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Problems set # 6 Physics 169 March 24, 2015

1. Find the current I in the circuit shown Fig. 1.
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Figure 1: Problem 1.

Solution: The equivalent resistance, R1
eq for

4 Ω

8 Ω

16 Ω

16 Ω

is 1
R1

eq
=
(

1
4 + 1

8 + 1
16 + 1

16

)
Ω−1 = 1

2 Ω−1 ; therefore, R1
eq = 2 Ω. This is in series with the

1 Ω resistor. Hence, R2
eq = R1

eq + 1 Ω = 3 Ω. Now, R2
eq is in parallel with the 3 Ω resis-

tance, 1
R3

eq
=
(

1
3 + 1

3

)
Ω−1 ; therefore, R3

eq = 1.5 Ω The total equivalent resistance of the circuit is

Req = (1.5 + 1) Ω = 2.5 Ω From Ohm’s law, V = IR, we get I = V
Req

= 20 V
2.5 Ω = 8 A.

2. In the circuit shown in Fig. 2, the power produced by bulb1 and bulb2 is 1 kW and 50 W,

respectively. Which light has the higher resistance? (Assume the resitance of the light bulb remains

constant with time.)



100 V i1 i2

bulb1 bulb2

Figure 2: Problem 2.

Solution: The power dissipated by light bulb one and two, respectively, is P1 = I2
1R1 = I1V and

P2 = I2
2R2 = I2V . Thus, we have I1 = P1/V and I2 = P2/V . This implies that P1 =

(
P1
V

)2
R1 ⇒

R1 = V 2

P1
= 10 Ω. Likewise R2 = V 2

P2
= 200 Ω.

3. A regular tetrahedron is a pyramid with a triangular base. Six R = 10.0 Ω resistors are

placed along its six edges, with junctions at its four vertices, as shown in Fig. 3. A 12.0-V battery

is connected to any two of the vertices. Find (i) the equivalent resistance of the tetrahedron be-

tween these vertices and (ii) the current in the battery.
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Figure 3: Problem 3.

Solution: (i) First let us flatten the circuit on a 2-D plane as shown in Fig. 4; then reorganize it

to a format easier to read. Note that the voltage VAB = 0 in Fig. 5 and so the middle resistor can

be removed without affecting the circuit. The remaining resistors over the three parallel branches

have equivalent resistance 1
Rtot

= 1
R + 1

2R + 1
2R = 2

R ⇒ Req = 5 Ω. (ii) The current through the

battery isn ∆V
Req

= 12.0 V
5 Ω = 2.40 A.

4. Find the equivalent resistance in the limit n→∞ for the circuits shown in Figs. 6 and 7.

Solution: (i) The equivalent resistance, Req is given as 1
Req

=
(
1 + 1

2 + 1
4 + 1

8 + · · · 1
2n

)
Ω−1 .
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(c) When the switch is opened, the branch containing R
1

is no longer part of the circuit. The capacitor discharges

through R R
2 3
�b g with a time constant of

R R C
2 3

15 0 3 00 10 0 0 180�  �  b g a fb g. . . . k  k  F  s: : P . The

initial current Ii  in this discharge circuit is determined

by the initial potential difference across the capacitor

applied to R R
2 3
�b g in series:
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FIG. P28.71(c)

Thus, when the switch is opened, the current through R
2

 changes instantaneously from

333 AP  (downward) to 278 AP  (downward) as shown in the graph. Thereafter, it decays

according to

I I e e tR i
t R R C t

2

2 3
278 0

0 180  !� � �b g a fb g a f A  for 
 sP .

.

(d) The charge q on the capacitor decays from Qi  to 
Qi

5
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*P28.72 (a) First let us flatten the circuit on a 2-D plane

as shown; then reorganize it to a format

easier to read. Notice that the five resistors

on the top are in the same connection as

those in Example 28.5; the same argument

tells us that the middle resistor can be

removed without affecting the circuit. The

remaining resistors over the three parallel

branches have equivalent resistance

Req  � �F
HG
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(b) So the current through the battery is
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FIG. P28.72(a)Figure 4: Solution of problem 3.
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Figure 5: More on the solution of problem 3.
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Figure 6: Problem 4 (i).
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Figure 7: Problem 4 (ii).

The above represents a geometric series with ratio r = 1
2 Ω−1. The sum of n terms is given by

Sn =
∑k=n−1

k=0
1−rn
1−r . In the limit n → ∞, Sn→∞ = 1

1−r . Hence, 1
Req

=
(

1
1− 1

2

)
Ω−1 and so Req =

0.5 Ω. (ii) The equivalent resistance, Req is given as 1
Req

=
(
1 + 1

2 + 1
3 + 1

4 + · · · 1
n + · · ·

)
Ω−1 =(∑∞

j=1 j
−1
)

Ω−1. The above represents a harmonic series with infinite sum. Hence Req = 0.

5. Determine the magnitude and directions of the currents through R1 = 22 Ω and R2 = 15 Ω

in the circuit of Fig. 8. The batteries have an internal resistance of r = 1.2 Ω.

