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1.1 Electric Charge 

Electric ChargeSECTION 1

PROPERTIES OF ELECTRIC CHARGE

You have probably noticed that after running a plastic comb through your

hair on a dry day, the comb attracts strands of your hair or small pieces of

paper. A simple experiment you might try is to rub an inflated balloon back

and forth across your hair. You may find that the balloon is attracted to your

hair, as shown in Figure 1(a). On a dry day, a rubbed balloon will stick to the

wall of a room, often for hours. When materials behave this way, they are said

to be electrically charged. Experiments such as these work best on a dry day

because excessive moisture can provide a pathway for charge to leak off a

charged object.

You can give your body an electric charge by vigorously rubbing your shoes

on a wool rug or by sliding across a car seat. You can then remove the charge 

on your body by lightly touching another person. Under the right conditions,

you will see a spark just before you touch, and both of you will feel a slight tingle.

Another way to observe static electricity is to rub two balloons across your

hair and then hold them near one another, as shown in Figure 1(b). In this

case, you will see the two balloons pushing each other apart. Why is a rubbed

balloon attracted to your hair but repelled by another rubbed balloon?

There are two kinds of electric charge

The two balloons must have the same kind of charge because each became

charged in the same way. Because the two charged balloons repel one another,

we see that like charges repel. Conversely, a rubbed balloon and your hair,

which do not have the same kind of charge, are attracted to one another.

Thus, unlike charges attract.

Chapter 16558

SECTION OBJECTIVES

■ Understand the basic proper-
ties of electric charge.

■ Differentiate between con-
ductors and insulators.

■ Distinguish between charging
by contact, charging by 
induction, and charging 
by polarization.

Figure 1

(a) If you rub a balloon across
your hair on a dry day, the balloon
and your hair become charged and
attract each other. (b) Two
charged balloons, on the other
hand, repel each other.

(a) (b)

Table 1 Conventions

for Representing Charges

and Electric Field Vectors

Positive charge

Negative charge

Electric field vector

Electric field lines

E

−

−q

+
+q

(a) If you rub a balloon across your hair on a dry day                                               
the balloon and your hair become charged and attract each other                                                               
(b) Two charged balloons, on the other hand, repel each other.

The two balloons must have the same kind of charge                                          
because each became charged in the same way                                                      
Because two charged balloons repel one another we see that like charges repel 
Conversely ☛ a rubbed balloon and your hair
                  which do not have the same kind of charge
                  are attracted to one another ☛ unlike charges attract
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have a positive charge, and any charged object repelled by a charged rubber rod (or at-
tracted to a charged glass rod) must have a negative charge.

Attractive electric forces are responsible for the behavior of a wide variety of com-
mercial products. For example, the plastic in many contact lenses, etafilcon, is made up
of molecules that electrically attract the protein molecules in human tears. These
protein molecules are absorbed and held by the plastic so that the lens ends up being
primarily composed of the wearer’s tears. Because of this, the lens does not behave as a
foreign object to the wearer’s eye, and it can be worn comfortably. Many cosmetics also
take advantage of electric forces by incorporating materials that are electrically
attracted to skin or hair, causing the pigments or other chemicals to stay put once they
are applied.

Another important aspect of electricity that arises from experimental observa-
tions is that electric charge is always conserved in an isolated system. That is,
when one object is rubbed against another, charge is not created in the process. The
electrified state is due to a transfer of charge from one object to the other. One
object gains some amount of negative charge while the other gains an equal amount
of positive charge. For example, when a glass rod is rubbed with silk, as in Figure
23.2, the silk obtains a negative charge that is equal in magnitude to the posi-
tive charge on the glass rod. We now know from our understanding of atomic struc-
ture that electrons are transferred from the glass to the silk in the rubbing process.
Similarly, when rubber is rubbed with fur, electrons are transferred from the fur to
the rubber, giving the rubber a net negative charge and the fur a net positive
charge. This process is consistent with the fact that neutral, uncharged matter
contains as many positive charges (protons within atomic nuclei) as negative
charges (electrons).

In 1909, Robert Millikan (1868–1953) discovered that electric charge always
occurs as some integral multiple of a fundamental amount of charge e (see Section
25.7). In modern terms, the electric charge q is said to be quantized, where q is the
standard symbol used for charge as a variable. That is, electric charge exists as
discrete “packets,” and we can write q ! Ne, where N is some integer. Other experi-
ments in the same period showed that the electron has a charge " e and the proton
has a charge of equal magnitude but opposite sign # e. Some particles, such as
the neutron, have no charge.

From our discussion thus far, we conclude that electric charge has the following im-
portant properties:
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Figure 23.1 (a) A negatively charged rubber rod suspended by a thread is attracted 
to a positively charged glass rod. (b) A negatively charged rubber rod is repelled by 
another negatively charged rubber rod.
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Figure 23.2 When a glass rod is
rubbed with silk, electrons are
transferred from the glass to the
silk. Because of conservation of
charge, each electron adds nega-
tive charge to the silk, and an equal
positive charge is left behind on
the rod. Also, because the charges
are transferred in discrete bundles,
the charges on the two objects are
$ e, or $ 2e, or $ 3e, and so on.

When a glass rod is rubbed with silk                             
electrons are transferred from the glass to the silk         
Because of conservation of charge                             
each electron adds negative charge to the silk                     
and an equal positive charge is left behind on the rod        
Also ☛ because charges are transferred in discrete bundles          
charges on the two objects are                    

 Charge is conserved and quantized

±e,±2e,±3e, · · ·
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23.2, the silk obtains a negative charge that is equal in magnitude to the posi-
tive charge on the glass rod. We now know from our understanding of atomic struc-
ture that electrons are transferred from the glass to the silk in the rubbing process.
Similarly, when rubber is rubbed with fur, electrons are transferred from the fur to
the rubber, giving the rubber a net negative charge and the fur a net positive
charge. This process is consistent with the fact that neutral, uncharged matter
contains as many positive charges (protons within atomic nuclei) as negative
charges (electrons).

