Prof. Anchordoqui

Problems set # 6‘ Physics 169 March 24, 2015

1. Find the current I in the circuit shown Fig. 1.
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Figure 1: Problem 1.

Solution: The equivalent resistance, R, for

49

is R%q = (% + % + % + %) Ol = % Q! therefore, Réq = 2 Q. This is in series with the
1 Q resistor. Hence, RZ, = Rl +1Q = 3 Q. Now, RZ,
= (% + é) Q1 therefore, Rg’q = 1.5 Q The total equivalent resistance of the circuit is

is in parallel with the 3 € resis-
tance, R%,

eq
Req = (1.541) Q@ =2.5 Q From Ohm’s law, V = IR, we get [ = Rleq = % =8 A.

2. In the circuit shown in Fig. 2, the power produced by bulb; and bulbs is 1 kW and 50 W,
respectively. Which light has the higher resistance? (Assume the resitance of the light bulb remains
constant with time.)
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Figure 2: Problem 2.

Solution: The power dissipated by light bulb one and two, respectively, is P, = I?R; = I,V and
Py = I3Ry = V. Thus, we have I, = P/V and I = P,/V. This implies that P, = (£1)° Ry =

2

Ry =Y =10 Q. Likewise Ry = % =200 Q.

3. A regular tetrahedron is a pyramid with a triangular base. Six R = 10.0 (Q resistors are
placed along its six edges, with junctions at its four vertices, as shown in Fig. 3. A 12.0-V battery
is connected to any two of the vertices. Find (i) the equivalent resistance of the tetrahedron be-
tween these vertices and (ii) the current in the battery.

Figure 3: Problem 3.

Solution: (i) First let us flatten the circuit on a 2-D plane as shown in Fig. 4; then reorganize it
to a format easier to read. Note that the voltage Vap = 0 in Fig. 5 and so the middle resistor can
be removed without affecting the circuit. The remaining resistors over the three parallel branches
have equivalent resistance ﬁ = % + ﬁ + ﬁ = % = Req = 5 Q. (ii) The current through the

s AV 120V
battery isn g = 50 = 2.40 A.

4. Find the equivalent resistance in the limit n — oo for the circuits shown in Figs. 6 and 7.

Solution: (i) The equivalent resistance, Req is given as R%q =(1+5+51+5+5) QL
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Figure 5: More on the solution of problem 3.
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Figure 6: Problem 4 (7).
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Figure 7: Problem 4 (7).

The above represents a geometric series with ratio r = % Q=1 The sum of n terms is given by

_ k=n—1 1—p" 1 1 1 -1 _
Sn = k=0 1—r - T—p* HGHCG, Rieq = (q) Q and so Req =

0.5 Q. (ii) The equivalent resistance, Req is given as R%q =(1+3+:+3+24.) Q1 =

In the limit n = o0, Spoeo =

<Z‘;‘;1 7 _1) Q~!. The above represents a harmonic series with infinite sum. Hence Reg = 0.

5. Determine the magnitude and directions of the currents through R; = 22 Q and Ry = 15 Q
in the circuit of Fig. 8. The batteries have an internal resistance of r = 1.2 Q).

Solution: There are three currents involved, and so there must be three independent equations to
determine those three currents. One comes from Kirchhoff’s junction rule applied to the junction
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Figure 8: Problem 5.
of the three branches on the left of the circuit: 47 = i3 + i3. Another equation comes from

Kirchhoff’s loop rule applied to the outer loop, starting at the lower left corner, and progressing
counterclockwise

—ig(12Q)4+6 V—i1(22Q) —i1(1.2 Q) +9 V =0= 15 = 23.2i; + 1.2i5 .

The final equation comes from Kirchhoff’s loop rule applied to the bottom loop, strating at the
lower left corner, and progressing counterclockwise:

—i3(1.2 Q) +6 V+i2(15 Q) =0= 6 = —15i9 + 1.2i3.
Substitute 71 = io + 43 into the loop equation, so that there are two equations with two unknowns
15 = 23.2i1 + 1.2i3 = 23.2(ig + i3) + 1.2i3 = 23.2iy + 24.4i3

and
6 = —1579 + 1.2i3

Solve the bottom loop equation for iy and substitute into the loop equation, resulting in an
equation with only one unknown, which can be solved

64 1.2
6 = — 150y + 1.2i5 = iy — 0+ =3
15
—6+1.2i
15 = 23.2iy + 24.4i5 = 23.2 <J;5Z3> ¥ 24.4i5 = i3 = 363/393.84 = 0.917 A;
—6+1.2i
iy = % — 0.33 A, left.

i1 =19 +1i3 = 0.6 A, left.

