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1. A particle of charge −e is moving with an initial velocity v when it enters midway between

two plates where there exists a uniform magnetic field pointing into the page, as shown in Fig. 1.

You may ignore effects of the gravitational force. (i) Is the trajectory of the particle deflected

upward or downward? (ii) What is the magnitude of the velocity of the particle if it just strikes

the end of the plate?

Solution: (i) Choose unit vectors as shown in Fig. 1. The force on the particle is given by
~F = −e(vı̂ × B̂) = −evBk̂. The direction of the force is downward. (ii) Remember that when a

charged particle moves through a uniform magnetic field, the magnetic force on the charged par-

ticle only changes the direction of the velocity hence leaves the speed unchanged so the particle

undergoes circular motion. Therefore we can use Newtons second law in the form evB = mv2

R . The

speed of the particle is then v = eBR/m. In order to determine the radius of the orbit we note that

the particle just hits the end of the plate. From the figure above, by the Pythagorean theorem, we

have that R62 = (R − d/2)2 + l2 Expanding this equation yields R2 = R2 − Rd + d2/4 + l2. We

can now solve for the radius of the circular orbit: R = d
4 + l2

d . We can now substitute this value in

the equation for the velocity and find the speed necessary for the particle to just hit the end of the

plate: v = eB
m

(
d
4 + l2

d

)
.

2. The entire x− y plane to the right of the origin O is filled with a uniform magnetic field of

magnitude B pointing out of the page, as shown in Fig. 2. Two charged particles travel along the

negative x axis in the positive x direction, each with velocity ~v, and enter the magnetic field at the

origin O. The two particles have the same mass m, but have different charges, q1 and q2. When

propagate thorugh the magnetic field, their trajectories both curve in the same direction (see sketch

in Fig. 2), but describe semi-circles with different radii. The radius of the semi-circle traced out by

particle 2 is exactly twice as big as the radius of the semi-circle traced out by particle 1. (i) Are the

charges of these particles positive or negative? Explain your reasoning. (ii) What is the ratio q2/q1?

Solution: (i) Because ~FB = q~v× ~B, the charges of these particles are positive. (ii) We first find

an expression for the radius R of the semi-circle traced out by a particle with charge q in terms of

q, v ≡ |~v|, B, and m. The magnitude of the force on the charged particle is qvB and the magnitude

of the acceleration for the circular orbit is v2/R. Therefore applying Newtons second law yields

qvB = mv2

R . We can solve this for the radius of the circular orbit R = mv
qB . Therefore the charged

ratio q2
q1

= mv/(R2B)
mv(R1B) = R1

R2
.

3. Shown in Fig. 3 are the essentials of a commercial mass spectrometer. This device is used to

measure the composition of gas samples, by measuring the abundance of species of different masses.

An ion of mass m and charge q = +e is produced in source S, a chamber in which a gas discharge is

taking place. The initially stationary ion leaves S, is accelerated by a potential difference ∆V > 0,

and then enters a selector chamber, S1, in which there is an adjustable magnetic field ~B1, pointing



out of the page and a deflecting electric field ~E, pointing from positive to negative plate. Only

particles of a uniform velocity ~v leave the selector. The emerging particles at S2, enter a second

magnetic field B2, also pointing out of the page. The particle then moves in a semicircle, striking

an electronic sensor at a distance x from the entry slit. Express your answers to the questions

below in terms of E ≡ | ~E|, e, x, m, B2 ≡ | ~B2|, and ∆V . (i) What magnetic field B1 in the selector

chamber is needed to insure that the particle travels straight through? (ii) Find an expression for

the mass of the particle after it has hit the electronic sensor at a distance x from the entry slit.

Solution: (i) We first find an expression for the speed of the particle after it is accelerated by the

potential difference ∆V , in terms of m, e, and ∆V . The change in kinetic energy is ∆K = 1
2mv

2.