In 1909, Robert Millikan (1868–1953) discovered that electric charge always
occurs as some integral multiple of a fundamental amount of charge e (see Section
25.7). In modern terms, the electric charge q is said to be quantized, where q is the
standard symbol used for charge as a variable. That is, electric charge exists as
discrete “packets,” and we can write q ! Ne, where N is some integer. Other experi-
ments in the same period showed that the electron has a charge " e and the proton
has a charge of equal magnitude but opposite sign # e. Some particles, such as
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Figure 23.2 When a glass rod is
rubbed with silk, electrons are
transferred from the glass to the
silk. Because of conservation of
charge, each electron adds nega-
tive charge to the silk, and an equal
positive charge is left behind on
the rod. Also, because the charges
are transferred in discrete bundles,
the charges on the two objects are
$ e, or $ 2e, or $ 3e, and so on.

A negatively charged rubber rod 
suspended by a thread is attracted 
to a positively charged glass rod 

A negatively charged rubber rod          
is repelled by another negatively charged 
rubber rod

left
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1.2 Electric Force 
Electric force between two charges    and     
described by ☛ Coulomb’s Law

q1 q2

Chapter 2

Electric Force & Electric Field

2.1 Electric Force

The electric force between two charges
q1 and q2 can be described by
Coulomb’s Law.

~F
12

= Force on q1 exerted by q2

~F12 = 1
4º≤0

·

q1q2
r2
12

· r̂12

where r̂
12

=
~r

12

|~r
12

|

is the unit vector which locates particle 1 relative to particle 2.

i.e. ~r12 = ~r1 ° ~r2

• q
1

, q
2

are electrical charges in units of Coulomb(C)

• Charge is quantized
Recall 1 electron carries 1.602£ 10°19C

• ≤
0

= Permittivity of free space = 8.85£ 10°12C2/Nm2

COULOMB’S LAW:

(1) q
1

, q
2

can be either positive or negative.

on      exerted byq1 q2~F12 = Force

~F12 =
1

4⇡✏0
· q1q2

r212
· r̂12

              ☛ unit vector which locates particle 1 relative to particle 2r̂12 =
~r12
|~r12|

•         are electrical charges in units of Coulomb (C)

• Charge is quantized ☛ electron carries 

• Permittivity of free space

~r12 = ~r1 � ~r2i.e.

q1, q2

1.602⇥ 10�19 C

✏0 = 8.85⇥ 10�12 C2/Nm2
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COULOMB’S LAW:

(1)          can be either positive or negativeq1, q2

(2) If          are of same sign                                               
force experienced by    is in direction away from     i.e. ☛ repulsive

q1, q2
q1q2

(3) Force on     exerted by    :q2 q1

~F21 =
1

4⇡✏0
· q2q1

r221
· r̂21

distance between 
BUT

r̂21 =
~r21
r21

=
~r2 � ~r1
r21

=
�~r12
r12

= �r̂12

r12 = r21 = q1, q2

~F21 = �~F12 Newton’s 3rd Law
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SYSTEM WITH MANY CHARGES:

2.2. THE ELECTRIC FIELD 9

(2) If q
1

, q
2

are of same sign, then the force experienced by q
1

is in direction
away from q

2

, that is, repulsive.

(3) Force on q
2

exerted by q
1

:

~F
21

=
1

4º≤
0

·

q
2

q
1

r2

21

· r̂
21

BUT:

r
12

= r
21

= distance between q
1

, q
2

r̂
21

=
~r

21

r
21

=
~r

2

° ~r
1

r
21

=
°~r

12

r
12

= °r̂
12

) ~F
21

= °~F
12

Newton’s 3rd Law

SYSTEM WITH MANY CHARGES:

The total force experienced by charge
q
1

is the vector sum of the forces on q
1

exerted by other charges.

~F
1

= Force experienced by q
1

= ~F
1,2 + ~F

1,3 + ~F
1,4 + · · · + ~F

1,N

PRINCIPLE OF SUPERPOSITION:

~F1 =
N

X

j=2

~F1,j

2.2 The Electric Field

While we need two charges to quantify the electric force, we define the electric
field for any single charge distribution to describe its eÆect on other charges.

Total force experienced by charge                      
vector sum of forces on     exerted by other chargesq1

q1

Force experienced by q1~F1 =

= ~F1,2 + ~F1,3 + ~F1,4 + · · · + ~F1,N

~F1 =
NX

j=2

~F1,jPRINCIPLE OF SUPERPOSITION
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1.3 Electric Field 
While we need two charges to quantify electric force 
we define electric field for any single charge distribution 
to describe its effect on other charges

2.2. THE ELECTRIC FIELD 10

Total force ~F = ~F
1

+ ~F
2

+ · · · + ~FN

The electric field is defined as

lim
q0!0

~F

q
0

= ~E

(a) E-field due to a single charge qi:

From the definitions of Coulomb’s Law, the
force experienced at location of q

0

(point P)

~F
0,i =

1

4º≤
0

·

q
0

qi

r2

0,i

· r̂
0,i

where r̂
0,i is the unit vector along the direction from charge qi to q

0

,

r̂
0,i = Unit vector from charge qi to point P

= r̂i (radical unit vector from qi)

Recall ~E = lim
q0!0

~F

q
0

) E-field due to qi at point P:

~Ei =
1

4º≤
0

·

qi

r2

i

· r̂i

where ~ri = Vector pointing from qi to point P,
thus r̂i = Unit vector pointing from qi to point P
Note:

(1) E-field is a vector.

(2) Direction of E-field depends on both position of P and sign of qi.

(b) E-field due to system of charges:

Principle of Superposition:
In a system with N charges, the total E-field due to all charges is the
vector sum of E-field due to individual charges.

