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1. (i) Eight equal charges q are located at the corners of a cube of side s, as shown in Fig. 1.

Find the electric potential at one corner, taking zero potential to be infinitely far away. (ii) Four

point charges are fixed at the corners of a square centered at the origin, as shown in Fig. 1. The

length of each side of the square is 2a. The charges are located as follows: +q is at (−a,+a), +2q

is at (+a,+a), −3q is at (+a,−a), and +6q is at (−a,−a). A fifth particle that has a mass m and

a charge +q is placed at the origin and released from rest. Find its speed when it is a very far from

the origin.

Solution: (i) To compute the potential all you need to know is that there are 3 charges a dis-

tance s away, 3 a distance s
√

2 away, and one charge a distance s
√

3 away. You find the potential

due to each charge separately, and add the results via superposition: V = q
4πε0s

(
3 + 3√

2
+ 1√

3

)
≈

5.79 q
4πε0s

. (ii) The diagram shows the four point charges fixed at the corners of the square and the

fifth charged particle that is released from rest at the origin. We can use conservation of energy to

relate the initial potential energy of the particle to its kinetic energy when it is at a great distance

from the origin and the electrostatic potential at the origin to express Ui. Use conservation of

energy to relate the initial potential energy of the particle to its kinetic energy whenit is at a great

distance from the origin: ∆K + ∆U = 0, or because Ki = Uf = 0, Kf − Ui = 0. Express the

initial potential energy of the particle to its charge and the electrostatic potential at the origin:

Ui = qV (0). Substitute for Kf and Ui to obtain: 1
2mv

2 − qV (0) = 0 ⇒ v =
√

2qV (0)/m. Express

the electrostatic potential at the origin: V (0) = q

4πε0
√

2a
(1 + 2 − 3 + 6) = 6q

4πε0
√

2a
. Substitute for

V (0) and simplify to obtain: v = q
√

6
√

2
4πε0ma

.

2. Five identical point charges +q are arranged in two different manners as shown in Fig. 2: in

once case as a face-centered square, in the other as a regular pentagon. Find the potential energy

of each system of charges, taking the zero of potential energy to be infinitely far away. Express

your answer in terms of a constant times the energy of two charges +q separated by a distance a.

Solution: Using the principle of superposition, we know that the potential energy of a system

of charges is just the sum of the potential energies for all the unique pairs of charges. The problem

is then reduced to figuring out how many different possible pairings of charges there are, and what

the energy of each pairing is. The potential energy for a single pair of charges, both of magnitude q,

separated by a distance d is just: PEpair = q2

4πε0d
. Since all of the charges are the same in both con-

figurations, all we need to do is figure out how many pairs there are in each situation, and for each

pair, how far apart the charges are. How many unique pairs of charges are there? There are not so

many that we couldn’t just list them by brute force - which we will do as a check - but we can also

calculate how many there are. In both configurations, we have 10 charges, and we want to choose all

possible groups of 2 charges that are not repetitions. So far as potential energy is concerned, the pair

(2, 1) is the same as (1, 2). Pairings like this are known as combinations, as opposed to permutations



where (1, 2) and (2, 1) are not the same. It is straightforward to see that the ways of choosing pairs

from five charges =
(
5
2

)
= 5!

2!(5−2)! = 5·4·3·2·1
2·1·3·2·1 = 10. So there are 10 unique ways to choose 2 charges

out of 5. First, lets consider the face-centered square lattice. In order to enumerate the possible

pairings, we should label the charges to keep them straight. Label the corner charges 1−4, and the

center charge 5 (it doesnt matter which way you number the corners, just so long as 5 is the middle

charge). Then our possible pairings are: (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5).

There are ten, just as we expect. In this configuration, there are only three different distances

that can separate a pair of charges: pairs on adjacent corners are a distance a
√

2 apart, a center-

corner pairing is a distance a apart, and a far corner-far corner pair is 2a apart. We can take our

list above, and sort it into pairs that have the same separation. We have four pairs of charges

a distance a apart, four that are a
√

2 apart, and two that are 2a apart. Write down the energy

for each type of pair listed in Table 1, multiply by the number of those pairs, and add the re-

sults together: PEsquare = 4(center− corner pair) + 2(far corner pair) + 4(adjacent corner pair) =
q2

4πε0a

(
4 + 1 + 4/

√
2
)
≈ 7.83 q2

4πε0a
. For the pentagon lattice, things are even easier. This time, just

pick one charge as “1”, and label the others from 2-5 in a clockwise or counter-clockwise fashion.

