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10.1 Alternating Current (AC) Voltage

If coil rotates in presence of magnetic field 
We learned that changing magnetic flux could induce an emf according to Faraday’s law

Symbol for AC voltage source 
induced emf varies sinusoidally with time and leads to AC
☛
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Driven RLC Circuits 
 
 
12.1 AC Sources 

 
In Chapter 10 we learned that changing magnetic flux could induce an emf according to 
Faraday’s law of induction. In particular, if a coil rotates in the presence of a magnetic 
field, the induced emf varies sinusoidally with time and leads to an alternating current 
(AC), and provides a source of AC power. The symbol for an AC voltage source is  
 

 
An example of an AC source is 
 
   V (t) =V0 sin(ωt) , (12.1.1) 
 
where the maximum value 

� 

V0 is called the amplitude. The voltage varies between 0V  and 

0V−  since a sine function varies between +1 and −1. A graph of voltage as a function of 

time is shown in Figure 12.1.1. The phase of the voltage source is  φV =ωt , (the phase 
constant is zero in Eq. (12.1.1)). 
 

 
 

Figure 12.1.1 Sinusoidal voltage source 
 
The sine function is periodic in time.  This means that the value of the voltage at time t  
will be exactly the same at a later time t t T′ = +  where T  is the period.  The frequency, 
f , defined as 1/f T= , has the unit of inverse seconds ( s

-1 ), or hertz ( Hz ). The angular 
frequency is defined to be 2 fω π= . 
 
When a voltage source is connected to a  RLC  circuit, energy is provided to compensate 
the energy dissipation in the resistor, and the oscillation will no longer damp out. The 
oscillations of charge, current and potential difference are called driven or forced 
oscillations.   
 
After an initial “transient time,” an AC current will flow in the circuit as a response to the 
driving voltage source. The current in the circuit is also sinusoidal, 
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the energy dissipation in the resistor, and the oscillation will no longer damp out. The 
oscillations of charge, current and potential difference are called driven or forced 
oscillations.   
 
After an initial “transient time,” an AC current will flow in the circuit as a response to the 
driving voltage source. The current in the circuit is also sinusoidal, 

! = 2⇡f = 2⇡/T

 unit ☛ s�1 ⌘ Hz

V (t) = V0 sin(!t)
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Purely Resistive Load
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 0( ) sin( )I t I tω φ= − , (12.1.2) 
 
and will oscillate with the same angular frequency ω  as the voltage source, has 
amplitude 0I , phase  φ I =ωt −φ , and phase constant φ  that depends on the driving 
angular frequency. Note that the phase constant is equal to the phase difference between 
the voltage source and the current 
 
   Δφ ≡ φV −φ I =ωt − (ωt −φ) = φ . (12.1.3) 
 
12.2 AC Circuits with a Source and One Circuit Element 

 
Before examining the driven RLC circuit, let’s first consider cases where only one circuit 
element (a resistor, an inductor or a capacitor) is connected to a sinusoidal voltage source. 
 
12.2.1 Purely Resistive Load 
 
Consider a purely resistive circuit with a resistor connected to an AC generator with AC 
source voltage given by   V (t) =V0 sin(ωt) , as shown in Figure 12.2.1. (As we shall see, a 
purely resistive circuit corresponds to infinite capacitance C = ∞ and zero inductance 

0L = .) 

 
 

Figure 12.2.1 A purely resistive circuit 
 
We would like to find the current through the resistor, 
 
   IR (t) = IR0 sin(ωt −φR ) . (12.2.1) 
 
Applying Kirchhoff’s loop rule yields  
 
   V (t) − IR (t)R = 0 , (12.2.2) 
 
where   VR (t) = IR (t)R  is the instantaneous voltage drop across the resistor. The 
instantaneous current in the resistor is given by 
 

IR(t) = I0,R sin(!t+ �R)

V (t)� IR(t)R = 0

IR(t) =
V (t)

R
=

V0 sin(!t)

R
= I0,R sin(!t)

I0,R =
V0,R

R
=

V0,R

XR

XR = R

�R = 0  and            are in phase with each otherVR(t)IR(t)

VR(t) = IR(t)R ☛ instantaneous voltage drop across the resistor

☛

☛ resistive reactance

Applying Kirchhoff’s loop rule yields

We’d like to find current through resistor

10.2 AC circuits with a source and one circuit element 
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IR (t) = V (t)

R
=

V0 sin(ωt)
R

= IR0 sin(ωt) . (12.2.3) 

 
Comparing Eq. (12.2.3) with Eq. (12.2.1), we find that the amplitude is 
 

 
  