Total force

Electric field is defined as

~F = ~F1 + ~F2 + · · · + ~FN

~E = lim
q0!0

~F

q0
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(i) E-field due to a single charge 
From definitions of Coulomb’s Law 
force experienced at location of     (point   )

2.2. THE ELECTRIC FIELD 10

Total force ~F = ~F
1

+ ~F
2

+ · · · + ~FN

The electric field is defined as

lim
q0!0

~F

q
0

= ~E

(a) E-field due to a single charge qi:

From the definitions of Coulomb’s Law, the
force experienced at location of q

0

(point P)

~F
0,i =

1

4º≤
0

·

q
0

qi

r2

0,i

· r̂
0,i

where r̂
0,i is the unit vector along the direction from charge qi to q

0

,

r̂
0,i = Unit vector from charge qi to point P

= r̂i (radical unit vector from qi)

Recall ~E = lim
q0!0

~F

q
0

) E-field due to qi at point P:

~Ei =
1

4º≤
0

·

qi

r2

i

· r̂i

where ~ri = Vector pointing from qi to point P,
thus r̂i = Unit vector pointing from qi to point P
Note:

(1) E-field is a vector.

(2) Direction of E-field depends on both position of P and sign of qi.

(b) E-field due to system of charges:

Principle of Superposition:
In a system with N charges, the total E-field due to all charges is the
vector sum of E-field due to individual charges.

q0

qi

r̂0,i q0qi              ☛ unit vector along direction from charge     to 

~F0,i =
1

4⇡✏0
· q0qi
r20,i

· r̂0,i

 -field due to    at point Recall Pqi)

qi

qi

P

~E = lim
q0!0

~F

q0

Note:
(1)   -field is a vector
(2) Direction of   -field depends on both position of     and sign of P

             ☛ vector pointing from     to point 
             ☛ unit vector pointing from    to point

P
P

qi

~Ei =
1

4⇡✏0
· qi
r2i

· r̂i

~E

~ri
r̂i

~E
~E
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(ii)   -field due to system of charges:

Principle of Superposition

In a system with    charges ☛ total    -field due to all charges         
vector sum of   -field due to individual charges

N

~E =
X

i

~Ei =
1

4⇡✏0

X

i

qi
r2i

r̂ii.e. ☛

(iii) Electric Dipole

2.2. THE ELECTRIC FIELD 11

i.e. ~E =
X

i

~Ei =
1

4º≤
0

X

i

qi

r2

i

r̂i

(c) Electric Dipole

System of equal and opposite charges
separated by a distance d.

Figure 2.1: An electric dipole. (Direction of
~d from negative to positive charge)

Electric Dipole Moment

~p = q~d = qdd̂

p = qd

Example: ~E due to dipole along x-axis

Consider point P at distance x along the perpendicular axis of the dipole ~p :

~E = ~E
+

+ ~E°
" "

(E-field (E-field
due to +q) due to °q)

Notice: Horizontal E-field components of ~E
+

and ~E° cancel out.

) Net E-field points along the axis oppo-
site to the dipole moment vector.

System of equal and opposite charges separated by a distance 

~p = q~d = qdd̂Electric Dipole Moment ☛

d

p = qd

~E

~E
~E
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Example:     due to dipole along   -axis~E x

2.2. THE ELECTRIC FIELD 11

i.e. ~E =
X

i

~Ei =
1

4º≤
0

X

i

qi

r2

i

r̂i

(c) Electric Dipole

System of equal and opposite charges
separated by a distance d.

Figure 2.1: An electric dipole. (Direction of
~d from negative to positive charge)

Electric Dipole Moment

~p = q~d = qdd̂

p = qd

Example: ~E due to dipole along x-axis

Consider point P at distance x along the perpendicular axis of the dipole ~p :

~E = ~E
+

+ ~E°
" "

(E-field (E-field
due to +q) due to °q)

Notice: Horizontal E-field components of ~E
+

and ~E° cancel out.

) Net E-field points along the axis oppo-
site to the dipole moment vector.

Consider point     at distance    along perpendicular axis of dipole    P ~px

~E = ~E+ + ~E�

-field due to -field due toE E+q �q
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Notice: Horizontal    -field components of      and      cancel out

2.2. THE ELECTRIC FIELD 11

i.e. ~E =
X

i

~Ei =
1

4º≤
0

X

i

qi

r2

i

r̂i

(c) Electric Dipole

System of equal and opposite charges
separated by a distance d.

Figure 2.1: An electric dipole. (Direction of
~d from negative to positive charge)

Electric Dipole Moment

~p = q~d = qdd̂

p = qd

Example: ~E due to dipole along x-axis

Consider point P at distance x along the perpendicular axis of the dipole ~p :

~E = ~E
+

+ ~E°
" "

(E-field (E-field
due to +q) due to °q)

Notice: Horizontal E-field components of ~E
+

and ~E° cancel out.

) Net E-field points along the axis oppo-
site to the dipole moment vector.

Net    points along axis parallel but opposite to dipole moment vector)
2.3. CONTINUOUS CHARGE DISTRIBUTION 12

Magnitude of E-field = 2E
+

cos µ

) E = 2
µ

E
+

or E° magnitude!
z }| {

1

4º≤
0

·

q

r2

∂

cos µ

But r =

s

≥d

2

¥

2

+ x2

cos µ =
d/2

r

) E =
1

4º≤
0

·

p

[x2 + (d
2

)2]
3
2

(p = qd)

Special case: When x¿ d

[x2 + (
d

2
)2]

3
2 = x3[1 + (

d

2x
)2]

3
2

• Binomial Approximation:

(1 + y)n
º 1 + ny if y ø 1

E-field of dipole +
1

4º≤
0

·

p

x3

ª

1

x3

• Compare with
1

r2

E-field for single charge

• Result also valid for point P along any axis with respect to dipole

2.3 Continuous Charge Distribution

E-field at point P due to dq:

d ~E =
1

4º≤
0

·

dq

r2

· r̂

Magnitude of    -field = 2E+ cos ✓

~E+
~E�

) E� = 2

 
1

4⇡✏
0

· q

r2| {z }
E+ or E� magnitude

!
cos ✓

r =

r⇣
d

2

⌘2
+ x

2

But

cos ✓ =

d/2

r

) E =
1

4⇡✏0
· p

[x2 +
�
d
2

�2
]
3
2

(p = qd)

~E

~E

~E
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Special case ☛ When
x � d

⇥
x

2 +
�
d

2

�2⇤ 3
2 = x

3
⇥
1 +

�
d

2x

�2⇤ 3
2

• Binomial Approximation

• Compare with       -field for single charge1

r2

• Result also valid for point    along any axis with respect to dipoleP

(1 + y)n ⇡ 1 + ny if

~E

y ⌧ 1

~

E � field of dipole ' 1

4⇡✏0
· p

x

3
/ 1

x

3
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1.4 Continuous Charge Distribution

2.3. CONTINUOUS CHARGE DISTRIBUTION 12

Magnitude of E-field = 2E
+

cos µ

) E = 2
µ

E
+

or E° magnitude!
z }| {

1

4º≤
0

·

q

r2

∂

cos µ

But r =

s

≥d

2

¥

2

+ x2

cos µ =
d/2

r

) E =
1

4º≤
0

·

p

[x2 + (d
2

)2]
3
2

(p = qd)

Special case: When x¿ d

[x2 + (
d

2
)2]

3
2 = x3[1 + (

d

2x
)2]

3
2

• Binomial Approximation:

(1 + y)n
º 1 + ny if y ø 1

E-field of dipole +
1

4º≤
0

·

p

x3

ª

1

x3

• Compare with
1

r2

E-field for single charge

• Result also valid for point P along any axis with respect to dipole

2.3 Continuous Charge Distribution

E-field at point P due to dq:

d ~E =
1

4º≤
0

·

dq

r2

· r̂

d ~E =
1

4⇡✏0
· dq

r2
· r̂

E P dq-field at point     due to 

) E-field due to charge distribution

~E =

Z
d ~E =

Z
1

4⇡✏0
· dq

r2
· r̂

(1) Take advantage of symmetry of system to simplify integral

(2) To write down small charge element dq ☛

1�D dq = � ds � = linear charge density ds = small length element

2�D dq = � dA � = surface charge density dA = small area element

3�D dq = ⇢ dV ⇢ = volume charge density dV = small volume element
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Uniform line of chargeExample 1

2.3. CONTINUOUS CHARGE DISTRIBUTION 13

) E-field due to charge distribution:

~E =

ˆ
V olume

d~E =

ˆ
V olume

1

4º≤0

·
dq

r2
· r̂

(1) In many cases, we can take advantage of the symmetry of the system to
simplify the integral.

(2) To write down the small charge element dq:

1-D dq = ∏ ds ∏ = linear charge density ds = small length element
2-D dq = æ dA æ = surface charge density dA = small area element
3-D dq = Ω dV Ω = volume charge density dV = small volume element

Example 1: Uniform line of charge

charge per
unit length
= ∏

(1) Symmetry considered: The E-field from +z and °z directions cancel along
z-direction, ) Only horizontal E-field components need to be considered.

(2) For each element of length dz, charge dq = ∏dz
) Horizontal E-field at point P due to element dz =

|d ~E| cos µ =
1

4º≤
0

·

∏dz

r2

| {z }

dEdz

cos µ

) E-field due to entire line charge at point P

E =

L/2ˆ

°L/2

1

4º≤
0

·

∏dz

r2

cos µ

= 2

L/2ˆ
0

∏

4º≤
0

·

dz

r2

cos µ

charge per unit length = �

(1) Symmetry considered ☛  -field from    and     directions cancel along   E +z �z

z ) E-direction,    Only horizontal   -field components need to be considered

(2) For each element of length    , charge
)

dz dq = �dz
E P

dz = |d ~E| cos ✓ =

1

4⇡✏0
· �dz
r2| {z }

dEdz

cos ✓

Horizontal   -field at point    due to element     isdz
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-field due to entire line charge at point) E P

2.3. CONTINUOUS CHARGE DISTRIBUTION 13

� E-field due to charge distribution:

⇤E =

ˆ
V olume

d⇤E =

ˆ
V olume

1

4⇥�0

·
dq

r2
· r̂

(1) In many cases, we can take advantage of the symmetry of the system to
simplify the integral.

(2) To write down the small charge element dq:

1-D dq = ⇤ ds ⇤ = linear charge density ds = small length element
2-D dq = ⌃ dA ⌃ = surface charge density dA = small area element
3-D dq = ⇧ dV ⇧ = volume charge density dV = small volume element

Example 1: Uniform line of charge

charge per
unit length
= ⇤

(1) Symmetry considered: The E-field from +z and �z directions cancel along
z-direction, � Only horizontal E-field components need to be considered.

