Prof. Anchordoqui

Problems set # 7‘ Physics 169 March 31, 2015

1. A particle of charge —e is moving with an initial velocity v when it enters midway between
two plates where there exists a uniform magnetic field pointing into the page, as shown in Fig. 1.
You may ignore effects of the gravitational force. (i) Is the trajectory of the particle deflected
upward or downward? (i) What is the magnitude of the velocity of the particle if it just strikes
the end of the plate?

Solution: (i) Choose unit vectors as shown in Fig. 1. The force on the particle is given by
F = —e(vi x Bj) = —evBk. The direction of the force is downward. (ii) Remember that when a
charged particle moves through a uniform magnetic field, the magnetic force on the charged par-
ticle only changes the direction of the velocity hence leaves the speed unchanged so the particle
undergoes circular motion. Therefore we can use Newtons second law in the form evB = m%. The
speed of the particle is then v = eBR/m. In order to determine the radius of the orbit we note that
the particle just hits the end of the plate. From the figure above, by the Pythagorean theorem, we
have that R62 = (R — d/2)? + [? Expanding this equation yields R?> = R*> — Rd + d*/4 + *>. We
can now solve for the radius of the circular orbit: R = % + %. We can now substitute this value in
the equation for the velocity and find the speed necessary for the particle to just hit the end of the
plate: v = % (% + %)

2. The entire x — y plane to the right of the origin O is filled with a uniform magnetic field of
magnitude B pointing out of the page, as shown in Fig. 2. Two charged particles travel along the
negative x axis in the positive x direction, each with velocity v, and enter the magnetic field at the
origin O. The two particles have the same mass m, but have different charges, ¢; and ¢2. When
propagate thorugh the magnetic field, their trajectories both curve in the same direction (see sketch
in Fig. 2), but describe semi-circles with different radii. The radius of the semi-circle traced out by
particle 2 is exactly twice as big as the radius of the semi-circle traced out by particle 1. (i) Are the
charges of these particles positive or negative? Explain your reasoning. (i) What is the ratio g2/q1 7

Solution: (i) Because Fg = qi x B, the charges of these particles are positive. (ii) We first find
an expression for the radius R of the semi-circle traced out by a particle with charge ¢ in terms of
q, v = |0, B, and m. The magnitude of the force on the charged particle is guvB and the magnitude
of the acceleration for the circular orbit is v2/R. Therefore applying Newtons second law yields
quB = m}gQ. We can solve this for the radius of the circular orbit R = %. Therefore the charged

g2 _ mv/(ReB) _ Ry
q1 muv(R1 B) Ry

ratio

3. Shown in Fig. 3 are the essentials of a commercial mass spectrometer. This device is used to
measure the composition of gas samples, by measuring the abundance of species of different masses.
An ion of mass m and charge ¢ = +e is produced in source S, a chamber in which a gas discharge is
taking place. The initially stationary ion leaves S, is accelerated by a potential difference AV > 0,
and then enters a selector chamber, S, in which there is an adjustable magnetic field 51, pointing



out of the page and a deflecting electric field E, pointing from positive to negative plate. Only
particles of a uniform velocity ¢ leave the selector. The emerging particles at Ss, enter a second
magnetic field Bs, also pointing out of the page. The particle then moves in a semicircle, striking
an electronic sensor at a distance x from the entry slit. Express your answers to the questions
below in terms of E = |E|, e, z, m, By = |Bs|, and AV. (i) What magnetic field B; in the selector
chamber is needed to insure that the particle travels straight through? (ii) Find an expression for
the mass of the particle after it has hit the electronic sensor at a distance x from the entry slit.

Solution: (i) We first find an expression for the speed of the particle after it is accelerated by the
potential difference AV, in terms of m, e, and AV. The change in kinetic energy is AK = %va.