The change in potential energy is ∆U = −e∆V . From conservation of energy, ∆K = −∆U , we

have that 1
2mv

2 = e∆V . So the speed is v =
√

2e∆V
m Inside the selector the force on the charge is

given by ~F = e( ~E + ~v × ~B1). If the particle travels straight through the selector then force on the

charge is zero, therefore ~E = −~v × ~B1. Because the velocity is to the right in Fig. 3 (define this

as the +ı̂ direction), the electric field points up (define this as the +̂ direction) from the positive

plate to the negative plate, and the magnetic field is pointing out of the page (define this as the

+k̂ direction). Then E̂ = −vı̂×B1k̂ = vB1̂. Thus, ~B1 = E
v k̂ =

√
m

2e∆V Ek̂. (ii) The force on the

charge when it enters the magnetic field ~B2 is given by ~F = evı̂×B2k̂ = −evB2̂. This force points

downward and forces the charge to start circular motion. You can verify this because the magnetic

field only changes the direction of the velocity of the particle and not its magnitude which is the

condition for circular motion. Recall that in circular motion the acceleration is towards the center.

In particular when the particle just enters the field ~B2 the acceleration is downward ~a = − v2

x/2 ̂.

Newtons Second Law becomes −evB2 = −m v2

x/2 . Thus, the particle hits the electronic sensor at

a distance x = 2mv
eB2

= 2
eB2

√
2em∆V from the entry slit. The mass of the particle is then m =

eB2
2x

2

8∆V .

4. Electrons in a beam are accelerated from rest through a potential difference V . The beam

enters an experimental chamber through a small hole. As shown in Fig. 4, the electron velocity

vectors lie within a narrow cone of half angle φ oriented along the beam axis. We wish to use a

uniform magnetic field directed parallel to the axis to focus the beam, so that all of the electrons

can pass through a small exit port on the opposite side of the chamber after they travel the length

d of the chamber. What is the required magnitude of the magnetic field? [Hint: Because every

electron passes through the same potential difference and the angle φ is small, they all require the

same time interval to travel the axial distance d.

Solution The electrons are all fired from the electron gun with the same speed v. Since Ui = Kf ,

we have (−e)(−∆V ) = 1
2mev

2, yielding v =
√

2e∆V
me

. For φ small, cosφ is nearly equal to 1. The

time T of passage of each electron in the chamber is given by d = vT , and so T = d
√

m2
2e∆V .

Each electron moves in a different helix, around a different axis. If each completes just one

revolution within the chamber, it will be in the right place to pass through the exit port. Its

transverse velocity component v = v sinφ swings around according to F⊥ = ma⊥. Explicitly,

qv⊥B sin(π/2) =
mv2⊥
r , or equivalently eB = mev⊥

r = meω = me
2π
T , yielding T = me2π

eB = d
√

me
2e∆V .



Therefore, 2π
B

√
me
e = d√

2∆V
, which leads to B = 2π

d

√
2me∆V

e .

5. Find the magnetic field at point P due to the current distribution shown in Fig. 5.

Solution: The fields due to the straight wire segments are zero at P because d~s and r̂ are

parallel or anti-parallel. For the field due to the arc segment, the magnitude of the magnetic

field due to a differential current carrying element is given in this case by d ~B = µ0I
4π

d~s×r̂
R2 =

µ0
4π

IRdθ
R2 (sin θı̂ − cos θ̂) × (− cos θı̂ − sin θ̂) = −µ0

4π
I(sin2 θ+cos2 θ)dθ

R k̂ = −µ0
4π

Idtheta
R k̂. Therefore,

~B = −
∫ π/2

0
µoI
4πRdθk̂ = −µ0I

8R k̂ into the plane of Fig. 5

6. A nonconducting sphere has mass 80.0 g and radius 20.0 cm. A flat compact coil of wire with

5 turns is wrapped tightly around it, with each turn concentric with the sphere. As shown in Fig. 6,

the sphere is placed on an inclined plane that slopes downward to the left, making an angle θ with

the horizontal, so that the coil is parallel to the inclined plane. A uniform magnetic field of 0.350 T

vertically upward exists in the region of the sphere. What current in the coil will enable the sphere

to rest in equilibrium on the inclined plane? Show that the result does not depend on the value of θ.

Solution: The sphere is in translational equilibrium, thus fs −Mg sin θ = 0, see Fig. 6. The

sphere is in rotational equilibrium. If torques are taken about the center of the sphere, the magnetic

field produces a clockwise torque of magnitude µB sin θ, and the frictional force a counterclockwise

torque of magnitude fsR, where R is the radius of the sphere. Hence, fsR−µB sin θ = 0. Substitut-

ing the expression for fs derived from the condition of translational equilibrium, fs = Mg sin θ into

the condition for rotational equilibrium, and cancelling out sin θ, one obtains µB = MgR. Now,

µ = NIπR2. Thus, I = Mg
πNBR = 0.08 kg·9.80 m/s2

5π·0.350 T·0.2 m = 0.713 A. The current must be counterclockwise

as seen from above.