Solution: There are three currents involved, and so there must be three independent equations to

determine those three currents. One comes from Kirchhoff’s junction rule applied to the junction
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28. There are three currents involved, and so there must be three independent equations to determine 

those three currents.  One comes from Kirchhoff’s junction rule applied to the junction of the three 
branches on the left of the circuit. 

1 2 3I I I

 
Another equation comes from Kirchhoff’s loop rule applied to 
the outer loop, starting at the lower left corner, and 
progressing counterclockwise.   

3 1 1

1 3

1.2 6.0V 22 1.2 9.0V 0  

15 23.2 1.2

I I I

I I

 

The final equation comes from Kirchhoff’s loop rule applied 
to the bottom loop, starting at the lower left corner, and 
progressing counterclockwise.   

3 2 2 31.2 6.0V 15 0    6 15 1.2I I I I

  

Substitute 1 2 3I I I  into the top loop equation, so that there are two equations with two unknowns.   

1 3 2 3 3 2 3 2 315 23.2 1.2 23.2 1.2 23.2 24.4  ;  6 15 1.2I I I I I I I I I

  

Solve the bottom loop equation for 2I  and substitute into the top loop equation, resulting in an 
equation with only one unknown, which can be solved.   

3
2 3 2

3
2 3 3 3 3

3
3 2

1 2 3

6 1.2
6 15 1.2    

15
6 1.2

15 23.2 24.4 23.2 24.4    225 138 27.84 366  
15

6 1.2 0.92176 1.2363
0.9217 A  ;  0.3263A 0.33 A , left

393.84 15 15
0.5954 A 0.

I
I I I

I
I I I I I

I
I I

I I I 60 A , left  

29. There are three currents involved, and so there must be three independent 
equations to determine those three currents.  One comes from Kirchhoff’s 
junction rule applied to the junction of the three branches on the right of 
the circuit. 

2 1 3 1 2 3

    

I I I I I I

 

Another equation comes from Kirchhoff’s loop rule applied to the top loop, 
starting at the negative terminal of the battery and progressing clockwise.   

1 1 1 2 2 1 20    9 25 18E I R I R I I

 

The final equation comes from Kirchhoff’s loop rule applied to the bottom 
loop, starting at the negative terminal of the battery and progressing 
counterclockwise.   

2 3 3 2 2 3 20    12 35 18E I R I R I I

  

Substitute 1 2 3I I I  into the top loop equation, so that there are two equations with two unknowns.   

1 2 2 3 2 2 3 3 29 25 18 25 18 43 25  ;  12 35 18I I I I I I I I I

  

Solve the bottom loop equation for 2I  and substitute into the top loop equation, resulting in an 
equation with only one unknown, which can be solved. 
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Figure 8: Problem 5.

of the three branches on the left of the circuit: i1 = i2 + i3. Another equation comes from

Kirchhoff’s loop rule applied to the outer loop, starting at the lower left corner, and progressing

counterclockwise

−i3(1.2 Ω) + 6 V − i1(22 Ω)− i1(1.2 Ω) + 9 V = 0⇒ 15 = 23.2i1 + 1.2i3 .

The final equation comes from Kirchhoff’s loop rule applied to the bottom loop, strating at the

lower left corner, and progressing counterclockwise:

−i3(1.2 Ω) + 6 V + i2(15 Ω) = 0⇒ 6 = −15i2 + 1.2i3 .

Substitute i1 = i2 + i3 into the loop equation, so that there are two equations with two unknowns

15 = 23.2i1 + 1.2i3 = 23.2(i2 + i3) + 1.2i3 = 23.2i2 + 24.4i3

and

6 = −15i2 + 1.2i3

. Solve the bottom loop equation for i2 and substitute into the loop equation, resulting in an

equation with only one unknown, which can be solved

6 = −15i2 + 1.2i3 ⇒ i2 =
−6 + 1.2i3

15

15 = 23.2i2 + 24.4i3 = 23.2

(
−6 + 1.2i3

15

)
+ 24.4i3 ⇒ i3 = 363/393.84 = 0.917 A;

i2 =
−6 + 1.2i3

15
= −0.33 A, left.

i1 = i2 + i3 = 0.6 A, left.

6. Determine the magnitude and directions of the currents in each resistor shown in Fig. 9.

The batteries has emfs of ε1 = 9 V and ε2 = 12 V and the resistors have values of R1 = 25 Ω,
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junction rule applied to the junction of the three branches on the right of 
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Another equation comes from Kirchhoff’s loop rule applied to the top loop, 
starting at the negative terminal of the battery and progressing clockwise.   
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The final equation comes from Kirchhoff’s loop rule applied to the bottom 
loop, starting at the negative terminal of the battery and progressing 
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Substitute 1 2 3I I I  into the top loop equation, so that there are two equations with two unknowns.   
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Figure 9: Problem 6.



R2 = 18 Ω, and R3 = 35 Ω.

Solution: There are three currents involved, and so there must be three independent equations

to determine those currents. One comes from Kirchhoff’s junction rule applied to the junction on

the three branches on the right of the circuit

i2 = i1 + i3 ⇒ i1 = i2 − i3.