IR0 =

VR0

R
=

VR0

X R

 (12.2.4) 

 
where   VR0 =V0  , and  

  X R = R . (12.2.5) 
 
The quantity  X R  is called the resistive reactance, to be consistent with nomenclature that 
will introduce shortly for capacitive and inductive elements, but it is just the resistance. 
The key point to recognize is that the amplitude of the current is independent of the 
driving angular frequency. Because   φR = 0 , ( )RI t  and ( )RV t  are in phase with each 
other, i.e. they reach their maximum or minimum values at the same time, the phase 
constant is zero,  
   φR = 0 . (12.2.6) 
 
The time dependence of the current and the voltage across the resistor is depicted in 
Figure 12.2.2(a). 
 

 
(a)  

(b) 
 
Figure 12.2.2 (a) Time dependence of ( )RI t  and ( )RV t  across the resistor. (b) Phasor 
diagram for the resistive circuit. 
 
The behavior of ( )RI t  and ( )RV t  can also be represented with a phasor diagram, as 
shown in Figure 12.2.2(b). A phasor is a rotating vector having the following properties; 
 
(i) length: the length corresponds to the amplitude. 
 
(ii) angular speed: the vector rotates counterclockwise with an angular speed ω.   

Phasor ☛ rotating vector having following properties:
(i) length: the length corresponds to the amplitude
(ii) angular speed: the vector rotates counterclockwise with angular speed 
(iii) projection: the projection of vector along vertical axis corresponds to value 

of the alternating quantity at time 

Time dependence of          and Phasor diagram for resistive circuit

!

t

VR(t) IR(t)
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Average value of current over one period

hIR(t)i =
1

T

Z T

0
IR(t) dt =

1

T

Z T

0
I0,R sin(!t)dt =

I0,R
T

Z T

0
sin(2⇡t/T ) dt = 0

hI2R(t)i =
1

T

Z T

0
I2R(t) dt =

1

T

Z T

0
I20,R sin2(!t)dt =

I20,R
T

Z T

0
sin2(2⇡t/T ) dt =

1

2
I20,R

Average of the square of the current is non-vanishing

It is convenient to define:
Irms =

q
hI2R(t)i =

I0,Rp
2

 rms voltage ☛ Vrms =
q

hV 2
R(t)i =

V0,Rp
2

Power dissipated in the resistor ☛

root-mean-square (rms) current  

PR(t) = IR(t)VR(t) = I2R(t)R

hPR(t)i = hI2R(t)Ri = 1

2
I20,RR = I2rmsR = IrmsVrms =

V 2
rms

R

Average power over one period 

rms voltage supplied to domestic wall outlets in US  ☛

☛

Vrms = 110 V @ 60 Hz
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Purely Inductive Load
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In a similar manner, the rms voltage can be defined as 
 

 2 0
rms ( )

2
R

R
VV V t= = . (12.2.12) 

 
The rms voltage supplied to the domestic wall outlets in the United States is 

rms 120 VV = at a frequency  60 Hzf = .  
 
The power dissipated in the resistor is 
 
 2( ) ( ) ( ) ( )R R R RP t I t V t I t R= = . (12.2.13) 
 
The average power over one period is then 
 

 
2

2 2 2 rms
0 rms rms rms

1( ) ( )
2R R R

VP t I t R I R I R I V
R

= = = = = . (12.2.14) 

 
 
12.2.2 Purely Inductive Load 
 
Consider now a purely inductive circuit with an inductor connected to an AC generator 
with AC source voltage given by   V (t) =V0 sin(ωt) , as shown in Figure 12.2.3. As we 
shall see below, a purely inductive circuit corresponds to infinite capacitance C = ∞  and 
zero resistance 0R = . 

 
 

Figure 12.2.3 A purely inductive circuit  
 
We would like to find the current in the circuit, 
 
   IL(t) = IL0 sin(ωt −φL ) . (12.2.15) 
  
Applying the modified Kirchhoff’s rule for inductors, the circuit equation yields 
 

 ( ) ( ) ( ) 0L
L

dIV t V t V t L
dt

− = − = . (12.2.16) 

 

We’d like to find current in the circuit

IL(t) = I0,L sin(!t� �L)

Applying Kirchhoff’s loop rule yields

V (t)� VL(t) = V (t)� L
dIL
dt

= 0

dIL
dt

=
V (t)

L
=

V0,L

L
sin(!t)

IL(t) =

Z
dIL =

V0,L

L

Z
sin(!t)dt = �V0,L

!L
cos(!t) =

V0,L

!L
sin(!t� ⇡/2)

I0,L =
V0,L

!L
=

V0,L

XL

☛ inductive reactanceXL = !L
☛ phase constant�L = +⇡/2

6Tuesday, April 17, 18



 
 

12-8 

 
(a) 

  
(b) 

 
Figure 12.2.4 (a) Time dependence of ( )LI t  and ( )LV t  across the inductor. (b) Phasor 
diagram for the inductive circuit. 
 