6. Determine the magnitude and directions of the currents in each resistor shown in Fig. 9.
The batteries has emfs of 1 = 9 V and 3 = 12 V and the resistors have values of Ry = 25 (),



€1
R,
® AL p—
—
12
)
13
—>

Figure 9: Problem 6.



R2 =18 Q, and R3 =35 Q.

Solution: There are three currents involved, and so there must be three independent equations
to determine those currents. One comes from Kirchhoff’s junction rule applied to the junction on
the three branches on the right of the circuit

1o =11 + 13 = 11 = 19 — 13.

Another equation comes from Kirchhoff’s loop rule applied to the top loop, starting at the negative
terminal of the battery and progressing clockwise

€1 —11R1 —i9Ry = 0=9 = 2517 + 18is.

The final equation comes from Kirchhoff’s loop rule applied to the bottom loop, starting at the

negative terminal of the battery and progressing counterclockwise
€9 —i3R3 — 19Ry = 0 = 12 = 3513 + 18is.
Substitute i; = io — 43 into the loop equation, so that there are two equations with two unknowns:
9 = 2541 + 18iy = 25(ig — i3) + 18ia = 43ia — 25i3

and
12 = 35i3 + 1819 .

Solve the bottom loop equation for io and substitute into the top loop equation, resulting in an
equation with only one unknown, which can be solved

12 — 35
12 = 35ig + 18iy = iy = — 223
18
12 — 35i. 354
9 = 43ig — 25i5 = 43 [ —— 2288} _ 9545 = 162 = 516 — 150503 — 450i3 = i3 = ——— = 0.18 A, up:
18 1955
12— 35i4
iz = 0 = 0.31 A, left

and
i1 =iy —i3 = 0.13 A, right.

7. For the circuit shown in Fig. 10, calculate (i) the current in the 2.00 Q resistor and (ii) the
potential difference between points a and b.

(i) We name the currents i1, i2, and i3 as shown in the figure, and so i; = iz 4 i3. Going coun-
tercolckwise around the loop we get, 12.0 V—2.00 2 i3 —4.00 2 i; = 0. Traversing the bottom loop
we have 8 V—6.00 Q i9+2.00 2 i3 = 0. We can solve these last two equations for i1 and s, yielding
i1 =3.00 A— iz and iy = 3 A+ Lis. This means that i3 = 909 mA. (ii) V, —0.909 A-2.00 Q =V},
then V, — V, = —1.82 V.
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Figure 10: Problem 7.
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Figure 11: Problem 8.

8. Consider the circuit shown in Fig. 11, with the start up switch 77 open (for a long time).
Now, close the switch and wait for a while. What is the change in the total charge of the capacitor?

Solution: While the switch remains open the charge in the capacitor is ¢; = VoC. If we closed

the switch and wait for a while we have Vj + IR1 + IRy — Vo =0 and so [ = 1‘%/?4:?2 . The voltage

across the capacitor is Vo = Vi + IRy = Vi + ( 1‘{?;}%) R;. Hence, the change in the charge is
Aq —C (‘/1 — Vo + Vo—V3 Rl)

Ri+R2
9. The circuit in Fig. 12 has been connected for a long time. (i) What is the voltage across the

capacitor? (i) If the battery is disconnected, how long does it take the capacitor to discharge to
one tenth of its initial voltage?

Solution (i) Call the potential at the left junction V7, and at the right Vg. After a “long” time,
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Figure 12: Problem 9.

the capacitor is fully charged. Vi = 8.00 V because of voltage divider: I = 150"(')09\/ = 2.00 A,
V, =100 V—2.00 A 1.00 @ = 800 V. Likewise, Vi = 3g5ssynl0.0 V. = 2.00 V, or
Ip = 188 % = 1.00 A, Vg = 10.0 V—8.00 Q 1.00 A = 2.00 V. Therefore AV = V, — Vi =
8.00 — 2.00 = 6.00 V. (i) Redraw the circuit R = m = 3.60 2, so RC =3.60 x 1070 5

and e~ t/RC = %, sot=RCInl10 =8.29 us.