7. Two circular coils of radius a, each with N turns, are perpendicular to a common axis. Each

coil carries a steady current I in the same direction, as shown in Fig. 7 (i) Find the total magnetic

field on the axis Btot
z as a function of z, using the midway point as the origin (z = 0). (ii) Show that

dBtot
z
dz = 0 at the midpoint. This means that, functionally, at least at that one location, the field is

not changing. (iii) If the separation b is picked correctly, then d2Btot
z

dz2
= 0 at the midpoint. This

configuration is known as Helmholtz coils. Determine the appropriate value of b. (iv) Show that

the magnetic field on the axis near the origin, as an expansion in powers of z (up to z4 inclusive)

is given by

Btot
z =

µ0NIa
2

d3

[
1 +

3(b2 − a2)z2

2d4
+

15(b4 − 6b2a2 + 2a4)z4

16d8
+ · · ·

]
,

where d2 = a2 + b2/4. (v) Show that the magnetic field on the z axis for large |z| is given by the

expansion in inverse odd powers of |z| obtained from the small z expansion of part (iv) by the

formal substitution d → |z|. (vi) What is the maximum permitted value of |z|/a if the field is to

be uniform to one part in 104 (or one part in 102) in the Helmholtz configuration?

Solution (i) The magnetic field due to a circular hoop of radius a carrying a current I, which



lies in the x-y plane with its center at the origin, is Bz = µ0Ia2

2(z2+a2)3/2
. If the coils on the system

have N turns, then the field from each coil is just N times larger. The magnetic field from both

coils is then given by

Btot
z = Bz1 +Bz2

=
µ0NIa

2

2

{
1

[a2 + (b/2 + z)2]3/2
+

1

[a2 + (b/2− z)2]3/2

}
(1)

(ii) The derivative is

dBtot
z

dz
=

3µ0NIa
2

2

{
b/2− z

[a2 + (b/2− z)2]5/2
− b/2 + z

[a2 + (b/2 + z)2]5/2

}
.

It is easy to see that dBtot
z
dz

∣∣∣
z=0

= 0. This is true regardless of the separation b. (iii) Differentiating

again gives d2Btot
z

dz2
= 3µ0NIa2

2

{
5(b/2+z)2

[a2+(b/2+z)2]7/2
− 1

[a2+(b/2+z)2]5/2
+ 5(b/2−z)2

[a2+(b/2−z)2]7/2
− 1

[a2+(b/2−z)2]5/2

}
.

At the midpoint, the second derivative becomes

d2Btot
z

dz2

∣∣∣∣
z=0

=
3µ0NIa

2

2

{
10b2/4

[a2 + b2/4]7/2
− 2

[a2 + (b/2)2]5/2

}

= 3µ0NIa
2

[
a2 + b2/4− 5b2/4

(a2 + b2/4)7/2

]

= 3µ0NIa
2

[
a2 − b2

(a2 + b2/4)7/2

]
.

Therefore, the condition d2Btot
z

dz2

∣∣∣
z=0

= 0 is met if b = a. (iv) All we must do now is to Taylor expand

the terms to order z4. Noting that we are seeking an expansion in powers of z/d2, we may rewrite

(1) as

Btot
z =

µ0NIa
2

2

[
(d2 − bz + z2)−3/2 + (d2 + bz + z2)−3/2

]
=

µ0NIa
2

2d3

[
(1− bζ + d2ζ2)−3/2 + (1 + bζ + d2ζ2)−3/2

]
(2)

=
µ0NIa

2

2d3

{[
1− bζ + (a2 + b2/4)ζ2

]−3/2
+
[
1 + bζ + (a2 + b2/4)ζ2

]−3/2
}
,

where we have introduced ζ = z/d2. Expanding this in powers of ζ yields

Btot
z =

µ0NIa
2

2d3

[
1 +

3

2
(b2 − a2)ζ2 +

15

16
(b4 − 6b2a2 + 2a4)ζ4 + · · ·

]
,

which is the desired result. The magnetic field along the axis changes very slowly when z is very

small. (v) For large |z| we Taylor expand Btot
z in inverse powers of z, that is

Btot
z =

µ0NIa
2

2|z|3
{[

1− bz−1 + (a2 + b2/4)z−2
]−3/2

+
[
1 + bz−1 + (a2 + b2/4)z−2

]−3/2
}
.