As can be seen from the figures, the current ( )LI t  is out of phase with ( )LV t  by 

  φL = π / 2 ; it reaches its maximum value one quarter of a cycle later than ( )LV t .  
 

 

The current lags voltage by π  / 2 in a purely inductive circuit 
 

 
The word “lag” means that the plot of ( )LI t  is shifted to the right of the plot of ( )LV t  in 

Figure 12.2.4 (a), whereas in the phasor diagram the phasor    

IL(t)  is “behind” the phasor 

for    


VL(t) as they rotate counterclockwise in Figure 12.2.4(b). 
 
12.2.3 Purely Capacitive Load  
 
Consider now a purely capacitive circuit with a capacitor connected to an AC generator 
with AC source voltage given by   V (t) =V0 sin(ωt) . In the purely capacitive case, both 
resistance  R  and inductance  L  are zero. The circuit diagram is shown in Figure 12.2.5. 
 

 
 

Figure 12.2.5 A purely capacitive circuit 
 
We would like to find the current in the circuit, 
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(a) 

  
(b) 
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Figure 12.2.5 A purely capacitive circuit 
 
We would like to find the current in the circuit, 

frequencies the current changes more rapidly than it does at lower frequencies. On the 
other hand, the inductive reactance vanishes as Z��approaches zero.  
 
By comparing Eq. (12.2.14) to Eq. (12.1.2), we also find the phase constant to be 
 

 
2
SI  �  (12.2.17) 

 
The current and voltage plots and the corresponding phasor diagram are shown in the 
Figure 12.2.4 below. 
 

  

Figure 12.2.4 (a) Time dependence of ( )LI t  and ( )LV t  across the inductor. (b) Phasor 
diagram for the inductive circuit. 
 
As can be seen from the figures, the current ( )LI t  is out of phase with by( )LV t / 2I S ; 
it reaches its maximum value after does by one quarter of a cycle. Thus, we say that  ( )LV t
 

 

The current lags voltage by S�/ 2 in a purely inductive circuit 
 

 
 
12.2.3 Purely Capacitive Load  
 
In the purely capacitive case, both resistance R and inductance L are zero. The circuit 
diagram is shown in Figure 12.2.5. 
 

 
 

Figure 12.2.5 A purely capacitive circuit 
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Purely Capacity Load
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(a) 

  
(b) 
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Consider now a purely capacitive circuit with a capacitor connected to an AC generator 
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Figure 12.2.5 A purely capacitive circuit 
 
We would like to find the current in the circuit, 

We’d like to find current in circuit

IC(t) = I0,C sin(!t� �C)

Again ☛ Kirchhoff’s loop rule yields

V (t)� VC(t) = V (t)� Q(t)

C
= 0

Charge on capacitor

Q(t) = CV (t) = CVC(t) = CV0,C sin(!t)

Current

IC(t) =
dQ

dt
= !CV0,C cos(!t) = !CV0,C sin(!t+ ⇡/2)

☛ capacitance reactance

☛ phase constant

I0,C = !CV0,C =
V0,C

XC

XC =
1

!C
�C = �⇡/2
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(a) 

        
 

(b) 

 
Figure 12.2.6 (a) Time dependence of ( )CI t  and ( )CV t  across the capacitor. (b) Phasor 
diagram for the capacitive circuit. 
 
Notice that at 0t = , the voltage across the capacitor is zero while the current in the circuit 
is at a maximum. In fact, ( )CI t  reaches its maximum one quarter of a cycle earlier than 
( )CV t .  

 
 

The current leads the voltage by π/2 in a capacitive circuit 
 

 
The word “lead” means that the plot of   IC (t)  is shifted to the left of the plot of   VC (t)  in 

Figure 12.2.6 (a), whereas in the phasor diagram the phasor    

IC (t)  is “ahead” the phasor 

for    


VC (t)  as they rotate counterclockwise in Figure 12.2.6(b). 
 
12.3 The RLC Series Circuit 

 
Consider now the driven series  RLC  circuit with   V (t) =V0 sin(ωt + φ)  shown in Figure 
12.3.1. 