Another equation comes from Kirchhoff’s loop rule applied to the top loop, starting at the negative

terminal of the battery and progressing clockwise

ε1 − i1R1 − i2R2 = 0⇒ 9 = 25i1 + 18i2.

The final equation comes from Kirchhoff’s loop rule applied to the bottom loop, starting at the

negative terminal of the battery and progressing counterclockwise

ε2 − i3R3 − i2R2 = 0⇒ 12 = 35i3 + 18i2 .

Substitute i1 = i2 − i3 into the loop equation, so that there are two equations with two unknowns:

9 = 25i1 + 18i2 = 25(i2 − i3) + 18i2 = 43i2 − 25i3

and

12 = 35i3 + 18i2 .

Solve the bottom loop equation for i2 and substitute into the top loop equation, resulting in an

equation with only one unknown, which can be solved

12 = 35i3 + 18i2 ⇒ i2 =
12− 35i3

18

9 = 43i2−25i3 = 43

(
12− 35i3

18

)
−25i3 ⇒ 162 = 516−1505i3−450i3 ⇒ i3 =

354

1955
= 0.18 A, up ;

i2 =
12− 35i3

18
= 0.31 A, left

and

i1 = i2 − i3 = 0.13 A, right.

7. For the circuit shown in Fig. 10, calculate (i) the current in the 2.00 Ω resistor and (ii) the

potential difference between points a and b.

(i) We name the currents i1, i2, and i3 as shown in the figure, and so i1 = i2 + i3. Going coun-

tercolckwise around the loop we get, 12.0 V−2.00 Ω i3−4.00 Ω i1 = 0. Traversing the bottom loop

we have 8 V−6.00 Ω i2 +2.00 Ω i3 = 0. We can solve these last two equations for i1 and i2, yielding

i1 = 3.00 A− 1
2 i3 and i2 = 4

3 A+ 1
3 i3. This means that i3 = 909 mA. (ii) Va−0.909 A ·2.00 Ω = Vb,

then Vb − Va = −1.82 V.
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P28.27 Using Kirchhoff’s rules,

12 0 0 010 0 0 060 0 0

10 0 1 00 0 060 0
1 3

2 3

. . .

. . .

� �  

� �  

b g b g
a f a f

I I

I I 0

and I I I1 2 3 �

12 0 0 010 0 070 0

10 0 1 00 0 060 0 0
2 3

2 3

. . .

. . .

� �  

� �  

 0  0a f a f
a f b g

I I

I I FIG. P28.27

Solving simultaneously,

I2 0 283 .  A downward  in the dead battery

and I3 171  A downward  in the starter.

The currents are forward in the live battery and in the starter, relative to normal starting operation.
The current is backward in the dead battery, tending to charge it up.

P28.28 '

'

'

V I I I

V I I I I I

V I I I I I

ab

ab

ab

 � �

 � � � �

 � � � �

1 00 1 00

1 00 1 00 5 00

3 00 5 00

1 1 2

1 2 1 2

1 1 2

. .

. . .

. .

a f a fb g
a f a f a fb g
a fb g a fb g

Let I  1 00.  A , I x1  , and I y2  .

Then, the three equations become:

'V x yab  �2 00. , or y x Vab �2 00. '

'V x yab  � � �4 00 6 00 5 00. . .

and 'V x yab  � �8 00 8 00 5 00. . . .

Substituting the first into the last two gives:

7 00 8 00 5 00. . .'V xab  �  and 6 00 2 00 8 00. . .'V xab  � .

Solving these simultaneously yields 'Vab  
27
17

 V .

Then, R
V
Iab
ab  

' 27
17  V

1.00 A
or Rab  

27
17

 : .

FIG. P28.28

P28.29 We name the currents I1 , I2 , and I3  as shown.

(a) I I I1 2 3 �

Counterclockwise around the top loop,

12 0 2 00 4 00 03 1. . . V   � �  : :a f a fI I .

Traversing the bottom loop,

8 00 6 00 2 00 02 3. . . V   � �  : :a f a fI I

I I1 33 00
1
2

 �. , I I2 3
4
3

1
3

 � , and I3 909  mA .

(b) V Va b�  0 909 2 00. . A  a fa f:
V Vb a�  �1 82.  V

FIG. P28.29Figure 10: Problem 7.
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T1

CVC

V2

R2

Figure 11: Problem 8.

8. Consider the circuit shown in Fig. 11, with the start up switch T1 open (for a long time).

Now, close the switch and wait for a while. What is the change in the total charge of the capacitor?

Solution: While the switch remains open the charge in the capacitor is qi = V2C. If we closed

the switch and wait for a while we have V1 + IR1 + IR2 − V2 = 0 and so I = V2−V1
R1+R2

. The voltage

across the capacitor is VC = V1 + IR1 = V1 +
(
V2−V1
R1+R2

)
R1. Hence, the change in the charge is

∆q = C
(
V1 − V2 + V2−V1

R1+R2
R1

)
.