Comparing this with the last line of (2) shows that the Taylor series is formally equivalent under

the substitution ζ → z−1, which may be accomplished by taking d → |z|. (vi) For b = a the field

is of the form

Btot
z =

µ0NIa
2

2d3

(
1− 45

16

a4z4

d8
+ · · ·

)
=

4µ0NIa
2

53/2a3

[
1− 144

125

(z
a

)4
+ · · ·

]
.

Taking the (|z|/a)4 term as a small correction, the field non-uniformity is δBtot
z

Btot
z
≈ 144

125

(
z
a

)4
. For

uniformity to one part in 104, we find |z|/a < 0.097, while for uniformity to one part in 102, we

instead obtain |z|/a < 0.305. These numbers are actually pretty good because of the fourth power.

For example, the first value indicates we can move ≈ ±10% of the distance between the coils while

maintaining field uniformity at the level of 0.01%. Helmholtz coils are very useful in the lab for

canceling out the Earth’s magnetic field.

8. Let us treat the motion of an electron (charge −e, mass m) in a hydrogen atom classically.

Suppose that an electron follows a circular orbit of radius r around a proton. What is the angular

frequency ω0 of the orbital motion? Suppose now that a small magnetic field ~B perpendicular to the

plane of the orbit is switched on. Assuming that the radius of the orbit does not change, calculate

the shift in the angular frequency ∆ω = ωf − ω0 of the orbital motion in terms of the magnitude

B of the magnetic field, charge −e, mass m, and radius r. This is known as the “Zeeman effect.”

Solution We first apply Newton’s second law to find the angular frequency ω) of the orbital

motion. Coulombs law describes the force acting on the electron due to the electric interaction

between the proton and the electron ~Felec = − 1
4πε0

e2

r2
r̂, where r̂ is a unit vector in the plane of

the circular orbit pointing radiallly outward. Because we are assuming the motion is circular the

acceleration is ~a = −rω2
0 r̂. Newtons second law is then

− 1

4πε0

e2

r2
r̂ = −mrω2

0 r̂. (3)

We can now solve for the angular frequency

ω0 =

√
e2

4πε0mr3
. (4)

When a small magnetic field ~B perpendicular to the plane of the orbit is switched on there is

magnetic force acting on the electron ~Fmag = −e~v × ~B. Let’s first assume that the magnetic

force points radially inward and that the radius of the orbit does not change. This will cause

the electron to speed up hence increasing the angular frequency to ωf . Choose coordinates as

shown in Fig. 8. Assume that the magnetic field points in the positive z-direction. In or-

der to have a radially inward force, we require that the velocity of the electron is ~v = rωf θ̂.

Then the magnetic force is given by ~Fmag = −e~v × ~B = −erωf θ̂ × Bk̂ = −erωfBr̂. Therefore

Newton’s second law is now − e2

4πε0r2
r̂ − erωfBr̂ = −mrω2

f r̂. Using (3) we can rewrite this as

−mrω2
0 r̂ − erωfBr̂ = −mrω2

f r̂ or 0 = ω2
f −

eωfB
m − ω2

0. We can solve this quadratic equation to

obtain ωf = eB
2m ±

√
e2B2

4m2 + ω2
0. We choose the positive square root to keep ωf > 0. We now



Problem 2:  Particle Trajectory  
 
A particle of charge e!  is moving with an initial velocity v!  when it enters midway 
between two plates where there exists a uniform magnetic field pointing into the page, as 
shown in the figure below. You may ignore effects of the gravitational force. 
 

 
 
(a) Is the trajectory of the particle deflected upward or downward? 
 
(b) What is the magnitude of the velocity of the particle if it just strikes the end of the 
plate?  
 
Solution: Choose unit vectors as shown in the figure.  
 

 
 
The force on the particle is given by 
 
     

!
F = !e(v î " Bĵ) = !evBk̂ . (1) 

 
The direction of the force is downward. Remember that when a charged particle moves 
through a uniform magnetic field, the magnetic force on the charged particle only 
changes the direction of the velocity hence leaves the speed unchanged so the particle 
undergoes circular motion. Therefore we can use Newton’s second law in the form 
 

 
2vevB m
R

= . (2) 

. 
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Figure 1: Problem 1.