 
 

Figure 12.3.1 Driven series RLC Circuit 
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10.3 Single Loop RLC AC Circuit
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(a) 

        
 

(b) 

 
Figure 12.2.6 (a) Time dependence of ( )CI t  and ( )CV t  across the capacitor. (b) Phasor 
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Consider now the driven series  RLC  circuit with   V (t) =V0 sin(ωt + φ)  shown in Figure 
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Figure 12.3.1 Driven series RLC Circuit 

We’d like to find current in circuit

I(t) = I0 sin(!t� �)
Kirchhoff’s loop rule yields

V (t)� VR(t)� VL(t)� VC(t) = 0

Using phasor representation

V (t) = VR(t) + VL(t) + VC(t)
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We would like to find the current in the circuit, 
 
   I(t) = I0 sin(ωt) . (12.3.1) 
 
Notice that we have added a phase constant φ  to our previous expressions for   V (t)  and 

  I(t)  when we were analyzing single element driven circuits. Applying Kirchhoff’s 
modified loop rule, we obtain  
 
   V (t) −VR (t) −VL(t) −VC (t) = 0 . (12.3.2) 
 
We can rewrite Eq. (12.3.2) using   VR (t) = IR ,   VL(t) = LdI / dt , and   VC (t) = Q / C  as  
 

 
  
L dI

dt
+ IR +

Q
C

=V0 sin(ωt + φ) . (12.3.3) 

 
Differentiate Eq. (12.3.3), using /I dQ dt= + , and divide through by  L , yields what is 
called a second order damped linear driven differential equation, 
 

 
  
d 2 I
dt2

+
R
L

dI
dt

+
I

LC
=
ωV0

L
cos(ωt + φ) . (12.3.4) 

 
We shall find the amplitude,   I0 , of the current, and phase constant φ  which is the phase 
shift between the voltage source and the current by examining the phasors associates with 
the three circuit elements  R ,  L  and  C .   
 
The instantaneous voltages across each of the three circuit elements  R ,  L , and  C  has a 
different amplitude and phase compared to the current, as can be seen from the phasor 
diagrams shown in Figure 12.3.2.    

 
(a) 

 
(b) 

 
(c) 

 
Figure 12.3.2 Phasor diagrams for the relationships between current and voltage in (a) 
the resistor, (b) the inductor, and (c) the capacitor, of a series  RLC  circuit. 
 

~V0 = ~V0,R + ~V0,L + ~V0,C
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Using the phasor representation, Eq. (12.3.2) can be written as 
 
 0 0 0 0R L CV V V V= + +

   
 (12.3.5) 

 
as shown in Figure 12.3.3(a). Again we see that current phasor 0I


 leads the capacitive 

voltage phasor 0CV


 by / 2π  but lags the inductive voltage phasor 0LV


 by / 2π . The three 
voltage phasors rotate counterclockwise as time increases, with their relative positions 
fixed. 
 

 
 

 
Figure 12.3.3 (a) Phasor diagram for the series RLC circuit. (b) voltage relationship 
 
The relationship between different voltage amplitudes is depicted in Figure 12.3.3(b). 
From Figure 12.3.3, we see that the amplitude satisfies 
 

 

   

V0 = |


V0 |= |


VR0 +


VL0 +


VC0 |= VR0
2 + (VL0 −VC0 )2

= (I0 X R )2 + (I0 X L − I0 XC )2

= I0 X R
2 + ( X L − XC )2 .

 (12.3.6) 

 
Therefore the amplitude of the current is 

 

  

I0 =
V0

X R
2 + ( X L − XC )2

. (12.3.7) 

 
Using Eqs. (12.2.5), (12.2.20), and (12.2.27) for the reactances, Eq. (12.3.7) becomes 
 

 

  

I0 =
V0

R2 + (ωL− 1
ωC

)2

, series RLC  circuit . (12.3.8) 

 
From Figure 12.3.3(b), we can determine that the phase constant satisfies 
 

~V0 = |~V0| = |~V0,R + ~V0,L + ~V0,C | =
q

V 2
0,R + (V0,L � V0,C)2

=
p

(I0XR)2 + (I0XL � I0XC)2 = I0

q
X2

R + (XL �Xc)2

current amplitude

I0 =
V0p

X2
R + (XL �XC)2

=
V0q

R2 +
�
!L� 1

!C

�2
phase

tan� =

✓
XL �XC

XR

◆
=

1

R

✓
!L� 1

!C

◆
! � = tan�1 1

R

✓
!L� 1

!C

◆

Note that ☛ V0 6= V0,R + V0,L + V0,C
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tanφ =