9. The circuit in Fig. 12 has been connected for a long time. (i) What is the voltage across the

capacitor? (ii) If the battery is disconnected, how long does it take the capacitor to discharge to

one tenth of its initial voltage?

Solution (i) Call the potential at the left junction VL and at the right VR. After a “long” time,
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The circuit in Figure P28.37 has been connected for a long
time. (a) What is the voltage across the capacitor? (b) If the
battery is disconnected, how long does it take the capacitor
to discharge to one tenth of its initial voltage?

37. Section 28.5 Electrical Meters
Assume that a galvanometer has an internal resistance of
60.0 ! and requires a current of 0.500 mA to produce full-
scale deflection. What resistance must be connected in
parallel with the galvanometer if the combination is to
serve as an ammeter that has a full-scale deflection for
a current of 0.100 A?

42. A typical galvanometer, which requires a current of
1.50 mA for full-scale deflection and has a resistance of
75.0 !, may be used to measure currents of much greater
values. To enable an operator to measure large currents
without damage to the galvanometer, a relatively small
shunt resistor is wired in parallel with the galvanometer,
as suggested in Figure 28.27. Most of the current then
goes through the shunt resistor. Calculate the value of the
shunt resistor that allows the galvanometer to be used to
measure a current of 1.00 A at full-scale deflection.
(Suggestion: use Kirchhoff’s rules.)

The same galvanometer described in the previous problem
may be used to measure voltages. In this case a large resis-
tor is wired in series with the galvanometer, as suggested in
Figure 28.29. The effect is to limit the current in the
galvanometer when large voltages are applied. Most of the
potential drop occurs across the resistor placed in series.
Calculate the value of the resistor that allows the
galvanometer to measure an applied voltage of 25.0 V at
full-scale deflection.

44. Meter loading. Work this problem to five-digit precision.
Refer to Figure P28.44. (a) When a 180.00-! resistor is
connected across a battery of emf 6.000 0 V and internal
resistance 20.000 !, what is the current in the resistor?
What is the potential difference across it? (b) Suppose
now an ammeter of resistance 0.500 00 ! and a voltmeter
of resistance 20 000 ! are added to the circuit as shown in
Figure P28.44b. Find the reading of each. (c) What If?
Now one terminal of one wire is moved, as shown in
Figure P28.44c. Find the new meter readings.

45. Design a multirange ammeter capable of full-scale deflec-
tion for 25.0 mA, 50.0 mA, and 100 mA. Assume the meter
movement is a galvanometer that has a resistance of
25.0 ! and gives a full-scale deflection for 1.00 mA.

46. Design a multirange voltmeter capable of full-scale
deflection for 20.0 V, 50.0 V, and 100 V. Assume the
meter movement is a galvanometer that has a resistance
of 60.0 ! and gives a full-scale deflection for a current of
1.00 mA.

43.

41.

10.0 V

1.00 Ω 8.00 Ω

2.00 Ω4.00 Ω

1.00 µFµ

Figure P28.37

(a)
180.00 Ω

20.000 Ω
6.000 0 V

(b)

AV

(c)

AV

Figure P28.44

38. In places such as a hospital operating room and a factory
for electronic circuit boards, electric sparks must be
avoided. A person standing on a grounded floor and
touching nothing else can typically have a body capaci-
tance of 150 pF, in parallel with a foot capacitance of
80.0 pF produced by the dielectric soles of his or her
shoes. The person acquires static electric charge from
interactions with furniture, clothing, equipment, packag-
ing materials, and essentially everything else. The static
charge is conducted to ground through the equivalent
resistance of the two shoe soles in parallel with each other.
A pair of rubber-soled street shoes can present an equiva-
lent resistance of 5 000 M!. A pair of shoes with special
static-dissipative soles can have an equivalent resistance of
1.00 M!. Consider the person’s body and shoes as
forming an RC circuit with the ground. (a) How long does
it take the rubber-soled shoes to reduce a 3 000-V static
charge to 100 V? (b) How long does it take the static-
dissipative shoes to do the same thing?

39. A 4.00-M! resistor and a 3.00-"F capacitor are connected
in series with a 12.0-V power supply. (a) What is the time
constant for the circuit? (b) Express the current in the
circuit and the charge on the capacitor as functions of
time.

40. Dielectric materials used in the manufacture of capacitors
are characterized by conductivities that are small but not
zero. Therefore, a charged capacitor slowly loses its charge
by “leaking” across the dielectric. If a capacitor having
capacitance C leaks charge such that the potential differ-
ence has decreased to half its initial (t # 0) value at a time
t, what is the equivalent resistance of the dielectric?

Figure 12: Problem 9.

the capacitor is fully charged. VL = 8.00 V because of voltage divider: IL = 10..0 V
5.0 Ω = 2.00 A,

VL = 10.0 V − 2.00 A 1.00 Ω = 8.00 V. Likewise, VR = 2.00 Ω
2.00 Ω+8.00 Ω10.0 V = 2.00 V, or

IR = 10.0 V
10.0 Ω = 1.00 A, VR = 10.0 V − 8.00 Ω 1.00 A = 2.00 V. Therefore ∆V = VL − VR =

8.00 − 2.00 = 6.00 V. (ii) Redraw the circuit R = 1
1/9 Ω+1/6 Ω = 3.60 Ω, so RC = 3.60 × 10−6 s

and e−t/RC = 1
10 , so t = RC ln 10 = 8.29 µs.