Problem 2: 
The entire x-y plane to the right of the origin O is filled with a uniform magnetic field of 
magnitude B  pointing out of the page, as shown. Two charged particles travel along the 
negative x axis in the positive x direction, each with velocity vG , and enter the magnetic 
field at the origin O.  The two particles have the same mass , but have different 
charges,  and . When in the magnetic field, their trajectories both curve in the same 
direction (see sketch), but describe semi-circles with different radii.  The radius of the 
semi-circle traced out by particle 2 is exactly twice as big as the radius of the semi-circle 
traced out by particle 1.   

m
1q 2q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) Are the charges of these particles positive or negative? Explain your 
reasoning. 
 
(b) What is the ratio ? 2 1/q q
 

 
Problem 2 Solution: 
(a)Because , the charges of these particles are POSITIVE. BF qv B u

G GG

 
(b) We first find an expression for the radius R  of the semi-circle traced out by a particle 
with charge   in terms of , q q v v{

G , B , and .  The magnitude of the force on the 
charged particle is  and the magnitude of the acceleration for the circular orbit is 

. Therefore applying Newton’s Second Law yields 

m
qvB

2 /v R
2mvqvB
R

 . 

We can solve this for the radius of the circular orbit 
 

mvR
qB

  

Therefore the charged ratio 
 

Figure 2: Problem 2.

substitute (4) into the above equation yielding ωf = eB
2m +

√
e2B2

4m2 + e2

4πε0mr3
. Then the change

in angular frequency is ∆Ω = ωf − ω0 = eB
2m +

√
e2B2

4m2 + e2

4πε0mr3
−
√

e2

4πε0mr3
. Suppose we re-

verse the direction of the magnetic field as shown in Fig. 8. Then the magnetic force points

outward, ~Fmag = −e~v × ~B = −erωf θ̂ × −Bk̂ = +erωfBr̂, resulting in a smaller angular fre-

quency ωf . Repeating the analysis we just finished we have that −mrω2
0 r̂ + erωfBr̂ = −mrω2

f r̂

or 0 = ω2
f + eωfB

m − ω2
0. We can solve this quadratic equation for ωf choosing the positive square

root to keep ωf > 0, that is ωf = − eB
2m ±

√
e2B2

4m2 + ω2
0. The change in angular frequency is now

∆Ω = ωf − ω0 = − eB
2m +

√
e2B2

4m2 + e2

4πε0mr3
−
√

e2

4πε0mr3
.



Problem 4 Mass Spectrometer  
 
Shown below are the essentials of a commercial mass spectrometer.  This device is used 
to measure the composition of gas samples, by measuring the abundance of species of 
different masses.  An ion of mass m  and charge q = +e  is produced in source S , a 
chamber in which a gas discharge is taking place.  The initially stationary ion leaves S , is 
accelerated by a potential difference 0V! > , and then enters a selector chamber,   S1 , in 

which there is an adjustable magnetic field 1B
!

, pointing out of the page and a deflecting 

electric field E
!

, pointing from positive to negative plate.  Only particles of a uniform 
velocity v!  leave the selector. The emerging particles at   S2 , enter a second magnetic field 

2B
!

, also pointing out of the page.  The particle then moves in a semicircle, striking an 
electronic sensor at a distance x  from the entry slit. Express your answers to the 
questions below in terms of E ! E

!
, e , x , m , 2 2B ! B

!
, and V! . 

 
 

a) What magnetic field 1B
!

 in the selector chamber is needed to insure that the 
particle travels straight through?   
 

Solution: We first find an expression for the speed of the particle after it is accelerated by 
the potential difference !V , in terms of m , e ,  and !V . The change in kinetic energy is 

2(1/ 2)K mv! = . The change in potential energy is U e V! = " !  From conservation of 
energy, K U! = "! , we have that 

2(1/ 2)mv e V= ! . 
So the speed is 

2e Vv
m
!=  

 
Inside the selector the force on the charge is given by 
 

1( )e e= + !F E v B
! ! !! . 

 

Figure 3: Problem 3.

Problems 923

58. Review Problem. A wire having a linear mass density of
1.00 g/cm is placed on a horizontal surface that has a
coefficient of kinetic friction of 0.200. The wire carries a
current of 1.50 A toward the east and slides horizontally to
the north. What are the magnitude and direction of the
smallest magnetic field that enables the wire to move in
this fashion?