Since we still have 5 charges, there are still 10 pairings, and they are the same as the list above. For

the pentagon, however, there are only two distinct distances - either charges can be adjacent, and

thus a distance a apart, or they can be next-nearest neighbors. What is the next-nearest neighbor

distance? In a regular pentagon, each of the angles is 108◦, and in our case, each of the sides has

length a, as shown in Fig. 2. We can use the law of cosines to find the distance d between next-

nearest neighbors; d2 = a2 + a2 − 2a2 cos 108◦ = 2a2(1 − cos 10◦) ⇒ d = a
√

2− 2 cos 108◦ = aφ ≈
1.618a, where the number φ is known as the “Golden Ratio.” The distances a and d automatically

satisfy the golden ratio in a regular pentagon, d/a = φ. Given the nearest neighbor distance in

terms of a, we can then create a table of pairings for the pentagon; these are listed in Table 2.

Now once again we write down the energy for each type of pair, and multiply by the number

of pairs: PEpentagon = 5(energy of adjacent pair) + 5(energy of next− nearest neighbor pair) =

5q2

4πε0

(
1
a + 1

d

)
= 5q2

4πε0a

[
1 + 1√

2(1−cos 180◦)

]
≈ 8.09 q2

4πε0a
. So the energy of the pentagonal lattice is

higher, meaning it is less favorable than the square lattice. Neither one is energetically favored

though - since the energy is positive, it means that either configuration of charges is less stable

than just having all five charges infinitely far from each other. This makes sense - if all five charges

have the same sign, they dont want to arrange next to one another, and thus these arrangements

cost energy to keep together. If we didnt force the charges together in these patterns, the positive

energy tells us that they would fly apart given half a chance. For this reason, neither one is a valid

sort of crystal lattice, real crystals have equal numbers of positive and negative charges, and are

overall electrically neutral.

3. Consider a system of two charges shown in Fig. 3. Find the electric potential at an arbitrary

point on the x axis and make a plot of the electric potential as a function of x/a.

Solution The electric potential can be found by the superposition principle. At a point on the

x axis, we have V (x) = 1
4πε0

q
x−a + 1

4πε0

(−q)
|x+a| = q

4πε0

[
1
|x−a| − 1

|x+a|

]
. The above expression may be

rewritten as V (x)
V0

= 1
|x/a−1| − 1

|x/a+1| , where V0 = q
4πε0a

. The plot of the dimensionless electric



potential as a function of x/a is depicted in Fig. 3.

4. A point particle that has a charge of +11.1 nC is at the origin. (i) What is (are) the shapes

of the equipotential surfaces in the region around this charge? (ii) Assuming the potential to be

zero at r =∞, calculate the radii of the five surfaces that have potentials equal to 20.0 V, 40.0 V,

60.0 V, 80.0 V and 100.0 V, and sketch them to scale centered on the charge. (iii) Are these

surfaces equally spaced? Explain your answer. (iv) Estimate the electric field strength between

the 40.0-V and 60.0-V equipotential surfaces by dividing the difference between the two potentials

by the difference between the two radii. Compare this estimate to the exact value at the location

midway between these two surfaces.

Solution: (i) The equipotential surfaces are spheres centered on the charge. (ii) From the

relationship between the electric potential due to the point charge and the electric field of the point

charge we have:
∫ b
a dV = − ∫ rbra ~E · d~r = − Q

4πε0

∫ rb
ra
r−2dr or Vb − Va = 1

4πε0

(
1
rb
− 1

ra

)
. Taking the

potential to be zero at ra = ∞ yields: Vb − 0 = 1
4πε0

1
rb
⇒ V = Q

4πε0r
⇒ r = Q

4πε0V
. Because

Q = 1.1110−8 C, it follows that r = 8.988× 109 N ·m2/C2 1.11× 10−8 C 1
V . Now you can use the

previous equation to determine the values of r:

V [V] 20.0 40.0 60.0 80.0 100.0

r [m] 4.99 2.49 1.66 1.25 1.00

The equipotential surfaces are shown in cross-section in Fig. 5. (iii) No. The equipotential sur-

faces are closest together where the electric field strength is greatest. (iv) The average value of

the magnitude of the electric field between the 40.0-V and 60.0-V equipotential surfaces is given

by: Eest = −∆V
∆r = − 40 V−60 V

2.49 m−1.66 m ' 29 V
m . The exact value of the electric field at the loca-

tion midway between these two surfaces is given by E = Q
4πε0r2

, where r is the average of the

radii of the 40.0-V and 60.0-V equipotential surfaces. Substitute numerical values and evaluate

Eexact = 8.988×109 N·m2/C2 1.11×10−8 C
(1.66 m+2.49 m)2/4

' 23 V
m . The estimated value for E differs by about 21% from

the exact value.