10. Find the voltage across A and B (i.e. V4p) as a function of time in the circuit shown in
Fig. 13

s
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Figure 13: Problem 10.

Solution It is easily seen that for an RC' circuit V(t) = Vj |1 — exp _ﬁ)] , where for the
case at hand Cioy = C' 4+ C/2 = 3C//2. Therefore, V(t) = V) [1 — exp (—3%0)]

11. The switch in Fig. 14(a) closes when AV, > 2AV/3 and opens when AV, < AV/3. The
voltmeter reads a voltage as plotted in Fig. 14(b). What is the period T of the waveform in terms
of R1, Rg, and C?



Solution Start at the point when the voltage has just reached %AV and the switch has just
closed. The voltage is %AV and is decaying towards zero V with a time constant RoC, AV (t) =
%AVe_t/(RQC). We want to know when AVe(t) will reach $AV. Therefore, AV = %AVe_t/(RQC),
or e t/(F20) — %, or t; = ReC'In2. After the switch opens, the voltage is %AV, increasing toward
AV with time constant (R;+R2)C, hence AVp(t) = AV —2AV e H/E+E)C) For AVe(t) = 2AV,
we have %AV =AV — %AVe_t/[(R1+R2)C], or e t/[(B1+R)C] — % Therefore, to = (R; + R2)C'In2

and T =t + 1ty = (Rl + 2R2)Clﬂ2

12. This problem illustrates how a digital voltmeter affects the voltage across a capacitor in
an RC' circuit. A digital voltmeter of internal resistance r is used to measure the voltage across
a capacitor after the switch in Fig. 15 is closed. Because the meter has finite resistance, part of
the current supplied by the battery passes through the meter. (i) Apply Kirchhoff’s rules to this
circuit, and use the fact that ic = dg/dt to show that this leads to the differential equation

dq q r

Rey— + = =
th+0 r+ R

where Roq = rR/(r + R). (i) Show that the solution to this differential equation is

CE ( —t/(Reqc>>

1= r—i—R

and that the voltage across the capacitor as a function of time is

T_g(1 = e t/FeaC)),

V p—
© r+ R

(#ii) If the capacitor is fully charged, and the switch is then opened, how does the voltage across
the capacitor behave in this case?

Solution Let i represent the current in the battery and i, the current charging the capacitor.

Then ¢ —1. is the current in the voltmeter. The loop rule applied to the inner loop is E—iR—% =0.
The loop rule for the outer perimeter is € — iR — (i — i.)r = 0. With ic = dt’ this becomes
E—iR—ir + Tir = 0. Between the two loop equations we eliminate i = % — == by substitution to

obtain & — (R + r) (ﬁ —2=)+ dqr = 0. Rearranging terms &£ — R+’"€ + R+Tq + i =0, or equiv-
E+ &+ Br d9 _ () This is the differential equation required. (%) To solve we follow

alently —

R+r R-+r dt
the same steps as on the lecture: % = § — f;:rch f;:rc’l (q — gﬁ), integration foq H%;I(RH) =
q g —&rC/(R+ .
gjc'l o dt leads to In ( fgfr) ‘0 = — dt|,s yielding In [%/((Rwr))} = — L&t or equiva-
lently ¢ — ]g%:_(;: = —%e[_(R+r)/(RTC)} . Rearranging terms q = e_t/(ReqC)), where
Req = R}‘i’ﬂ. The voltage across the capacitor is Vc =& =151~ et/ (Bea®)) - (Gij) As t — oo
the capacitor voltage approaches ;75¢& (1-0) =~ = R If the switch is then opened the capacitor

discharges through the voltmeter. Its voltage decays exponentially according to Re —t/(rC),

13. When two slabs of n-type and p-type semiconductors are put in contact, the relative affinities
of the materials cause electrons to migrate out of the n-type material across the junction to the
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Figure 14: Problem 11.
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Figure 15: Problem 12.