59. Electrons in a beam are accelerated from rest through a
potential difference !V. The beam enters an experimental
chamber through a small hole. As shown in Figure P29.59,
the electron velocity vectors lie within a narrow cone of
half angle " oriented along the beam axis. We wish to use
a uniform magnetic field directed parallel to the axis to
focus the beam, so that all of the electrons can pass
through a small exit port on the opposite side of the
chamber after they travel the length d of the chamber.
What is the required magnitude of the magnetic field?
Hint: Because every electron passes through the same
potential difference and the angle " is small, they all
require the same time interval to travel the axial distance d.

long. The springs stretch 0.500 cm under the weight of the
wire and the circuit has a total resistance of 12.0 #. When
a magnetic field is turned on, directed out of the page, the
springs stretch an additional 0.300 cm. What is the magni-
tude of the magnetic field?

62. A hand-held electric mixer contains an electric motor.
Model the motor as a single flat compact circular coil carry-
ing electric current in a region where a magnetic field is
produced by an external permanent magnet. You need con-
sider only one instant in the operation of the motor. (We
will consider motors again in Chapter 31.) The coil moves
because the magnetic field exerts torque on the coil, as
described in Section 29.3. Make order-of-magnitude esti-
mates of the magnetic field, the torque on the coil, the
current in it, its area, and the number of turns in the coil, so
that they are related according to Equation 29.11. Note that
the input power to the motor is electric, given by ! $ I !V,
and the useful output power is mechanical, ! $ %&.

63. A nonconducting sphere has mass 80.0 g and radius
20.0 cm. A flat compact coil of wire with 5 turns is wrapped
tightly around it, with each turn concentric with the
sphere. As shown in Figure P29.63, the sphere is placed on
an inclined plane that slopes downward to the left, making
an angle ' with the horizontal, so that the coil is parallel to
the inclined plane. A uniform magnetic field of 0.350 T
vertically upward exists in the region of the sphere. What
current in the coil will enable the sphere to rest in equilib-
rium on the inclined plane? Show that the result does not
depend on the value of '.

Exit
port

d

Entrance
port

∆V

φ

Figure P29.59

24.0 V

5.00 cm

Figure P29.61

θ

B

Figure P29.63

θ

B

I

g
θ

Figure P29.64

60. Review Problem. A proton is at rest at the plane vertical
boundary of a region containing a uniform vertical mag-
netic field B. An alpha particle moving horizontally makes
a head-on elastic collision with the proton. Immediately
after the collision, both particles enter the magnetic field,
moving perpendicular to the direction of the field. The
radius of the proton’s trajectory is R . Find the radius of the
alpha particle’s trajectory. The mass of the alpha particle is
four times that of the proton, and its charge is twice that of
the proton.

61. The circuit in Figure P29.61 consists of wires at the top
and bottom and identical metal springs in the left and
right sides. The upper portion of the circuit is fixed. The
wire at the bottom has a mass of 10.0 g and is 5.00 cm

64. A metal rod having a mass per unit length ( carries a
current I. The rod hangs from two vertical wires in a
uniform vertical magnetic field as shown in Figure P29.64.
The wires make an angle ' with the vertical when in equi-
librium. Determine the magnitude of the magnetic field.

Figure 4: Problem 4.



  
Problem 6: Magnetic Fields  
 
Find the magnetic field at point P due to the following current distribution. 

 
Solution:  
 
The fields due to the straight wire segments are zero at P because d sr  and r̂  are parallel 
or anti-parallel. For the field due to the arc segment, the magnitude of the magnetic field 
due to a differential current carrying element is given in this case by 
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Figure 5: Problem 5.
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58. Review Problem. A wire having a linear mass density of
1.00 g/cm is placed on a horizontal surface that has a
coefficient of kinetic friction of 0.200. The wire carries a
current of 1.50 A toward the east and slides horizontally to
the north. What are the magnitude and direction of the
smallest magnetic field that enables the wire to move in
this fashion?

59. Electrons in a beam are accelerated from rest through a
potential difference !V. The beam enters an experimental
chamber through a small hole. As shown in Figure P29.59,
the electron velocity vectors lie within a narrow cone of
half angle " oriented along the beam axis. We wish to use
a uniform magnetic field directed parallel to the axis to
focus the beam, so that all of the electrons can pass
through a small exit port on the opposite side of the
chamber after they travel the length d of the chamber.
What is the required magnitude of the magnetic field?
Hint: Because every electron passes through the same
potential difference and the angle " is small, they all
require the same time interval to travel the axial distance d.

long. The springs stretch 0.500 cm under the weight of the
wire and the circuit has a total resistance of 12.0 #. When
a magnetic field is turned on, directed out of the page, the
springs stretch an additional 0.300 cm. What is the magni-
tude of the magnetic field?