(2) For each element of length dz, charge dq = ⇤dz
� Horizontal E-field at point P due to element dz =

|d ⌥E| cos ⇥ =
1

4⌅�0
· ⇤dz

r2
⇤ ⇥� ⌅

dEdz

cos ⇥

� E-field due to entire line charge at point P

E =

L/2ˆ

�L/2

1

4⌅�0
· ⇤dz

r2
cos ⇥

= 2

L/2ˆ
0

⇤

4⌅�0
· dz

r2
cos ⇥

E =

Z L/2

�L/2

1

4⇡✏0
· �dz
r2

cos ✓

= 2

Z L/2

0

�

4⇡✏0
· dz
r2

cos ✓

To calculate this integral ☛   

• Change of variable (from    to    )

• First, notice that    is fixed, but          all variesz, r, ✓

✓z

x
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z = x tan ✓ ) dz = x sec

2
✓ d✓

x = r cos ✓ ) r

2
= x

2
sec

2
✓

z = 0 ✓ = 0�

(2) When 

(1)

wherez = L/2 ✓ = ✓0 tan ✓0 =
L/2

x

E = 2 · �

4⇡✏0

Z ✓0

0

x sec

2
✓ d✓

x

2
sec

2
✓

· cos ✓

= 2 · �

4⇡✏0

Z ✓0

0

1

x

· cos ✓ d✓

= 2 · �

4⇡✏0
· 1
x

· sin ✓0

= 2 · �

4⇡✏0
· 1
x

· (sin ✓)
���
✓0

0

= 2 · �

4⇡✏0
· 1
x

· L/2r
x

2 +
⇣

L
2

⌘2
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E =
1

4⇡✏0
· �L

x

r
x

2 +
⇣

L
2

⌘2
along x-direction

Important limiting cases

ELECTRIC FIELD DUE TO INFINITELY LONG LINE OF CHARGE

E

x

=
�

2⇡✏0x

L � x : E + 1

4⇡✏0
· �L

x · L
2

(2)

x � L : E + 1

4⇡✏0
· �L
x

2
(1)

But         Total charge on rod      System behave like a point charge�L = )
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Example 2     Ring of Charge

2.3. CONTINUOUS CHARGE DISTRIBUTION 15

Example 2: Ring of Charge

E-field at a height z above a ring of
charge of radius R

(1) Symmetry considered: For every charge element dq considered, there exists
dq⇤ where the horizontal ⌃E field components cancel.
⇥ Overall E-field lies along z-direction.

(2) For each element of length dz, charge

dq = ⇤ · ds
� �

Linear Circular
charge density length element

dq = ⇤ · R d⇧, where ⇧ is the angle
measured on the ring plane

� Net E-field along z-axis due to dq:

dE =
1

4⌅�0
· dq

r2
· cos ⇥

-field at a height   above a ring of charge of radiusE Rz

(1) Symmetry considered ☛ For every charge element      considered, 
there exists      where horizontal     field components cancel

dq
dq0 ~E
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(2) For each element of length     , chargedz

2.3. CONTINUOUS CHARGE DISTRIBUTION 15

Example 2: Ring of Charge

E-field at a height z above a ring of
charge of radius R

(1) Symmetry considered: For every charge element dq considered, there exists
dq⇤ where the horizontal ⌃E field components cancel.
⇥ Overall E-field lies along z-direction.

(2) For each element of length dz, charge

dq = ⇤ · ds
� �

Linear Circular
charge density length element

dq = ⇤ · R d⇧, where ⇧ is the angle
measured on the ring plane

� Net E-field along z-axis due to dq:

dE =
1

4⌅�0
· dq

r2
· cos ⇥

) E z dq

dE =

1

4⇡✏0
· dq
r2

· cos ✓

Net    -field along   -axis due to

dq = � · ds

Linear 
charge density

Circular
length element

where   is angle measured on ring plane�

dq = � ·Rd�
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Total    -fieldE =

Z
dE

=

Z 2⇡

0

1

4⇡✏0
· �Rd�

r2
· cos ✓ (cos ✓ =

z

r
)

Note: Here in this case,        and   are fixed as    varies! 
BUT we want to convert       to

E =
1

4⇡✏0
· �Rz

r3

Z 2⇡

0
d�

E =
1

4⇡✏0
· �(2⇡R)z

(z2 +R2)3/2

�(2⇡R)

z

✓, R r �

r, ✓ R, z

BUT ☛ = total charge on ring

along    -axis
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Example 3      E-field from a disk of surface charge density�

2.3. CONTINUOUS CHARGE DISTRIBUTION 16

Total E-field =

ˆ
dE

=

ˆ 2�

0

1

4⌅�0
· ⇤R d⌃

r2
· cos ⇥ (cos ⇥ =

z

r
)

Note: Here in this case, ⇥, R and r are fixed as ⌃ varies! BUT we want to
convert r, ⇥ to R, z.

E =
1

4⌅�0
· ⇤Rz

r3

ˆ 2�

0

d⌃

E =
1

4⌅�0
· ⇤(2⌅R)z

(z2 + R2)3/2
along z-axis

BUT: ⇤(2⌅R) = total charge on the ring

Example 3: E-field from a disk of surface charge density ⇧

We find the E-field of a disk by
integrating concentric rings of
charges.

We find E-field of a disk by integrating concentric rings 
of charges

2.3. CONTINUOUS CHARGE DISTRIBUTION 17

Total charge of ring

dq = ⇤ · (2⇥r dr �⌥ ⌦
Area of the ring

)

Recall from Example 2:

E-field from ring: dE =
1

4⇥�0
· dq z

(z2 + r2)3/2

� E =
1

4⇥�0

ˆ R

0

2⇥⇤r dr · z
(z2 + r2)3/2

=
1

4⇥�0

ˆ R

0

2⇥⇤z
r dr

(z2 + r2)3/2

• Change of variable:

u = z2 + r2 ⇥ (z2 + r2)3/2 = u3/2

⇥ du = 2r dr ⇥ r dr = 1
2du

• Change of integration limit:
⌃

r = 0 , u = z2

r = R , u = z2 + R2

� E =
1

4⇥�0
· 2⇥⇤z

ˆ z2+R2

z2

1

2
u�3/2du

BUT:

ˆ
u�3/2du =

u�1/2

�1/2
= �2u�1/2

� E =
1

2�0
⇤z (�u�1/2)

���
z2+R2

z2

=
1

2�0
⇤z

⇥
�1⇤

z2 + R2
+

1

z

⇤

E =
⇤

2�0

⌅

1� z⇤
z2 + R2

⇧

view from top
Total charge of ring

dq = � · (2⇡r dr| {z })
Area of ring
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Recall from Example 2

-field from ring ☛E dE =
1

4⇡✏0
· dq z

(z2 + r2)3/2

) E =
1

4⇡✏0

Z R

0

2⇡�r dr · z
(z2 + r2)3/2

=
1

4⇡✏0

Z R

0
2⇡�z

r dr

(z2 + r2)3/2

• Change of variable:

u = z2 + r2 ) (z2 + r2)3/2 = u3/2

) du = 2r dr ) r dr =
1

2
du
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• Change of integration limit:⇢
r = 0 u = z2

r = R u = z2 + R2

BUT Z
u�3/2du =

u�1/2

�1/2
= �2u�1/2

) E =
1

2✏0
�z (�u�1/2)

���
z2+R2

z2

=
1

2✏0
�z

 
�1p

z2 +R2
+

1

z

!