5. Two coaxial conducting cylindrical shells have equal and opposite charges. The inner shell

has charge +q and an outer radius a, and the outer shell has charge −q and an inner radius b.

The length of each cylindrical shell is L, and L is very long compared with b. Find the potential

difference, Va − Vb between the shells.

Solution: The diagram shown in Fig. 5 is a cross-sectional view showing the charges on the inner

and outer conducting shells. A portion of the Gaussian surface over which well integrate E in order

to find V in the region a < r < b is also shown. Once weve determined how E varies with r, from

Vb − Va = − ∫ ba Erdr we can find Va − Vb =
∫ b
a Erdr Apply Gauss’ law to a cylindrical Gaussian

surface of radius r and length L,
∮
~E · n̂dA = Er2πrL = q

ε0
. Solving for Er yields: Er = q

2πε0rL
.

Substitute for Er and integrate from r = a to b: Va − Vb = q
2πε0L

∫ b
a
dr
r = q

2πε0L
ln
(
b
a

)
.



6. An electric potential V (z) is described by the function

V (z) =





−2 V ·m−1 z + 4 V, z > 2.0 m

0, 1.0 m < z < 2.0 m
2
3 V − 2

3V ·m−3 z3, 0 m < z < 1.0 m
2
3 V + 2

3V ·m−3 z3, −1.0 m < z < 0 m

0, −2.0 m < z < −1.0 m

2 V ·m−1z + 4 V, z < −2.0 m

The graph in Fig. 6 shows the variation of an electric potential V (z) as a function of z. (i) Give the

electric field vector ~E for each of the six regions. (ii) Make a plot of the z-component of the electric

field, Ez, as a function of z. Make sure you label the axes to indicate the numeric magnitude of

the field.

Solution (i) Using ~E = −~∇V , and noting that the electric potential only depends on the vari-

able z, we have that the z-component of the electric field is given by Ez = −dV
dz . The electric field

vector is then given by ~E = −dV
dz k̂. For z > 2.0 m, ~E = −dV

dz k̂ = − d
dz (−2 V ·m−1 z + 4 V)k̂ =

2 V ·m−1k̂. For 1.0 m < z < 2.0 m, ~E = −dV
dx k̂ = ~0. For 0 m < z < 1.0 m, ~E = −dV

dz k̂ =

− d
dz

(
2
3 V − 2

3 V ·m−3z3
)
k̂ = 2 V ·m−3z2k̂. Note that the z2 has units of [m2], so the value of the

electric field at a point just inside, z− = 1.0 m− ε m (where ε > 0 is a very small number), is given

by ~E− = 2 V ·m−3 (1 m)2k̂ = 2 V
m k̂. Note that the z-component of the electric field, 2 V ·m−1,

has the correct units. For −1.0 m < z < 0 m, ~E = −dV
dz k̂ = − d

dz

(
2
3 V + 2

3 V ·m−3z3
)
k̂ =

−2 V ·m−3z2k̂. The value of the electric field at a point just inside, z+ = −1.0 m+ ε m, is given by
~E+ = −2 V ·m−3 (1 m)2k̂ = −2 V

m k̂. For −2.0 m < z < −1.0 m, ~E = −dV
dz k̂ = ~0. For z < −2.0 m,

~E = −dV
dz k̂ = − d

dz (2 V ·m−1z + 4 V)k̂ = −2 V ·m−1k̂. (ii) The z-component of the electric field

as a function of z is shown in Fig. 6.

7. Two conducting, concentric spheres have radii a and b. The outer sphere is given a charge

Q. What is the charge on inner sphere if it is earthed?.

Solution: The system of conducting concentric spheres is shown in Fig. 7. When the ob-

ject is earthed, it means its potential is zero, but note that the charge on it may not be zero.

To determine the charge, take the potential on the inner sphere as zero and assume that the

charge on it is q. Since V (r) − V (∞) = − ∫ r∞E(r′)dr′, the potential difference at r = a is then

V (a) − V (∞) = 1
4πε0

(
q
a −

q
b + Q+q

b

)
= 0, where we have taken the zero of potential at infinity.

Therefore, q
a −

q
b + Q

b + q
b = 0, yielding q = −Qa

b .