62. A hand-held electric mixer contains an electric motor.
Model the motor as a single flat compact circular coil carry-
ing electric current in a region where a magnetic field is
produced by an external permanent magnet. You need con-
sider only one instant in the operation of the motor. (We
will consider motors again in Chapter 31.) The coil moves
because the magnetic field exerts torque on the coil, as
described in Section 29.3. Make order-of-magnitude esti-
mates of the magnetic field, the torque on the coil, the
current in it, its area, and the number of turns in the coil, so
that they are related according to Equation 29.11. Note that
the input power to the motor is electric, given by ! $ I !V,
and the useful output power is mechanical, ! $ %&.

63. A nonconducting sphere has mass 80.0 g and radius
20.0 cm. A flat compact coil of wire with 5 turns is wrapped
tightly around it, with each turn concentric with the
sphere. As shown in Figure P29.63, the sphere is placed on
an inclined plane that slopes downward to the left, making
an angle ' with the horizontal, so that the coil is parallel to
the inclined plane. A uniform magnetic field of 0.350 T
vertically upward exists in the region of the sphere. What
current in the coil will enable the sphere to rest in equilib-
rium on the inclined plane? Show that the result does not
depend on the value of '.

Exit
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Figure P29.59
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θ

B

I
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Figure P29.64

60. Review Problem. A proton is at rest at the plane vertical
boundary of a region containing a uniform vertical mag-
netic field B. An alpha particle moving horizontally makes
a head-on elastic collision with the proton. Immediately
after the collision, both particles enter the magnetic field,
moving perpendicular to the direction of the field. The
radius of the proton’s trajectory is R . Find the radius of the
alpha particle’s trajectory. The mass of the alpha particle is
four times that of the proton, and its charge is twice that of
the proton.

61. The circuit in Figure P29.61 consists of wires at the top
and bottom and identical metal springs in the left and
right sides. The upper portion of the circuit is fixed. The
wire at the bottom has a mass of 10.0 g and is 5.00 cm

64. A metal rod having a mass per unit length ( carries a
current I. The rod hangs from two vertical wires in a
uniform vertical magnetic field as shown in Figure P29.64.
The wires make an angle ' with the vertical when in equi-
librium. Determine the magnitude of the magnetic field.
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*P29.63 The sphere is in translational equilibrium, thus

f Mgs �  sinT 0 . (1)

The sphere is in rotational equilibrium. If torques are taken about the
center of the sphere, the magnetic field produces a clockwise torque of
magnitude P TBsin , and the frictional force a counterclockwise torque
of magnitude f Rs , where R is the radius of the sphere. Thus:

f R Bs �  P Tsin 0 . (2)

From (1): f Mgs  sinT . Substituting this in (2) and canceling out sinT ,
one obtains

PB MgR . (3)
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Figure 6: Problem 6.
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Figure P30.55 Problems 55 and 56.

Figure P30.57 (a) General view of one turn of each saddle coil.
(b) End view of the coils carrying current into the paper on the
left and out of the paper on the right.
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axis through its center, perpendicular to the plane of the
ring. What is the magnitude of the magnetic field on the
axis of the ring 5.00 cm from its center?

A nonconducting ring of radius R is uniformly charged
with a total positive charge q. The ring rotates at a constant
angular speed ! about an axis through its center, perpen-
dicular to the plane of the ring. What is the magnitude of
the magnetic field on the axis of the ring a distance R/2
from its center?

55. Two circular coils of radius R , each with N turns, are
perpendicular to a common axis. The coil centers are a
distance R apart. Each coil carries a steady current I in the
same direction, as shown in Figure P30.55. (a) Show that
the magnetic field on the axis at a distance x from the
center of one coil is

(b) Show that dB/dx and d 2B/dx 2 are both zero at the
point midway between the coils. This means the magnetic
field in the region midway between the coils is uniform.
Coils in this configuration are called Helmholtz coils.

B "
N#0IR 

2

2
 ! 1

(R 
2 $ x 

2)3/2 $
1

(2R 
2 $ x 

2 % 2Rx)3/2 "

54.