X L − XC

X R

⎛

⎝⎜
⎞

⎠⎟
=

1
R

ωL−
1

ωC
⎛
⎝⎜

⎞
⎠⎟

. (12.3.9) 

 
Therefore the phase constant is  
 

 
  
φ = tan−1 1

R
ωL−

1
ωC

⎛
⎝⎜

⎞
⎠⎟

, series RLC  circuit . (12.3.10) 

 
It is crucial to note that the maximum amplitude of the AC voltage source 0V  is not equal 
to the sum of the maximum voltage amplitudes across the three circuit elements:  
 
 0 0 0 0R L CV V V V≠ + +  (12.3.11) 
 
This is due to the fact that the voltages are not in phase with one another, and they reach 
their maxima at different times.  
 
 
12.3.1 Impedance  
 
We have already seen that the inductive reactance LX Lω= , and the capacitive reactance 

1/CX Cω=  play the role of an effective resistance in the purely inductive and capacitive 
circuits, respectively. In the series  RLC  circuit, the effective resistance is the impedance, 
defined as  

   Z = X R
2 + ( X L − XC )2  (12.3.12) 

 
The relationship between  Z ,  X R ,  X L , and  XC  can be represented by the diagram shown 

in Figure 12.3.4: X L − XC  

 
 

Figure 12.3.4 Vector representation of the relationship between  Z ,  X R , LX , and CX . 
 
The impedance also has SI units of ohms. In terms of  Z , the current (Eqs. (12.3.1) and 
(12.3.7)) may be rewritten as  
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I(t) =

V0

Z
sin(ωt)  (12.3.13) 

 
Notice that the impedance  Z  also depends on the angular frequency ω , as do LX and 

CX . 
 
Using Eq. (12.3.9) for the phase constant φ  and Eq. (12.3.12) for  Z , we may readily 
recover the limits for simple circuit (with only one element). A summary is provided in 
Table 12.1 below: 
 

Simple 
Circuit R  L  C  LX Lω=  1

CX Cω
=  

  
φ = tan−1 X L − XC

X R

⎛

⎝⎜
⎞

⎠⎟
   Z = X R

2 + ( X L − XC )2

 
purely 
resistive R  0 ∞  0 0 0  X R  
purely 
inductive 0 L  ∞  LX  0 / 2π  LX  
purely 
capacitive 0 0 C  0 CX  / 2π−  CX  

 
Table 12.1 Simple-circuit limits of the series RLC circuit 

  
12.3.2 Resonance  
 
In a driven  RLC  series circuit, the amplitude of the current (Eq. (12.3.8)) has a 
maximum value, a resonance, which occurs at the resonant angular frequency  ω0 . 

Because the amplitude   I0  of the current is inversely proportionate to  Z  (Eq. (12.3.13), 

the maximum of   I0  occurs when  Z  is minimum. This occurs at an angular frequency  ω0  
such that L CX X= ,  

 
  
ω0 L =

1
ω0C

. (12.3.14) 

 
Therefore, the resonant angular frequency is   
 

 0
1
LC

ω = . (12.3.15) 

 
At resonance, the impedance becomes  Z = R , and the amplitude of the current is 
 

 0
0
VI
R

= , (12.3.16) 

 
and the phase constant is zero, (Eq. (12.3.10)), 

Simple-circuit limits of the series RLC circuit

I(t) =
V0

Z
sin(!t)

Z =
q
X2

R + (Xl �XC)2
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Theory: 

Describing Sinusoidal Functions of Time. 

 Consider a sinusoidal function of time such as  

                                                         
! = !"#$(!") 

             Eq. (1) 

as shown in Fig. 1(b). The figure illustrates graphically how the sine wave is generated as the 
projection of a vector that is uniformly rotating counter-clockwise with an angular velocity w 
(radians per second). The vector, which we denote by V, has a length that is equal to the constant 
amplitude, A. The phase of the function is equal to the angular position of the rotating vector at 
any instant, measured relative to the initial (horizontal) position. When the angular velocity is ω, 
the frequency of the function is 

! = !/2! 

Eq. (2) 

and is measured in cycles per second, or Hertz (Hz) 
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Next consider two such sinusoidal functions which are not “in phase” — that is, they 
each reach their maximum values at different times. Using the graphical method, Fig. 2 
illustrates that if we consider two vectors rotating at the same frequency, but with different 
lengths and with a phase difference between them, the vector sum of the pair also traces out a 
sinusoidal function of time. The graph shows that the sum of two sine waves of the same 
frequency is again a sine wave of that frequency, and gives the amplitude and phase of the 
summed wave. The algebraic proof of the relation between the summed wave and the two 
components is not simple if you do not have a table of trigonometric identities at 

!