10. Find the voltage across A and B (i.e. VAB) as a function of time in the circuit shown in

Fig. 13

V0

R

C

C

C

A

B

Figure 13: Problem 10.

Solution It is easily seen that for an RC circuit V (t) = V0

[
1− exp

(
− t
RCtot

)]
, where for the

case at hand Ctot = C + C/2 = 3C/2. Therefore, V (t) = V0

[
1− exp

(
− 2t

3RC

)]
.

11. The switch in Fig. 14(a) closes when ∆Vc > 2∆V/3 and opens when ∆Vc < ∆V/3. The

voltmeter reads a voltage as plotted in Fig. 14(b). What is the period T of the waveform in terms

of R1, R2, and C?



Solution Start at the point when the voltage has just reached 2
3∆V and the switch has just

closed. The voltage is 2
3∆V and is decaying towards zero V with a time constant R2C, ∆VC(t) =

2
3∆V e−t/(R2C). We want to know when ∆VC(t) will reach 1

3∆V . Therefore, 1
3∆V = 2

3∆V e−t/(R2C),

or e−t/(R2C) = 1
2 , or t1 = R2C ln 2. After the switch opens, the voltage is 1

3∆V , increasing toward

∆V with time constant (R1+R2)C, hence ∆VC(t) = ∆V − 2
3∆V e−t/[(R1+R2)C]. For ∆VC(t) = 2

3∆V ,

we have 2
3∆V = ∆V − 2

3∆V e−t/[(R1+R2)C], or e−t/[(R1+R2)C] = 1
2 . Therefore, t2 = (R1 + R2)C ln 2

and T = t1 + t2 = (R1 + 2R2)C ln 2.

12. This problem illustrates how a digital voltmeter affects the voltage across a capacitor in

an RC circuit. A digital voltmeter of internal resistance r is used to measure the voltage across

a capacitor after the switch in Fig. 15 is closed. Because the meter has finite resistance, part of

the current supplied by the battery passes through the meter. (i) Apply Kirchhoff’s rules to this

circuit, and use the fact that iC = dq/dt to show that this leads to the differential equation

Req
dq

dt
+
q

C
=

r

r +R
E ,

where Req = rR/(r +R). (ii) Show that the solution to this differential equation is

q =
r

r +R
CE
(

1− e−t/(ReqC)
)

and that the voltage across the capacitor as a function of time is

VC =
r

r +R
E(1− e−t/(ReqC)).

(iii) If the capacitor is fully charged, and the switch is then opened, how does the voltage across

the capacitor behave in this case?

Solution Let i represent the current in the battery and ic the current charging the capacitor.

Then i−ic is the current in the voltmeter. The loop rule applied to the inner loop is E−iR− q
C = 0.

The loop rule for the outer perimeter is E − iR − (i − ic)r = 0. With ic = dq
dt , this becomes

E − iR− ir+ dq
dt r = 0. Between the two loop equations we eliminate i = E

R −
q
RC by substitution to

obtain E − (R+ r)
( E
R −

q
RC

)
+ dq

dt r = 0. Rearranging terms E − R+r
R E + R+r

RC q + dq
dt r = 0, or equiv-

alently − r
R+rE + q

C + Rr
R+r

dq
dt = 0. This is the differential equation required. (ii) To solve we follow

the same steps as on the lecture: dq
dt = E

R −
R+r
RrC q = −R+r

RrC

(
q − ErCR+r

)
; integration

∫ q
0

dq
q−ErC/(R+r) =

−R+r
RrC

∫ t
0 dt leads to ln

(
q − ErCR+r

)∣∣∣q
0

= − R+r
RrC t

∣∣t
0
, yielding ln

[
q−ErC/(R+r)
−ErC/(R+r)

]
= −R+r

RrC t, or equiva-

lently q − ErC
R+r = − ErCR+re

[−(R+r)/(RrC)]t. Rearranging terms q = r
r+RCE

(
1− e−t/(ReqC)

)
, where

Req = Rr
R+r . The voltage across the capacitor is VC = q

C = r
r+RE

(
1− e−t/(ReqC)

)
. (iii) As t → ∞

the capacitor voltage approaches r
r+RE(1 − 0) = rE

r+R . If the switch is then opened, the capacitor

discharges through the voltmeter. Its voltage decays exponentially according to rE
r+Re

−t/(rC).

13. When two slabs of n-type and p-type semiconductors are put in contact, the relative affinities

of the materials cause electrons to migrate out of the n-type material across the junction to the
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!p is delivered when the resistors are connected in paral-
lel. Determine the values of the two resistors.