p-type material. This leaves behind a volume in the n-type material that is positively charged and
creates a negatively charged volume in the p-type material. Let us model this as two infinite slabs
of charge, both of thickness a with the junction lying on the plane z = 0. The n-type material lies
in the range 0 < z < a and has uniform charge density +pg. The adjacent p-type material lies in
the range —a < z < 0 and has uniform charge density —pg; see Fig. 16. Hence:

+p0 0<z<a

plx,y,z) =p(z) =9 —pg —a<z<0
0 |z| > a

(i) Find the electric field everywhere. (i) Find the potential difference between the points P; and
P,. The point P; is located on a plane parallel to the slab a distance z; > a from the center of the
slab. The point P» is located on plane parallel to the slab a distance zo < —a from the center of
the slab.

Solution In this problem, the electric field is a superposition of two slabs of opposite charge
density. Outside both slabs, the field of a positive slab Ep (due to the p-type semi-conductor ) is
constant and points away and the field of a negative slab E N (due to the n-type semi-conductor)
is also constant and points towards the slab, so when we add both contributions we find that
the electric field is zero outside the slabs. The fields Ep and EN are shown on Fig. 17. The
superposition of these fields Er is shown on the top line in the figure. The electric field can be
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Figure 16: Problem 13.

described by

0 Z< —a
Fr() = E:Q —a<z<0

E; 0<z<a

0 z2>a

We shall now calculate the electric field in each region using Gauss law: For region —a < z < 0, the
Gaussian surface is shown on the left hand side of Fig 17. Notice that the field is zero outside. Gauss
law states that $uiosed E-dA = Q%(;‘“. So for our choice of Gaussian surface, on the cap inside the slab

surface
the unit normal for the area vector points in the positive z-direction, thus 7 = +k. Consequently the
dot product becomes Ey-RdA = Es .k-kdA = E, ,dA. Therefore the flux is $uosea E-dA = Es . Acap-

surface
Qe

The charge enclosed is e =

_ poAcap(atz)

2 where the length of the Gaussian cylinder is a + z since

z < 0. Substituting these two results into Gauss law yields Eo ,Acap = _ p0Acap(aF2) - Honce the

€
_ po(atz)
€

field point in the —z-direction so the electric field is Ey = —%O“)l%. Note that when z = —a then

Eg = 0 and when z = 0, _E_jQ = —%‘112:. We make a similar calculation for the electric field in the

electric field in the n-type is given by Es , = . The negative sign means that the electric

p-type noting that the charge density has changed sign and the expression for the length of the
Gaussian cylinder is a — z since z > 0. Also the unit normal now points in the negative z-direction.
So the dot product becomes El -ndA = ELZ(—/%) kdA = —F4 .dA. Thus the Gauss law becomes
—FE1,Acap = ’)OA%O(‘I_Z). So the electric field is Fy , = —%sz). The vector description is then
El = —%O_Z)I%. Note that when z = a then El =0 and when z = 0, El = —%‘ll%. So the resulting
field is

0 2 < —a
E . EQ = _PO(?O'FZ)]% —a<z<0
r(z) = E'lz—po(afz)l% 0<z<a
€0
0 zZ>a

The graph of the electric field is shown in Fig. 17. (i) The electric potential difference is given by the
integral V(Pp)—V(P) = — [ g 2 Ep-dr. We first break this line integral into four pieces covering each

region V(z2) =V (z1) = — ( [0 By di+ [0 Ep-di + [P Ep - dit+ [ Ep - dF). Since the

z=z1
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Figure 17: Solution of problem 13.
fields are zero outside the slab, the only non-zero pieces are V(z2) — V(z1) = =0 ET dr’ —
“==% Er-dF. We now use our explicit result for the electric field in each region and that di = dzk,
V(zg) “ V(o) = = ([ Brah - ek + [0 Bach - dek) = [72) po2dz + [ potidz. We
z=0 z=—a
now calculate the two integrals V' (z2) — V' (z1) = po(w%oﬁm + %022/2) . = _%;(12/2 +
zZ=a zZ=
pol(= a)a:g( /2] _ _p 0(0’2/ 2 _» O(Z’j/ 2 = pg;’Q. The potential difference is negative because we

are moving along the dlrectlon of the field. So the type pn-semiconductor slab established a small
potential difference across the slab.