!

!

!

!

!

!

!

!

 

 

The result is important because it illustrates why, in dealing with sinusoidal functions of 
time, each function can be treated as a vector. But it also illustrates how a formal analysis can get 
rather complicated in the combining of circular functions. The purpose of this note is to present a 
more concise way of handling these rotating vectors as complex quantities. The technique is 
particularly helpful in treating AC because the derivatives and integrals that relate capacitor and 
inductor action to current and voltage produce simple multiples of the complex function when it 
is written in its exponential form. 

Complex  Numbers: 

! Our use of complex numbers is such that the most applicable treatment employs the concept 
of the complex plane, a two-dimensional space illustrated in Fig. 3(a). The space is characterized 
by an origin and two axes at right angles to each other, a real horizontal axis and an imaginary 

A 

B 

A+B 

ω 

Figure 2 

A B 

C 
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vertical axis. Each complex number can then be represented as a point1 in the plane. 

!

!

!

!

!

!

    
  
The point P represents a complex number, and is described by a vector from the origin. It is the 
vector sum of the real number represented by the length A parallel to real axis and the imaginary 
number represented by the length B parallel to the imaginary axis. The imaginary number will be 
written as the real length B multiplied by the quantity j. Thus we have 
 
 
  ! = ! + !"       Eq. (3) 
 
We recall that the complex conjugate of any number is obtained by reversing the signs of any of 
its terms that contain j. Fig. 3(b) shows the complex conjugate of !!.The expression of a complex 
number specifically as the sum a real and an imaginary part, such as in Eq. (3) is similar to the 
expression of a vector in terms of x and y components. The number can also be expressed in 
polar form. This is done through the use of the use of Euler’s formula, which relates a complex 
exponential to the circular functions: 

which is written as!

           ! ∗ = ! − !"                 

!

The modulus of !, its magnitude N, is a real number that can be found by taking the square root 
of the product of !, and its complex conjugate, which always yields a real positive number 

     !(!)∗ = !! + !! = !!                           

The expression of a complex number specifically as the sum a real and an imaginary part, 
such as in Eq. (3) is similar to the expression of a vector in terms of x and y components. The 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 A complex number will be represented by the tilde symbol (~).  The components of the number are real numbers, and hence no tilde symbol.  
For simplicity, the complex number j itself will not use the tilde symbol. 
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Complex Impedance

Impedance of ideal resistor is purely real 

Z̃R = R

Ideal inductors and capacitors have purely imaginary reactive impedance

Z̃L = i!L Z̃C =
1

i!C
= � i

!C

Z̃ = Z̃R + Z̃L + Z̃C

Z̃ = R+ i

✓
!L� 1

!C

◆
Substitution leads to ☛

Amplitude of impedance  ☛

and its phase angle  ☛ tan� =

�
!L� 1

!C

�

R

|Z̃| =

s

R2 +

✓
!L� 1

!C

◆2
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10.4 Resonance

Because current amplitude is inversely proportional to impedance 

In driven RLC series circuit ☛ amplitude of current has a maximum value: a resonance
which occurs at the resonant angular frequency !0

 maximum occurs when    is minimum

 This occurs at angular frequency      such that 

I0 Z
!0 XL = XC

!0L =
1

!0C
) !0 =

1p
LC

At resonance ☛ Z = R ) I0 =
V0

R
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 0φ = . (12.3.17) 
 
A qualitative plot of the amplitude of the current as a function of driving angular 
frequency for two driven  RLC  circuits, with different values of resistance,   R2 > R1  is 
illustrated in Figure 12.3.5. The amplitude is larger for smaller a smaller value of 
resistance. 
 

 
 
Figure 12.3.5 The amplitude of the current as a function of ω  in the driven  RLC  circuit, 

for two different values of the resistance.  
 
 
12.4 Power in an AC circuit 

 
In the series RLC circuit, the instantaneous power delivered by the AC generator is given 
by 

 

  

P(t) = I(t)V (t) =
V0

Z
sin(ωt) ⋅V0 sin(ωt + φ) =

V0
2

Z
sin(ωt)sin(ωt + φ)

=
V0

2

Z
(sin2(ωt)cosφ + sin(ωt)cos(ωt)sinφ)

 (12.4.1) 

 
where we have used the trigonometric identity 
 
   sin(ωt + φ) = sin(ωt)cosφ + cos(ωt)sinφ . (12.4.2) 
 
The time average of the power is 
 

 
  