8. Consider two nested, spherical conducting shells. The first has inner radius a and outer

radius b. The second has inner radius c and outer radius d. The system is shown in Fig. 8. In

the following four situations, determine the total charge on each of the faces of the conducting

spheres (inner and outer for each), as well as the electric field and potential everywhere in space

(as a function of distance r from the center of the spherical shells). In all cases the shells begin

uncharged, and a charge is then instantly introduced somewhere. (i) Both shells are not connected



to any other conductors (floating) – that is, their net charge will remain fixed. A positive charge

+Q is introduced into the center of the inner spherical shell. Take the zero of potential to be at

infinity. (ii) The inner shell is not connected to ground (floating) but the outer shell is grounded

– that is, it is fixed at V = 0 and has whatever charge is necessary on it to maintain this poten-

tial. A negative charge −Q is introduced into the center of the inner spherical shell. (iii) The

inner shell is grounded but the outer shell is floating. A positive charge +Q is introduced into the

center of the inner spherical shell. (iv) Finally, the outer shell is grounded and the inner shell is

floating. This time the positive charge +Q is introduced into the region in between the two shells.

In this case the question “What are ~E(r) and V (r)?” cannot be answered analytically in some

regions of space. In the regions where these questions can be answered analytically, give answers.

In the regions where they cannot be answered analytically, explain why, but try to draw what you

think the electric field should look like and give as much information about the potential as possible.

Solution: (i) There is no electric field inside a conductor. In addition, the net charge on an

isolated conductor is zero (i.e. Qa +Qb = Qc +Qd = 0), yielding Qa = −Q, Qb = +Q, Qc = −Q,

Qd = +Q. Using Gauss’ law,

~E(r) =





Q
4πε0r2

r̂, r > d
~0, c < r < d

Q
4πε0r2

r̂, b < r < c
~0, a < r < b

Q
4πε0r2

r̂, r < a

.

The field lines are shown in Fig. 9. Since V (r)− V (∞) = − ∫ r∞E(r′)dr′, the potential difference is

then:

V (r)− V (∞) =





Q
4πε0r

, r > d
Q

4πε0d
, c < r < d

Q
4πε0

(
1
r − 1

c + 1
d

)
, b < r < c

Q
4πε0

(
1
b − 1

c + 1
d

)
, a < r < b

Q
4πε0

(
1
r − 1

a + 1
b − 1

c + 1
d

)
, r < a

.

(ii) Since the outer shell is now grounded, Qd = 0 to maintain ~E(r) = ~0 outside the outer shell.

We have, Qa = Q, Qb = −Q, Qc = +Q, Qd = 0. Again using Gauss law yields:

~E(r) =





~0, r > c

− Q
4πε0r2

r̂, b < r < c
~0, a < r < b

− Q
4πε0r2

r̂, r < a

.

The field lines are shown in Fig. 9. The potential difference is then

V (r)− V (∞) =





0, r > c

− Q
4πε0

(
1
r − 1

c

)
, b < r < c

− Q
4πε0

(
1
b − 1

c

)
, a < r < b

− Q
4πε0

(
1
r − 1

a + 1
b − 1

c

)
, r < a

.



(iii) The inner shell is grounded and Qb = 0 to maintain ~E(r) = ~0 outside the inner shell. Because

there is no electric field on the outer shell, Qa = −Q, Qb = Qc = Qd = 0. Gauss law then yields

~E(r) =

{
~0, r > a

Q
4πε0r2

r̂, r < a
.

The field lines are shown in Fig. 9. The potential difference is then

V (r)− V (∞) =

{
0, r > a
Q

4πε0

(
1
r − 1

a

)
, r < a

.

(iv) The electric field within the cavity is zero. If there is any field line that began and ended on the

inner wall, the integral
∮
~E · d~s over the closed loop that includes the field line would not be zero.

This is impossible since the electrostatic field is conservative, and therefore the electric field must

be zero inside the cavity. The charge Q between the two conductors pulls minus charges to the near

side on the inner conducting shell and repels plus charges to the far side of that shell. However, the

net charge on the outer surface of the inner shell (Qb) must be zero since it was initially uncharged

(floating). Since the outer shell is grounded, Qd = 0 to maintain ~E(r) = ~0 outside the outer shell.

Thus, Qa = Qb = Qd = 0, Qc = −Q and ~E(r) = ~0, for r < b or r > c. For b < r < c, ~E(r) is in

fact well defined but the functional form is very complicated. The field lines are shown in Fig. 9.

What can we say about the electric potential? V (r) = 0 for r > c, and V (r) = constant for r < b,

but between the two shells the functional form of the potential is very complicated.