61. A power supply has an open-circuit voltage of 40.0 V and
an internal resistance of 2.00 !. It is used to charge two
storage batteries connected in series, each having an emf
of 6.00 V and internal resistance of 0.300 !. If the
charging current is to be 4.00 A, (a) what additional
resistance should be added in series? (b) At what rate does
the internal energy increase in the supply, in the batteries,
and in the added series resistance? (c) At what rate does
the chemical energy increase in the batteries?

62. Two resistors R1 and R2 are in parallel with each other.
Together they carry total current I. (a) Determine the
current in each resistor. (b) Prove that this division of the
total current I between the two resistors results in less
power delivered to the combination than any other
division. It is a general principle that current in a direct
current circuit distributes itself so that the total power delivered to
the circuit is a minimum.

The value of a resistor R is to be determined using the
ammeter–voltmeter setup shown in Figure P28.63. The
ammeter has a resistance of 0.500 !, and the voltmeter has
a resistance of 20 000 !. Within what range of actual
values of R will the measured values be correct to within
5.00% if the measurement is made using the circuit shown
in (a) Figure P28.63a and (b) Figure P28.63b?

63.
Three 60.0-W, 120-V lightbulbs are connected across a
120-V power source, as shown in Figure P28.67. Find
(a) the total power delivered to the three bulbs and
(b) the voltage across each. Assume that the resistance of
each bulb is constant (even though in reality the resis-
tance might increase markedly with current).

67.

69. Four resistors are connected in parallel across a 9.20-V
battery. They carry currents of 150 mA, 45.0 mA,
14.00 mA, and 4.00 mA. (a) If the resistor with the largest
resistance is replaced with one having twice the resis-
tance, what is the ratio of the new current in the battery

(a)

V

R
A

V

A
R

(b)

Figure P28.63

R1

120 V R2 R3

Figure P28.67

C1

R2

R1

C2

S

Figure P28.68

∆V
3

2∆V
3

Voltage–
controlled
switch

(a)

∆V

R1

R2

T

∆Vc(t)

∆V

t
(b)

C ∆VcV

Figure P28.66

68. Switch S has been closed for a long time, and the electric
circuit shown in Figure P28.68 carries a constant current.
Take C1 " 3.00 #F, C2 " 6.00 #F, R1 " 4.00 k!, and
R2 " 7.00 k!. The power delivered to R2 is 2.40 W.
(a) Find the charge on C1. (b) Now the switch is opened.
After many milliseconds, by how much has the charge on
C2 changed?

64. A battery is used to charge a capacitor through a resistor,
as shown in Figure 28.19. Show that half the energy sup-
plied by the battery appears as internal energy in the resis-
tor and that half is stored in the capacitor.

The values of the components in a simple series RC circuit
containing a switch (Fig. 28.19) are C " 1.00 #F, R " 2.00 $
106 !, and " 10.0 V. At the instant 10.0 s after the switch
is closed, calculate (a) the charge on the capacitor, (b) the
current in the resistor, (c) the rate at which energy is being
stored in the capacitor, and (d) the rate at which energy is
being delivered by the battery.

66. The switch in Figure P28.66a closes when %Vc & 2 %V/3
and opens when %Vc ' %V/3. The voltmeter reads a
voltage as plotted in Figure P28.66b. What is the period T
of the waveform in terms of R1, R2, and C ?

(

65.

Figure 14: Problem 11.
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6 After Joseph Priest, "Meter Resistance: Don't Forget It!" The Physics
Teacher, January 2003, p. 40.

points A and C. (a) Derive an equation for Rx in terms of
the observable resistances, R1 and R2. (b) A satisfactory
ground resistance would be Rx ! 2.00 ". Is the grounding
of the station adequate if measurements give R1 # 13.0 "
and R2 # 6.00 "?

75. The circuit in Figure P28.75 contains two resistors,
R1 # 2.00 k" and R 2 # 3.00 k", and two capacitors,
C1 # 2.00 $F and C 2 # 3.00 $F, connected to a battery with
emf # 120 V. No charge is on either capacitor before
switch S is closed. Determine the charges q1 and q2 on
capacitors C1 and C2, respectively, after the switch is closed.
(Suggestion: First reconstruct the circuit so that it becomes a
simple RC circuit containing a single resistor and single
capacitor in series, connected to the battery, and then deter-
mine the total charge q stored in the equivalent circuit.)

%

and that the voltage across the capacitor as a function of
time is

(c) What If? If the capacitor is fully charged, and the
switch is then opened, how does the voltage across the
capacitor behave in this case?

Answers to Quick Quizzes
28.1 (a). Power is delivered to the internal resistance of a bat-

tery, so decreasing the internal resistance will decrease
this “lost” power and increase the percentage of the
power delivered to the device.

28.2 (c). In a series circuit, the current is the same in all resis-
tors in series. Current is not “used up” as charges pass
through a resistor.

28.3 (a). Connecting b to c “shorts out” bulb R2 and changes
the total resistance of the circuit from R1 & R2 to just R1.
Because the resistance of the circuit has decreased (and
the emf supplied by the battery does not change), the
current in the circuit increases.

28.4 (b). When the switch is opened, resistors R1 and R2 are in
series, so that the total circuit resistance is larger than when
the switch was closed. As a result, the current decreases.