P(ω ) =
1
T

V0
2

Z
sin2(ωt)cosφ  dt

0

T

∫ +
1
T

V0
2

Z
sin(ωt)cos(ωt)sinφ  dt

0

T

∫ =
1
2

V0
2

Z
cosφ .(12.4.3) 
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10.5 Power in AC Circuits

In series RLC circuit ☛  instantaneous power delivered by  AC generator is given by

sin(!t� �) = sin(!t) cos(�)� cos(!t) sin(�)

we have used trigonometric identity

Time average of the power is

power factor ☛ 
cos� =

R

Z

P (t) = I(t)V (t) =
V0

Z
sin(!t� �)V0 sin(!t) =

V 2
0

Z
sin(!t) sin(!t� �)

=

V 2
0

Z
[sin

2
(!t) cos(�)� sin(!t) cos(!t) sin(�)]

hP (!)i = 1

T

Z T

0

V 2
0

Z
sin

2
(!t) cos(�)dt� 1

T

Z T

0

V 2
0

Z
sin(!t) cos(!t) sin(�)dt =

1

2

V 2
0

Z
cos�

=

V 2
rms

Z
cos� = IrmsVrms cos�
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where we have used the integral results in Eq. (12.2.9).  In terms of the rms quantities, 

  Vrms =V0 / 2  and   Irms =Vrms / Z , the time-averaged power can be written as 
 

 
  

P(ω ) =
1
2

V0
2

Z
cosφ =

Vrms
2

Z
cosφ = IrmsVrms cosφ  (12.4.4) 

 
The quantity cosφ  is called the power factor. From Figure 12.3.4, one can readily show 
that  

 cos
R
Z

φ = . (12.4.5) 

Thus, we may rewrite 
  

P(ω )  as 

 
  

P(ω ) = Irms
2 (ω )R , (12.4.6) 

where 

 

  

Irms (ω ) =
1
2

V0

R2 + (ωL − 1
ωC

)2

, (12.4.7) 

 
In Figure 12.4.1, we plot the time-averaged power as a function of the driving angular 
frequency ω  for two driven  RLC  circuits, with different values of resistance,   R2 > R1 . 
 

 
 
Figure 12.4.1 Average power as a function of frequency in a driven series  RLC  circuit. 

 
We see that 

  
P(ω )  attains the maximum value when cos 1φ = , or  Z = R , which is the 

resonance condition. At resonance, we have  
 

 
  

P(ω0 ) = IrmsVrms =
Vrms

2

R
. (12.4.8) 

 

hP (!)i = I2rms(!)R

Irms(!) =
1p
2

V0q
R2 +

�
!L� 1

!C

�2

hP (!0)i = IrmsVrms = V 2
rmsR

cos� = 1 Z = RMaximum @ resonance condition ☛                  or

I2rmsR
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 Width       increases with resistance  

This is called full width at half maximum

The peak has a line width

One way to characterize the width is to define  

 values of driving angular frequency
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12.4.1 Width of the Peak 
 
The peak has a line width. One way to characterize the width is to define Δω ω ω+ −= − , 
where ω±  are the values of the driving angular frequency such that the power is equal to 
half its maximum power at resonance. This is called full width at half maximum, as 
illustrated in Figure 12.4.2. The width ωΔ  increases with resistance  R . 
 

 
 

Figure 12.4.2 Width of the peak 
 
To find ωΔ , it is instructive to first rewrite the average power 

  
P(ω )  as 

 

 
  

P(ω ) =
1
2

V0
2R

R2 + (ωL −1 /ωC)2 =
1
2

V0
2Rω 2

ω 2R2 + L2 (ω 2 −ω0
2 )2 , (12.4.9) 

 
with 

  
P(ω0 ) =V0

2 / 2R . The condition for finding ω±  is 
 

 
  

1
2

P((ω0 )) = P(ω± )  ⇒    
V0

2

4R
=

1
2

V0
2Rω±

2

ω±
2R2 + L2 (ω±

2 −ω0
2 )2 . (12.4.10) 

 
Eq. (12.4.10) reduces to 

 
2

2 2 2
0( ) R

L
ωω ω ⎛ ⎞− = ⎜ ⎟⎝ ⎠

. (12.4.11) 

 
Taking square roots yields two solutions, which we analyze separately. 
 
