predict that E- and B-fields
propagate through space at speed of light

Electromagnetic spectrum

1072+ i
= Gamn;a rays 1
10+ 1
+ T A 4
18 - =
10 X-rays Y —+ Inm
B Ultraviolet 4
10+ v 1
1 “ 1 1um
10" visible light i 1
1 Infr;ared
1027 4 v T
T ] —+ lem
1011 Mlcr(lwaves A o
o - TV FM 1 tm
4 Radio waves 1
106 :: T -+ lkm
104 T Longlwave ::

Frequency, Hz,
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11.5 Poynting Vector
Energy can also be transported by electromagnetic waves

Consider plane EM wave passing through small volume element oy
of area A and thickness dx as shown in wr > r=c

Total energy stored in electromagnetic fields
in volume element is

1 , B?
dU = uAdx = (up + ug) Ader = = <€0E + —)Ada:
2 Ho
1, B?
ugp = — €L up = — Eq. (11.5.2)
2 210

Because electromagnetic wave propagates with speed of light ¢
time it takes for wave to move through volume element is dt = dx/c

One may obtain rate of change of energy per unit area
aU c B2

S = — — Z (e E? _)
Adt 2 | + Lo

Eq. (11.5.3)

21
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ST unit of Sis [W - m™?]
Recall that magnitude of fields satisfy £ = cBand ¢ = 1/y/po€g

Therefore Eq. (11.5.3) may be rewritten as
C B? cB? EB
2 140 f40 1o
Turn this energy flow into a vector

by assigning direction as direction of propagation
Rate of energy flow per unit area is called Poynting vector S

(after British physicist John Poynting) and defined by vector product

, 1 -
S=—Fx B Eq. (11.5.5)

2%

Plane fransverse electromagnetic waves
fields E and B are perpendicular and magnitude of S

ExB EB

S| = =5 Eq. (11.5.6)
Ho Ho
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As an example, suppose electric field associated with a plane sinusoidal
electromagnetic wave is £ = FEjy cos(kx — wt) j

A

Corresponding magnetic field is B = By cos(kx — wt) k
and direction of propagation is positive x-direction
Poynting vector is then = Eq. (11.5.7)

S 1 ~ EoB
S = — (Ey cos(kx — wt))) x (Bg cos(kxr —wt) k) = 00
o Ho

As expected m G points in direction of wave propagation @
Y]

E
C

~a

et
|
'

cos® (kx — wt)i
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Intensity of wave [ is defined as time-average of S

2 2

I =(S) = EoBo (cosQ(kx — wt)) = EoBo — Eq _ % Eq. (11.5.8)
Ho | 210 2¢/1 2140

recall m (cos®(kx — wt)) = 5 Eq. (11.5.9)

To relate intensity to energy density
we first note equality between electric and magnetic energy densities

B>  (Ejc¢)>  E* € E?

210 20  2¢Ppo 2
Time-averaged energy density of wave is then
1 B
() = (up +up) =€0(F?) = Vp2 = — (B?) = 0  Eq.(11.5.11)
2 [ho 240

Comparing Eqs. (11.5.8) and Eq. (11.5.11)
we can conclude that intensity is related to average energy density by

I = <S> — c<u> Eq. (11.5.12)
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11.6 Momentum and Radiation Pressure

An electromagnetic wave fransports not only energy but also momentum

and hence can exert a radiation pressure on a surface
due fo absorption and reflection of momentum

When a plane electromagnetic wave is completely absorbed by a surface
momentum transferred is related to energy absorbed by

A
Ap = _U complete absorption Eq. (11.6.1)
C

(We shall not prove this result as it involves a more complicated
description of energy and momentum stored in electromagnetic fields)

If EM wave is completely reflected by a surface such as a mirror

2AU
c

Ap = complete reflection Eq. (11.6.2)
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For a wave that is completely absorbed
time-averaged radiation pressure (force per unit area) is given by

P = () _ 1 <@> _ <dU> Eq. (11.6.3)

A ANdt/  Ac\dt
Because time-averaged rate that energy delivered tfo surface is
dU
<E> = (5) A Eq. (11.6.4)
Substitute Eq. (11.6.4) into Eq. (11.6.3) Yielding
_ @ complete absorption Eq. (11.6.5)
C

If radiation is completely reflected

radiation pressure is twice as great as case of complete absorption
2(5)

C

P = complete reflection Eq. (11.6.6)
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