The change in potential energy is AU = —eAV. From conservation of energy, AK = —AU, we
have that %va = eAV. So the speed is v = M Inside the selector the force on the charge is

given by F= e(E_" + T x 31) If the partlcle travels straight through the selector then force on the
charge is zero, therefore E = —¥ x By. Because the velocity is to the right in Fig. 3 (define this
as the +7 direction), the electric field points up (define this as the +j direction) from the positive
plate to the negative plate, and the magnetic field is pointing out of the page (define this as the
+Fk direction). Then Ej = —vi x Bk = vBlj Thus, 31 Ek: = @Ek (i1) The force on the
charge when it enters the magnetic field B, is given by F = evi x Bok = —evBs) 7. This force points
downward and forces the charge to start circular motion. You can verify this because the magnetic
field only changes the direction of the velocity of the particle and not its magnitude which is the
condition for circular motion. Recall that in circular motion the acceleration is towards the center.

In particular when the particle just enters the field B, the acceleration is downward @ = —ZU—/QQ 7.
Newtons Second Law becomes —evBy = —m%. Thus, the particle hits the electronic sensor at
eBgaﬁ2

a distance x = i%s = ﬁ\/ 2emAV from the entry slit. The mass of the particle is then m = Z-.

4. Electrons in a beam are accelerated from rest through a potential difference V. The beam
enters an experimental chamber through a small hole. As shown in Fig. 4, the electron velocity
vectors lie within a narrow cone of half angle ¢ oriented along the beam axis. We wish to use a
uniform magnetic field directed parallel to the axis to focus the beam, so that all of the electrons
can pass through a small exit port on the opposite side of the chamber after they travel the length
d of the chamber. What is the required magnitude of the magnetic field? [Hint: Because every
electron passes through the same potential difference and the angle ¢ is small, they all require the
same time interval to travel the axial distance d.

Solution The electrons are all fired from the electron gun with the same speed v. Since U; = K7y,

2eAV :
em—e. For ¢ small, cos ¢ is nearly equal to 1. The

time T of passage of each electron in the chamber is given by d = vT, and so T' = dy/5.%-
Each electron moves in a different helix, around a different axis. If each completes just one

we have (—e)(—AV) = Im.v?, yielding v =

revolution within the chamber, it will be in the right place to pass through the exit port. Its
transverse velocity component v = Usinqb swings around according to F'i = ma,. Explicitly,

qu| Bsin(r/2) = Mell —

= Mew = Me2E 7, yielding T = medn _ (/S0

eB 2eAV "




Therefore, 2]; = m, which leads to B = w/ QmeeAV

5. Find the magnetic field at point P due to the current distribution shown in Fig. 5.

Solution: The fields due to the straight wire segments are zero at P because d§ and 7 are
parallel or anti-parallel. For the field due to the arc segment, the magnitude of the magnetic

field due to a differential current carrying element is given in this case by dB = ‘jgrl df%é’“ —

s 9 A K
%Igge(sin% cosf)) x (—cosbi — sinfj) = —Z—frl(maJr—IWk = —Z—ﬁ%k. Therefore,
B=— Oﬂ/z f"éd@k = I/;; into the plane of Fig. 5

6. A nonconducting sphere has mass 80.0 g and radius 20.0 cm. A flat compact coil of wire with
5 turns is wrapped tightly around it, with each turn concentric with the sphere. As shown in Fig. 6,
the sphere is placed on an inclined plane that slopes downward to the left, making an angle # with
the horizontal, so that the coil is parallel to the inclined plane. A uniform magnetic field of 0.350 T
vertically upward exists in the region of the sphere. What current in the coil will enable the sphere
to rest in equilibrium on the inclined plane? Show that the result does not depend on the value of 6.