Case 1:  Taking the positive root leads to 
 

 2 2
0

R
L
ωω ω +

+ − = +  (12.4.12) 

Width of the peak

�! = !+ � !�

such that power is equal to half its maximum power at resonance
!± ☛  

R�!
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To find         it is instructive to first rewrite the average power as�!

hP (!0)i =
V 2
0

2R

condition for finding         is!±

1

2
hP (!0)i = hP (!±)i )

V0

4R
=

1

2

V 2
0 R!2

±
!2
±R

2 + L2(!2
± � !2

0)
2

after some algebra ☛  (!2
± � !2

0)
2 = (R!±/L)

2

Taking square roots yields two solutions which we analyze separately

hP (!)i = 1

2

V 2
0 R

R2 +
�
!L� 1

!C

�2 =
1

2

V 2
0 R!2

!2R2 + L2(!2 � !2
0)

2
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Case 1: Taking the positive root leads to

!2
+ � !2

0 = +
R!+

L
) !+ =

R

2L
+

s✓
R

4L

◆2

+ !2
0

Case 2: Taking the negative yields

!2
� � !2

0 = �R!�
L

) !� = � R

2L
+

s✓
R

4L

◆2

+ !2
0

width at half maximum ☛ �! = !+ � !� =
R

L

Qqual =
!0

�!
=

!0L

R

Quality factor
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alternating current in primary coil will induce an alternating emf on secondary coil 

Transformer is device used to increase or decrease the AC voltage in a circuit

Typical device consists of two coils of wire
primary and secondary wound around an iron core

Primary coil with      turns is connected to alternating voltage source N1 V (t)

Secondary coil has       turns and is connected to a load with resistance N2 R2

The way transformers operate is based on the principle that

due to their mutual inductance
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Figure 12.5.1 A transformer 
 
In the primary circuit, neglecting the small resistance in the coil, Faraday’s law of 
induction implies 

 1 1
BdV N

dt
Φ= − , (12.5.1) 

 
where BΦ  is the magnetic flux through one turn of the primary coil. The iron core, which 
extends from the primary to the secondary coils, serves to increase the magnetic field 
produced by the current in the primary coil and ensures that nearly all the magnetic flux 
through the primary coil also passes through each turn of the secondary coil. Thus, the 
voltage (or induced emf) across the secondary coil is 
 

 2 2
BdV N

dt
Φ= − . (12.5.2) 

 
In the case of an ideal transformer, power loss due to Joule heating can be ignored, so 
that the power supplied by the primary coil is completely transferred to the secondary coil, 
 
 1 1 2 2I V I V= . (12.5.3) 
 
In addition, no magnetic flux leaks out from the iron core, and the flux BΦ  through each 
turn is the same in both the primary and the secondary coils. Combining the two 
expressions, we are lead to the transformer equation, 
 

 2 2

1 1

V N
V N

= . (12.5.4) 

 
By combining the two equations above, the transformation of currents in the two coils 
may be obtained as 

 
  
I1 =

V2

V1

I2 =
N2

N1

I2 . (12.5.5) 

 

10.6 Transformer
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Neglecting small resistance in coil ☛  Faraday’s law of induction implies

Voltage (or induced emf) across secondary coil is ☛

V1 = �N1
d�B

dt
  ☛ magnetic flux through one turn of primary coil�B

Iron core  extends from primary to secondary coils
Iron core serves to increase magnetic field produced by current in primary coil
and ensures that nearly all magnetic flux through primary coil

also passes through each turn of the secondary coil

V2 = �N2
d�B

dt
Ideal transformer  ☛  power loss due to Joule heating can be ignored 

so that power supplied by primary coil is completely transferred to secondary coil

I1V1 = I2V2

In addition ☛ if  no magnetic flux leaks out from iron core
 through each turn is same in both  primary and secondary coils

V2

V1
=

N2

N1
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Transformation of currents in the two coils reads

Ratio of output voltage to input voltage is determined by turn ratio

I1 =
V2

V1
I2 =

N2

N1
I2

N2

N1

Transformer with               ☛   step-up transformer 

   output voltage in secondary coil is greater than input voltage in primary coil 

N2 > N1 ) V2 > V1

N2 > N1

output voltage is smaller than input 

N1 > N2 ) V1 > V2

Transformer with               ☛   step-down transformer N1 > N2

For home safety ☛ we would like LOW emf supply
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Why do we use high voltages?

The higher the voltage and the lower the current  ☛ the less energy is wasted  

Electricity that comes from power plants is sent dow wires at extremely high voltages 

As electricity flows down a metal wire    

That's why wires get hot when electricity flows through them 
(useful for electric toasters and other appliances that use heating elements)

to save energy

electrons carrying its energy jiggle through the metal structure  

hP (!)i = I2rmsR

For power transmission ☛  we’d like to keep       at minimumI2rms

24Tuesday, April 17, 18