E =
�

2✏0

"
1 � zp

z2 +R2

#

) E =
1

4⇡✏0
· 2⇡�z

Z z2+R2

z2

1

2
u�3/2du
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VERY IMPORTANT LIMITING CASE

If          , that is if we have an infinite sheet of charge with charge 
density 

E =
�

2✏0

"
1 � zp

z2 +R2

#

' �

2✏0

"
1 � z

R

#

R � z

�

E ⇡ �

2✏0

-field is normal to charged surfaceE

2.4. ELECTRIC FIELD LINES 18

VERY IMPORTANT LIMITING CASE:

If R ⇤ z, that is if we have an infinite sheet of charge with charge den-
sity ⇥:

E =
⇥

2�0

⇤

1� z⇧
z2 + R2

⌅

⌅ ⇥

2�0

�
1� z

R

⇥

E ⇥ ⇥

2�0

E-field is normal to the charged surface
Figure 2.2: E-field due to an infi-
nite sheet of charge, charge den-
sity = ⇥

Q: What’s the E-field belows the charged sheet?

2.4 Electric Field Lines

To visualize the electric field, we can use a graphical tool called the electric
field lines.

Conventions:

1. The start on position charges and end on negative charges.

2. Direction of E-field at any point is given by tangent of E-field line.

3. Magnitude of E-field at any point is proportional to number of E-field lines
per unit area perpendicular to the lines.
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To visualize electric field                                                            

1.5 Electric Field Lines

3. Magnitude of E-field at any point

2. Direction of E-field at any point is given by tangent of E-field line

1. Start on positive charges and end on negative charges

Conventions

we can use a graphical tool called electric field lines

 proportional to number of E-field lines per unit area perpendicular to lines
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2.4. ELECTRIC FIELD LINES 19

Uniform E-field Non-uniform E-field
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2.4. ELECTRIC FIELD LINES 19

��� ~EP1

��� >
��� ~EP2

��� ~E =
+q

4⇡✏0r2
r̂
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2.4. ELECTRIC FIELD LINES 19

E =
�

2✏0

Infinite sheet of charge
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2.4. ELECTRIC FIELD LINES 20
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2.4. ELECTRIC FIELD LINES 20

~E
at pointO = 0
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1.6 Point Charge in E-field
When we place a charge   in an   -field   ,force experienced by charge is~EEq

~F = q ~E = m~a

Applications ☛ Ink-jet printer, TV cathode ray tube
Example

m q q < 0Ink particle has mass     & charge    (         here)

2.5. POINT CHARGE IN E-FIELD 21

2.5 Point Charge in E-field

When we place a charge q in an E-field �E, the force experienced by the charge is

�F = q �E = m�a

Applications: Ink-jet printer, TV cathoderay tube.

Example:

Ink particle has mass m, charge q (q < 0 here)

Assume that mass of inkdrop is small, what’s the deflection y of the charge?

Solution:

First, the charge carried by the inkdrop is negtive, i.e. q < 0.

Note: q �E points in opposite direction of �E.

Horizontal motion: Net force = 0

� L = vt (2.1)

Assume that mass of inkdrop is small, what’s deflection of charge?
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Solution ☛
Charge carried by inkdrop is negative ☛ q < 0

Note:     points in opposite direction of

2.5. POINT CHARGE IN E-FIELD 21

2.5 Point Charge in E-field

When we place a charge q in an E-field �E, the force experienced by the charge is

�F = q �E = m�a

Applications: Ink-jet printer, TV cathoderay tube.

Example:

Ink particle has mass m, charge q (q < 0 here)

Assume that mass of inkdrop is small, what’s the deflection y of the charge?

Solution:

First, the charge carried by the inkdrop is negtive, i.e. q < 0.

Note: q �E points in opposite direction of �E.

Horizontal motion: Net force = 0

� L = vt (2.1)

q ~E ~E

Horizontal motion ☛
Net force = 0

) L = vt

Vertical motion ☛ is negative

Net force ☛ Newton’s 2nd Law

|q ~E| � |m~g|, q

)

Vertical distance travelled ☛ y =
1

2
at2

= �|q|E = ma

) a = � |q|E
m
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Review everything for next class BUT don’t forget
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Euclidean vector, a geometric entity endowed with magnitude and 
direction as well as a positive-definite inner product; an element of a 
Euclidean vector space!
In physics, Euclidean vectors are used to represent physical quantities 
that have both magnitude and direction, such as force, in contrast to 
scalar quantities, which have no direction

Vector Algebra
1.1 Definitions
A vector consists of two components � magnitude and direction

(e.g. force, velocity, pressure)

A scalar consists of magnitude only
(e.g. mass, charge, density)

)

Review these slides B4 watching superbowl  

HOMEWORK  
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Chapter 1

Vector Algebra

1.1 Definitions

A vector consists of two components: magnitude and direction .
(e.g. force, velocity, pressure)

A scalar consists of magnitude only.
(e.g. mass, charge, density)

1.2 Vector Algebra

Figure 1.1: Vector algebra

~a +~b = ~b + ~a

~a + (~c + ~d) = (~a + ~c) + ~d

~a+~b = ~b+ ~a

~a+ (~b+ ~c) = (~a+~b) + ~c

1.2 Vector Algebra
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1.3. COMPONENTS OF VECTORS 2

1.3 Components of Vectors

Usually vectors are expressed according to coordinate system. Each vector can
be expressed in terms of components.