28.5 (b), (d). Adding another series resistor increases the total
resistance of the circuit and thus reduces the current in
the circuit. The potential difference across the battery ter-
minals increases because the reduced current results in a
smaller voltage decrease across the internal resistance.

28.6 (a), (e). If the second resistor were connected in paral-
lel, the total resistance of the circuit would decrease,
and the current in the battery would increase. The po-
tential difference across the terminals would decrease
because the increased current results in a greater volt-
age drop across the internal resistance.

28.7 (a). When the switch is closed, resistors R1 and R2 are
in parallel, so that the total circuit resistance is smaller
than when the switch was open. As a result, the current
increases.

28.8 (c). A current is assigned to a given branch of a circuit.
There may be multiple resistors and batteries in a given
branch.

28.9 (b), (d). Just after the switch is closed, there is no
charge on the capacitor, so there is no voltage across it.
Charges begin to flow in the circuit to charge up the ca-
pacitor, so that all of the voltage 'V # IR appears across
the resistor. After a long time, the capacitor is fully
charged and the current drops to zero. Thus, the bat-
tery voltage is now entirely across the capacitor.

28.10 (c), (i). Just after the switch is closed, there is no charge
on the capacitor. Current exists in both branches of the
circuit as the capacitor begins to charge, so the right
half of the circuit is equivalent to two resistances R in
parallel for an equivalent resistance of R . After a long
time, the capacitor is fully charged and the current in
the right-hand branch drops to zero. Now, current
exists only in a resistance R across the battery.

1
2

VC #
r

r & R
  %(1 ( e(t/R eqC)

ε
+    –

R2

R1 C1

C2

a

b c

f

S

d e

Figure P28.75

Voltmeter

S

R

C

r

ε
Figure P28.76

76. This problem6 illustrates how a digital voltmeter affects the
voltage across a capacitor in an RC circuit. A digital
voltmeter of internal resistance r is used to measure the
voltage across a capacitor after the switch in Figure P28.76
is closed. Because the meter has finite resistance, part of
the current supplied by the battery passes through the
meter. (a) Apply Kirchhoff’s rules to this circuit, and use
the fact that iC # dq/dt to show that this leads to the
differential equation

where Req # rR/(r & R). (b) Show that the solution to this
differential equation is

q #
r

r & R
 C% (1 ( e(t/ReqC)

R eq 
dq
dt

&
q
C

#
r

r & R
 %

Figure 15: Problem 12.

p-type material. This leaves behind a volume in the n-type material that is positively charged and

creates a negatively charged volume in the p-type material. Let us model this as two infinite slabs

of charge, both of thickness a with the junction lying on the plane z = 0. The n-type material lies

in the range 0 < z < a and has uniform charge density +ρ0. The adjacent p-type material lies in

the range −a < z < 0 and has uniform charge density −ρ0; see Fig. 16. Hence:

ρ(x, y, z) = ρ(z) =


+ρ0 0 < z < a

−ρ0 −a < z < 0

0 |z| > a

.

(i) Find the electric field everywhere. (ii) Find the potential difference between the points P1 and

P2. The point P1 is located on a plane parallel to the slab a distance z1 > a from the center of the

slab. The point P2 is located on plane parallel to the slab a distance z2 < −a from the center of

the slab.

Solution In this problem, the electric field is a superposition of two slabs of opposite charge

density. Outside both slabs, the field of a positive slab ~EP (due to the p-type semi-conductor ) is

constant and points away and the field of a negative slab ~EN (due to the n-type semi-conductor)

is also constant and points towards the slab, so when we add both contributions we find that

the electric field is zero outside the slabs. The fields ~EP and ~EN are shown on Fig. 17. The

superposition of these fields ~ET is shown on the top line in the figure. The electric field can be



Problem 7 N-P Semiconductors Revisited Potential Difference 
 
When two slabs of n -type and p -type semiconductors are put in contact, the relative 
affinities of the materials cause electrons to migrate out of the n -type material across the 
junction to the p -type material. This leaves behind a volume in the n -type material that 
is positively charged and creates a negatively charged volume in the p -type material. 
 
Let us model this as two infinite slabs of charge, both of thickness a  with the junction 
lying on the plane z = 0 . The n -type material lies in the range 0 < z< a and has uniform 
charge density +!0 . The adjacent p -type material lies in the range !a < z< 0  and has 
uniform charge density !"0 . Thus: 
 

!(x, y, z) = !(z) =
+!0 0 < z< a
"!0 " a< z< 0

0 z >a

#

$
%

&
%

 

 
a) Find the electric field everywhere. 
 
b) Find the potential difference between the points P1  andP2. . The point P1. is located 

on a plane parallel to the slab a distance z1 > a  from the center of the slab. The 
pointP2.  is located on plane parallel to the slab a distance z2 < !a  from the center 
of the slab. 

 
Solution: 
 
In this problem, the electric field is a superposition of two slabs of opposite charge density.  
 