58. A very large parallel-plate capacitor carries charge with
uniform charge per unit area $ & on the upper plate and
% & on the lower plate. The plates are horizontal and both
move horizontally with speed v to the right. (a) What
is the magnetic field between the plates? (b) What is
the magnetic field close to the plates but outside of the
capacitor? (c) What is the magnitude and direction of the
magnetic force per unit area on the upper plate? (d) At
what extrapolated speed v will the magnetic force on a
plate balance the electric force on the plate? Calculate this
speed numerically.

59. Two circular loops are parallel, coaxial, and almost in
contact, 1.00 mm apart (Fig. P30.59). Each loop is 10.0 cm
in radius. The top loop carries a clockwise current of
140 A. The bottom loop carries a counterclockwise current
of 140 A. (a) Calculate the magnetic force exerted by the
bottom loop on the top loop. (b) The upper loop has a
mass of 0.021 0 kg. Calculate its acceleration, assuming
that the only forces acting on it are the force in part
(a) and the gravitational force. Suggestion: Think about
how one loop looks to a bug perched on the other loop.

60. What objects experience a force in an electric field?
Chapter 23 gives the answer: any electric charge, stationary
or moving, other than the charge that created the
field. What creates an electric field? Any electric charge,
stationary or moving, as you studied in Chapter 23. What
objects experience a force in a magnetic field? An electric
current or a moving electric charge, other than the
current or charge that created the field, as discussed in
Chapter 29. What creates a magnetic field? An electric
current, as you studied in Section 30.1, or a moving
electric charge, as shown in this problem. (a) To display
how a moving charge creates a magnetic field, consider a
charge q moving with velocity v. Define the vector r " r r̂

56. Two identical, flat, circular coils of wire each have
100 turns and a radius of 0.500 m. The coils are arranged
as a set of Helmholtz coils (see Fig. P30.55), parallel and
with separation 0.500 m. Each coil carries a current of
10.0 A. Determine the magnitude of the magnetic field at
a point on the common axis of the coils and halfway
between them.

57. We have seen that a long solenoid produces a uniform
magnetic field directed along the axis of a cylindrical
region. However, to produce a uniform magnetic field
directed parallel to a diameter of a cylindrical region, one
can use the saddle coils illustrated in Figure P30.57. The
loops are wrapped over a somewhat flattened tube.
Assume the straight sections of wire are very long. The end
view of the tube shows how the windings are applied. The
overall current distribution is the superposition of two
overlapping circular cylinders of uniformly distributed
current, one toward you and one away from you. The
current density J is the same for each cylinder. The
position of the axis of one cylinder is described by a
position vector a relative to the other cylinder. Prove that
the magnetic field inside the hollow tube is #0 Ja/2
downward. Suggestion: The use of vector methods
simplifies the calculation.

140 A

140 A
Figure P30.59

a
a

b

z
>

Figure 7: Problem 7.

 
 
Assume that the magnetic field points in the positive z-direction.  In order to have a 
radially inward force, we require that the velocity of the electron is  

!v = r! f "̂ . Then the 
magnetic force is given by 
 

 
!
Fmag = !e!v "

!
B = !er# f $̂ " Bk̂ = !er# f B r̂ . 

 
Therefore Newton’s Second Law is now 
 

!
ke2

r2
r̂ ! er" f Br̂ = !mr" f

2r̂ . 

 
Using Eq. (1) we can rewrite this as  
 

!mr"0
2r̂ ! er" f Br̂ = !mr" f

2r̂  
or 

0 =! f
2 "

e! f B
m

"!0
2 . 

 
We can solve this quadratic equation for ! f  
 

! f =
eB
2m

±
e2B2

4m2 +!0
2 . 

 
We choose the positive square root to keep ! f > 0 . We now substitute Eq. (2) into the 
above equation yielding 
 

 ! f =
eB
2m

+
e2B2

4m2 +
ke2

mr3
. (3) 

 
Then the change in angular frequency is  
 

 !" =" f #"0 =
eB
2m

+
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mr3
#
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mr3
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Suppose we reverse the direction of the magnetic field as in the figure below. 
 

 
 
Then the magnetic force points outward, 
 

 
!
Fmag = !e!v "

!
B = !er# f $̂ " !Bk̂ = +er# f B r̂ , 

 
 resulting in a smaller angular frequency ! f . 
 
Repeating the analysis we just finished we have that 
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We can solve this quadratic equation for ! f  choosing the positive square root to keep 
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The change in angular frequency is now 
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Figure 8: Problem 8.