The most common coordinate system: Cartesian

~a = ~ax + ~ay + ~az

Magnitude of ~a = |~a| = a,

a =
q

a2

x + a2

y + a2

z

Figure 1.2: ¡ measured anti-clockwise
from position x-axis

~a = ~ax + ~ay

a =
q

a2

x + a2

y

ax = a cos¡; ay = a sin¡

tan¡ =
ay

ax

Unit vectors have magnitude of 1

â =
~a

|~a|

= unit vector along ~a direction

î ĵ k̂ are unit vectors along
l l l

x y z directions

~a = ax î + ay ĵ + az k̂

Other coordinate systems:

1.3. COMPONENTS OF VECTORS 2

1.3 Components of Vectors

Usually vectors are expressed according to coordinate system. Each vector can
be expressed in terms of components.

The most common coordinate system: Cartesian

~a = ~ax + ~ay + ~az

Magnitude of ~a = |~a| = a,

a =
q

a2

x + a2

y + a2

z

Figure 1.2: ¡ measured anti-clockwise
from position x-axis

~a = ~ax + ~ay

a =
q

a2

x + a2

y

ax = a cos¡; ay = a sin¡

tan¡ =
ay

ax

Unit vectors have magnitude of 1

â =
~a

|~a|

= unit vector along ~a direction

î ĵ k̂ are unit vectors along
l l l

x y z directions

~a = ax î + ay ĵ + az k̂

Other coordinate systems:

Usually vectors are expressed according to coordinate system                         
Each vector can be expressed in terms of components!
The most common coordinate system    Cartesian

~a = a
x

+ a
y

+ a
z

~a = |~a| = aMagnitude of

a =
q

a2
x

+ a2
y

+ a2
z

~a = a
x

+ a
y

a =
q
a2
x

+ a2
y

a
x

= a cos�

ay = a sin�

tan� = a
y

/a
x

�

1.3 Components of Vectors
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unit vector along    direction

are unit vectors along 

x y z

ı̂ |̂ k̂

directions

â =
~a

|~a| =

Unit vectors have magnitude of 1

~a

~a = a
x

ı̂ + a
y

|̂ + a
z

k̂
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1. Polar Coordinates

!!

1.3. COMPONENTS OF VECTORS 3

1. Polar Coordinate:

Figure 1.3: Polar Coordinates

~a = ar r̂ + aµ µ̂

2. Cylindrical Coordinates:

Figure 1.4: Cylindrical Coordinates

~a = ar r̂ + aµ µ̂ + az ẑ

r̂ originated from nearest point on
z-axis (Point O’)

3. Spherical Coordinates:

Figure 1.5: Spherical Coordinates

~a = ar r̂ + aµ µ̂ + a¡ ¡̂

r̂ originated from Origin O

~a = ar r̂ + a✓ ✓̂
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2. Cylindrical Coordinates

!!

1.3. COMPONENTS OF VECTORS 3

1. Polar Coordinate:

Figure 1.3: Polar Coordinates

~a = ar r̂ + aµ µ̂

2. Cylindrical Coordinates:

Figure 1.4: Cylindrical Coordinates

~a = ar r̂ + aµ µ̂ + az ẑ

r̂ originated from nearest point on
z-axis (Point O’)

3. Spherical Coordinates:

Figure 1.5: Spherical Coordinates

~a = ar r̂ + aµ µ̂ + a¡ ¡̂

r̂ originated from Origin O

~a = ar r̂ + a✓ ✓̂ + az ẑ

originated from nearest point on z-axis (Point O’)!r̂
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3. Spherical Coordinates

!

1.3. COMPONENTS OF VECTORS 3

1. Polar Coordinate:

Figure 1.3: Polar Coordinates

~a = ar r̂ + aµ µ̂

2. Cylindrical Coordinates:

Figure 1.4: Cylindrical Coordinates

~a = ar r̂ + aµ µ̂ + az ẑ

r̂ originated from nearest point on
z-axis (Point O’)

3. Spherical Coordinates:

Figure 1.5: Spherical Coordinates

~a = ar r̂ + aµ µ̂ + a¡ ¡̂

r̂ originated from Origin Ooriginated from Origin O
~a = ar r̂ + a✓ ✓̂ + a� �̂

r̂
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1. Scalar multiplication
1.4 Multiplication of Vectors

If
then

are vectors;     is a scalar
(Relation between magnitude)

Components also follow relation

i.e.

~b,~a~b = m~a

b = ma

b
x

= ma
x

b
y

= ma
y

}

~a = a
x

ı̂ + a
y

|̂ + a
z

k̂

m~a = ma
x

ı̂ + ma
y

|̂ + ma
z

k̂

m
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ı̂ · ı̂ = |̂ı| |̂ı| cos 0� = 1 · 1 · 1 = 1

ı̂ · |̂ = |̂ı| ||̂| cos 90� = 1 · 1 · 0 = 0

ı̂ · ı̂ = |̂ · |̂ = k̂ · k̂ = 1

ı̂ · |̂ = |̂ · k̂ = k̂ · ı̂ = 0

If

then

~a = a
x

ı̂ + a
y

|̂ + a
z

k̂

~b = b
x

ı̂ + b
y

|̂ + b
z

k̂

~a · ~b = a
x

b
x

+ a
y

b
y

+ a
z

b
z

~a · ~a = |~a| · |~a| cos 0� = a · a = a2

2. Dot Product (Scalar Product) Cont’d
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1.4. MULTIPLICATION OF VECTORS 5

3. Cross Product (Vector Product):

If ~c = ~a£~b,
then c = |~c| = a b sin¡

~a£~b 6= ~b£ ~a !!!