Solution: The sphere is in translational equilibrium, thus fs — Mgsinf = 0, see Fig. 6. The
sphere is in rotational equilibrium. If torques are taken about the center of the sphere, the magnetic
field produces a clockwise torque of magnitude uB sin 8, and the frictional force a counterclockwise
torque of magnitude fsR, where R is the radius of the sphere. Hence, f;R—puBsinf = 0. Substitut-
ing the expression for fs derived from the condition of translational equilibrium, fs = Mgsin 6 into
the condition for rotational equilibrium, and cancelling out sinf, one obtains uB = MgR. Now,

. 2 _
p=NInR% Thus, I = - ]]\\,/‘[ s = 05'7??0.1;%5 '?F(.)Ofg/ = =0.713 A. The current must be counterclockwise

as seen from above.

7. Two circular coils of radius a, each with N turns, are perpendicular to a common axis. Each
coil carries a steady current I in the same direction, as shown in Fig. 7 (i) Find the total magnetic
field on the axis Bi°" as a function of z, using the midway point as the origin (z = 0). (47) Show that

tot
dg; = 0 at the midpoint. This means that, functionally, at least at that one location, the field is

not changing. (7i) If the separation b is picked correctly, then 2d 2~ = 0 at the midpoint. This
configuration is known as Helmholtz coils. Determine the appropriate value of b. (iv) Show that
the magnetic field on the axis near the origin, as an expansion in powers of z (up to z* inclusive)
is given by
Btot _ poNIa? N 3(b% — a?)2? N 15(b* — 6b%a® + 2a*)24 .
z a3 2d* 16d8 ’

where d? = a? + b?/4. (v) Show that the magnetic field on the z axis for large |2| is given by the
expansion in inverse odd powers of |z| obtained from the small z expansion of part (iv) by the
formal substitution d — |z|. (vi) What is the maximum permitted value of |z|/a if the field is to
be uniform to one part in 10* (or one part in 10?) in the Helmholtz configuration?

Solution (i) The magnetic field due to a circular hoop of radius a carrying a current I, which



pola?
2(22+a2)3/2 .
have N turns, then the field from each coil is just N times larger. The magnetic field from both

lies in the z-y plane with its center at the origin, is B, = If the coils on the system

coils is then given by

BEOt = BZl +B22

puoNIa? 1 1
2 { [a2 + (b/2 + 2)?]*/ i [a2 + (b/2 — 2)2]3/2} M

(ii) The derivative is

dBY**  3ugNIa? b/2 — z B b/2+ 2
dz 2 [+ (b/2— 2)2”% (a2 + (b/2+ 2)2% |

: dBtot
It is easy to see that ==

0= 0. This is true regardless of the separation b. (i) Differentiating
z=

d2 Btot 3ugNIa? { 5(b/2+2)? 1 5(b/2—2)2 1 }
[ .

ABAI BIVES T = T T T @i | @207 b2

At the midpoint, the second derivative becomes

d?Btet ~ 3ugNlIa? 100°/4 2
422 Jomo 20 e+ 02472 a2+ (b/2)
30N Ia? a® + b%/4 — 5b% /4
= 0
(a2 + b2/4)"?
CL2—62
= 3ugNIa® | ———————
(a2 +b2/4)7/

2 ptot

Therefore, the condition (1(175 = 0is met if b = a. (iv) All we must do now is to Taylor expand
z=0

the terms to order z*. Noting that we are seeking an expansion in powers of z/d?, we may rewrite

(1) as

NIa?

Bt — 1o . a {(d2 —bz+z2)_3/2 n (d2+bz+z2)_3/2}
NlIa?
poNIa?

= 23 {[1—b§+(a2+b2/4)gz]73/2+ [1+b§+(a2+b2/4)§2]*3/2},

where we have introduced ¢ = z/d?. Expanding this in powers of ¢ yields

Blot — poNIa? [ 3

1
2d3 +2(b2—a2)c2—|—{Z(b4—662a2+2a4)é4+~--},

which is the desired result. The magnetic field along the axis changes very slowly when z is very

small. (v) For large |z| we Taylor expand B! in inverse powers of z, that is

woNIa?
2|z[3

Bt = { [1—bz"" + (a® + b*/4)2 7] et (14027 + (a® + b*/4)27?] 73/2} .