 
 
Outside both slabs, the field of a positive slab  

!
EP  (due to the p -type semi-conductor ) is 

constant and points away and the field of a negative slab  
!
EN  (due to the n -type semi-

conductor) is also constant and points towards the slab, so when we add both 
contributions we find that the electric field is zero outside the slabs. The fields  

!
EP  are 

shown on the figure below. The superposition of these fields  
!
ET  is shown on the top line 

in the figure. 

Figure 16: Problem 13.

described by

~ET (z) =


~0 z < −a
~E2 −a < z < 0
~E1 0 < z < a
~0 z > a

.

We shall now calculate the electric field in each region using Gauss law: For region −a < z < 0, the

Gaussian surface is shown on the left hand side of Fig 17. Notice that the field is zero outside. Gauss

law states that
∮
closed
surface

~E ·d ~A = Qenc

ε0
. So for our choice of Gaussian surface, on the cap inside the slab

the unit normal for the area vector points in the positive z-direction, thus n̂ = +k̂. Consequently the

dot product becomes ~E2·n̂dA = E2,zk̂·k̂dA = E2,zdA. Therefore the flux is
∮
closed
surface

~E ·d ~A = E2,zAcap.

The charge enclosed is Qenc

ε0
= −ρ0Acap(a+z)

ε0
where the length of the Gaussian cylinder is a+ z since

z < 0. Substituting these two results into Gauss law yields E2,zAcap = −ρ0Acap(a+z)
ε0

. Hence the

electric field in the n-type is given by E2,z = −ρ0(a+z)
ε0

. The negative sign means that the electric

field point in the −z-direction so the electric field is ~E2 = −ρ0(a+z)
ε0

k̂. Note that when z = −a then

~E2 = 0 and when z = 0, ~E2 = −ρ0a
ε0
k̂. We make a similar calculation for the electric field in the

p-type noting that the charge density has changed sign and the expression for the length of the

Gaussian cylinder is a− z since z > 0. Also the unit normal now points in the negative z-direction.

So the dot product becomes ~E1 · n̂dA = E1,z(−k̂) · k̂dA = −E1,zdA. Thus the Gauss law becomes

−E1,zAcap =
ρ0Acap(a−z)

ε0
. So the electric field is E1,z = −ρ0(a−z)

ε0
. The vector description is then

~E1 = −ρ0(a−z)
ε0

k̂. Note that when z = a then ~E1 = ~0 and when z = 0, ~E1 = −ρ0a
ε0
k̂. So the resulting

field is

~ET (z) =


~0 z < −a
~E2 = −ρ0(a+z)

ε0
k̂ −a < z < 0

~E1 = −ρ0(a−z)
ε0

k̂ 0 < z < a
~0 z > a

.

The graph of the electric field is shown in Fig. 17. (ii) The electric potential difference is given by the

integral V (P2)−V (P1) = −
∫ P2

P1

~ET ·d~r. We first break this line integral into four pieces covering each

region V (z2)−V (z1) = −
(∫ z=a

z=z1
~Et · d~r +

∫ z=0
z=a

~ET · d~r +
∫ z=−a
z=0

~ET · d~r +
∫ z=z2
z=−a

~ET · d~r
)

. Since the
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We shall now calculate the electric field in each region using Gauss’s Law: 
 
For region 0a z! < < :  The Gaussian surface is shown on the left hand side of the figure 
below. Notice that the field is zero outside. Gauss’s Law states that 
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So for our choice of Gaussian surface, on the cap inside the slab the unit normal for the 
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So the resulting field is 
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The graph of the electric field is shown below 
 

. 
 

(ii) Find the potential difference between the points P1  andP2. . The point P1. is located 
on a plane parallel to the slab a distance 1z a>  from the center of the slab. The 
pointP2.  is located on plane parallel to the slab a distance 2z a< !  from the center of 
the slab. 

 
The electric potential difference is given by the integral 
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We first break this line integral into four pieces covering each region 
 

Figure 17: Solution of problem 13.

fields are zero outside the slab, the only non-zero pieces are V (z2) − V (z1) = −
∫ z=0
z=a

~ET · d~r −∫ z=−a
z=0

~ET ·d~r. We now use our explicit result for the electric field in each region and that d~r = dzk̂,

V (z2) − V (z1) = −
(∫ z=0

z=a E1,zk̂ · dzk̂ +
∫ z=−a
z=0 E2,zk̂ · dzk̂

)
=
∫ z=0
z=a ρ0

a−z
ε0
dz +

∫ z=−a
z=0 ρ0

a+z
ε0
dz. We

now calculate the two integrals V (z2)−V (z1) = ρ0(za−z2/2)
ε0

∣∣∣z=0

z=a
+ ρ0(za+z2/2)

ε0

∣∣∣z=−a
z=0

= −ρ0(a2−a2/2
ε0

+

ρ0[(−a)a+(−a)2/2]
ε0

= −ρ0(a2/2)
ε0

− ρ0(a2/2)
ε0

= −ρ0a2

ε0
. The potential difference is negative because we

are moving along the direction of the field. So the type pn-semiconductor slab established a small

potential difference across the slab.