~a£~b = °~b£ ~a

Figure 1.7: Note: How angle ¡ is mea-
sured

• Direction of cross product determined from right hand rule.

• Also, ~a£~b is ? to ~a and ~b, i.e.

~a · (~a£~b) = 0
~b · (~a£~b) = 0

• IMPORTANT:

~a£ ~a = a · a sin0± = 0

|̂i£ î| = |̂i| |̂i| sin0± = 1 · 1 · 0 = 0

|̂i£ ĵ| = |̂i| |ĵ| sin90± = 1 · 1 · 1 = 1

î£ î = ĵ £ ĵ = k̂ £ k̂ = 0
î£ ĵ = k̂; ĵ £ k̂ = î; k̂ £ î = ĵ

~a£~b =

Ø

Ø

Ø

Ø

Ø

î ĵ k̂
ax ay az

bx by bz

Ø

Ø

Ø

Ø

Ø

= (ay bz ° az by) î
+(az bx ° ax bz) ĵ
+(ax by ° ay bx) k̂

2. Cross Product (Vector Product)

If

then

~a ⇥~b 6= ~b ⇥ ~a !!!

~a ⇥ ~b = �~b ⇥ ~a

~c = ~a⇥ ~b

c = |~c| = a b sin�

• Direction of cross product determined from right hand rule

• Also,          is    to     and    
i.e. ~a · (~a ⇥ ~b) = 0

~b · (~a ⇥ ~b) = 0

~a ⇥~b ~a ~b?
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• IMPORTANT

1.4. MULTIPLICATION OF VECTORS 5

3. Cross Product (Vector Product):

If ~c = ~a£~b,
then c = |~c| = a b sin¡

~a£~b 6= ~b£ ~a !!!

~a£~b = °~b£ ~a

Figure 1.7: Note: How angle ¡ is mea-
sured

• Direction of cross product determined from right hand rule.

• Also, ~a£~b is ? to ~a and ~b, i.e.

~a · (~a£~b) = 0
~b · (~a£~b) = 0

• IMPORTANT:

~a£ ~a = a · a sin0± = 0

|̂i£ î| = |̂i| |̂i| sin0± = 1 · 1 · 0 = 0

|̂i£ ĵ| = |̂i| |ĵ| sin90± = 1 · 1 · 1 = 1

î£ î = ĵ £ ĵ = k̂ £ k̂ = 0
î£ ĵ = k̂; ĵ £ k̂ = î; k̂ £ î = ĵ

~a£~b =

Ø

Ø

Ø

Ø

Ø

î ĵ k̂
ax ay az

bx by bz

Ø

Ø

Ø

Ø

Ø

= (ay bz ° az by) î
+(az bx ° ax bz) ĵ
+(ax by ° ay bx) k̂

~a ⇥ ~a = a · a sin 0� = 0

|̂ı ⇥ ı̂| = |̂ı| |̂ı| sin 0� = 1 · 1 · 0 = 0

|̂ı ⇥ |̂| = |̂ı| ||̂| sin 90� = 1 · 1 · 1 = 1

ı̂ ⇥ ı̂ = |̂ ⇥ |̂ = k̂ ⇥ k̂ = 0

ı̂ ⇥ |̂ = k̂; |̂ ⇥ k̂ = ı̂; k̂ ⇥ ı̂ = |̂

~a⇥~b =

������

ı̂ |̂ k̂
a
x

a
y

a
z

b
x

b
y

b
z

������
= (a

y

b
z

� a
z
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1.5 Vector Field (Physics Point of View)

4. Vector identities

~a ⇥ (~b + ~c) = ~a ⇥ ~b + ~a ⇥ ~c

~a ⇥ (~b ⇥ ~c) = (~a · ~c)~b � (~a · ~b)~c

~a · (~b ⇥ ~c) = ~b · (~c ⇥ ~a) = ~c · (~a ⇥ ~b)

A vector field               is a mathematical function 
which has a vector output for a position input

~F (x, y, z)

(Scalar field            ) U(x, y, z)
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1.6   Analytic Geometry
Tangential Vector

1.5. VECTOR FIELD (PHYSICS POINT OF VIEW) 6

4. Vector identities:

~a£ (~b + ~c) = ~a£~b + ~a£ ~c

~a · (~b£ ~c) = ~b · (~c£ ~a) = ~c · (~a£~b)

~a£ (~b£ ~c) = (~a · ~c)~b° (~a ·~b)~c

1.5 Vector Field (Physics Point of View)

A vector field ~
F(x, y, z) is a mathematical function which has a vector output

for a position input.

(Scalar field ~
U(x, y, z))

1.6 Other Topics

Tangential Vector

Figure 1.8: d~l is a vector that is always tangential to the curve C with infinitesimal
length dl

Surface Vector

Figure 1.9: d~a is a vector that is always perpendicular to the surface S with
infinitesimal area da
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1.5 Vector Field (Physics Point of View)

A vector field ~
F(x, y, z) is a mathematical function which has a vector output

for a position input.

(Scalar field ~
U(x, y, z))

1.6 Other Topics

Tangential Vector

Figure 1.8: d~l is a vector that is always tangential to the curve C with infinitesimal
length dl

Surface Vector

Figure 1.9: d~a is a vector that is always perpendicular to the surface S with
infinitesimal area da

Surface Vector

Some uncertainty! (     versus      )d~a �d~a
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Two conventions:
• Area formed from a closed curve

1.6. OTHER TOPICS 7

Some uncertainty! (d~a versus ° d~a)

Two conventions:

• Area formed from a closed curve

Figure 1.10: Direction of d~a determined from right-hand rule

• Closed surface enclosing a volume

Figure 1.11: Direction of d~a going from inside to outside

• Closed surface enclosing a volume
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