Comparing this with the last line of (2) shows that the Taylor series is formally equivalent under
the substitution ¢ — z~!, which may be accomplished by taking d — |z|. (vi) For b = a the field
is of the form

tot __
B =

poNIa? (1 _Abalst ) _ AN la” [ _1u <2)4+...]
2d3 16 d8 53/2q3 125 \a ’

Taking the (|z|/a)* term as a small correction, the field non-uniformity is % ~ 15 (5)4. For
uniformity to one part in 10%, we find |z|/a < 0.097, while for uniformity to one part in 102, we
instead obtain |z|/a < 0.305. These numbers are actually pretty good because of the fourth power.
For example, the first value indicates we can move ~ +10% of the distance between the coils while
maintaining field uniformity at the level of 0.01%. Helmholtz coils are very useful in the lab for

canceling out the Earth’s magnetic field.

8. Let us treat the motion of an electron (charge —e, mass m) in a hydrogen atom classically.
Suppose that an electron follows a circular orbit of radius r around a proton. What is the angular
frequency wy of the orbital motion? Suppose now that a small magnetic field B perpendicular to the
plane of the orbit is switched on. Assuming that the radius of the orbit does not change, calculate
the shift in the angular frequency Aw = wy — wp of the orbital motion in terms of the magnitude
B of the magnetic field, charge —e, mass m, and radius r. This is known as the “Zeeman effect.”

Solution We first apply Newton’s second law to find the angular frequency wy of the orbital
motion. Coulombs law describes the force acting on the electron due to the electric interaction

between the proton and the electron ﬁelee = f—if, where 7 is a unit vector in the plane of

1
" dreg
the circular orbit pointing radiallly outward. Because we are assuming the motion is circular the

acceleration is @ = —rwi?. Newtons second law is then

1 €2

4dmreq 12

P = —mrwir. (3)

We can now solve for the angular frequency

2
e
Y P — 4
wo dmegmir (4)

When a small magnetic field B perpendicular to the plane of the orbit is switched on there is
magnetic force acting on the electron ﬁmag — —e¥ x B. Let’s first assume that the magnetic
force points radially inward and that the radius of the orbit does not change. This will cause
the electron to speed up hence increasing the angular frequency to w¢. Choose coordinates as
shown in Fig. 8. Assume that the magnetic field points in the positive z-direction. In or-
der to have a radially inward force, we require that the velocity of the electron is ¢ = rwd.

Then the magnetic force is given by Fi.e = —e¥ x B = —erwsfl x Bk = —erwsB7. Therefore
Newton’s second law is now —p—=%7 — erwBr = —mrw?f. Using (3) we can rewrite this as
—mrwi? — erwgBF = —mrwif or 0 = wf — % — w3. We can solve this quadratic equation to

e2B?
4m?

obtain wy = % + + w2. We choose the positive square root to keep wy > 0. We now
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Figure 2: Problem 2.

substitute (4) into the above equation yielding wy = €& + /<5 + —< . Then the change

2m 4m?2 dmegmr3”
. . eB €2 B2 2 €2
in angular frequency is AQ = wr —wy = 5> + \/ T 47r60mr3 - \/ Treqmi® Suppose we re-
verse the direction of the magnetic field as shown in Fig. 8. Then the magnetic force points
outward, Fiae = —e¥ x B = —erwi) x —Bk = +erwyB7, resulting in a smaller angular fre-
quency wr . Repeating the analysis we just finished we have that —mrw37 + erwgBf = —mrw?f’
or 0 = wa + efle — Wo We can solve this quadratic equation for wr choosing the positive square
root to keep wy > 0, that is wf = —5= i 623 ; + wd. The change in angular frequency is now

_ o e2B2 o e?
AQ = wf + \/ 4m? + 47reomr3 \/47reomr3 :
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Figure 6: Problem 6.
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Figure 8: Problem 8.