9. The hydrogen atom in its ground state can be modeled as a positive point charge of magni-

tude +e (the proton) surrounded by a negative charge distribution that has a charge density (the

electron) that varies with the distance from the center of the proton r as: ρ(r) = −ρ0e
−2r/a (a

result obtained from quantum mechanics), where a = 0.523 nm is the most probable distance of

the electron from the proton. (i) Calculate the value of ρ0 needed for the hydrogen atom to be

neutral. (ii) Calculate the electrostatic potential (relative to infinity) of this system as a function

of the distance r from the proton.

Solution: (i) Express the charge dq in a spherical shell of volume dV = 4πr2dr at a distance

r from the proton: dq = ρdV = −ρ0e
−2r/a4πr2dr. Express the condition for charge neutrality:

e = −4πρ0
∫∞
0 r2e−2r/adr. From the table of integrals we have

∫
x2ebxdx = ebx

b3
(b2x2−2bx+2). Using

this result yields
∫∞

0 r2e−2r/adr = a3/4. Substitute in the expression for e to obtain: e = −πρ0a
3 ⇒

ρ0 = − e
πa3

. Substitute numerical values to obtain ρ0 = −1.602×10−19 C
π(0.523 nm)3

= −3.56 × 108 C/m3.

(ii) The electrostatic potential of this proton-electron system is the sum of the electrostatic poten-

tials due to the proton and the electron’s charge density: V = V1 + V2, where V1 = 1
4πε0

(
e
r + Q1

r

)
,

V2 =
∫∞
r

1
4πε0

ρ(r′)
r′ 4πr′2dr′, and Q1 =

∫ r
0 ρ(r′)4πr′2dr′. Substituting for ρ(r′) in the expression

for Q1 yields: Q1 = 4πρ0
∫ r

0 r
′2e−2r′/adr′. Using again

∫
x2ebxdx = ebx

b3
(b2x2 − 2bx + 2) we eval-

uate
∫ r

0 x
2e−2x/adx = −a3e−2x/a

8

(
4
a2
x2 + 2 2

ax+ 2
)∣∣∣
r

0
= −a3e−2r/a

8

(
4
a2
r2 + 4

ar + 2
)

+ a3

4 and Q1 =

4πρ0

[
−a3e−2r/a

8

(
4
a2
r2 + 4

ar + 2
)

+ a3

4

]
. Substituting for Q1 in the expression for V1 yields: V1 =

1
4πε0

{
e
r + 4πρ0

r

[
−a3e−2r/a

8

(
4
a2
r2 + 4

ar + 2
)

+ a3

4

]}
. Substitute for ρ0 from (i) and simplify to obtain:



V1 = 1
4πε0

{
e
r − 4e

ra3

[
−a3e−2r/a

8

(
4
a2
r2 + 4

ar + 2
)

+ a3

4

]}
= 1

4πε0
e
re
−2r/a

(
2
a2
r2 + 2

ar + 1
)
. Substitut-

ing for ρ(r′) and simplifying yields: V2 =
∫∞
r

1
4πε0r′

ρ0e
−2r′/a4πr′2dr′ = ρ0

ε0

∫∞
r e−2r′/ar′dr′. From a

table of integrals we have:
∫
xebxdx = ebx

b2
(bx − 1). Using this result we evaluate

∫∞
r e−2x/axdx =

a2

4 e
−2x/a

(
2
ax+ 1

)∣∣∣
∞

r
= −a2

4 e
−2x/a

(
2
ar + 1

)
. Substitute for

∫∞
r e−2r/ar′dr′ and ρ0 in the expres-

sion for V2 to obtain V2 = 1
ε0

(
− e
πa3

)
e−2r/a

[
−a2

4

(
2
ar + 1

)]
= 1

4πε0
e 1
ae
−2r/a

(
2
ar + 1

)
. Substitut-

ing for V1 and V2 in V = V1 + V2 and simplifying yields: V = 1
4πε0

e
re
−2r/a

(
2
a2
r2 + 2

ar + 1
)

+

1
4πε0

e
ae
−2r/a

(
2
ar + 1

)
= e

4πε0

(
1
a + 1

r

)
e−2r/a.

10. A particle that has a mass m and a positive charge q is constrained to move along the x-axis.

At x = −L and x = L are two ring charges of radius L. Each ring is centered on the x-axis and

lies in a plane perpendicular to it. Each ring has a total positive charge Q uniformly distributed

on it. (i) Obtain an expression for the potential V (x) on the x axis due to the charge on the

rings. (ii) Show that V (x) has a minimum at x = 0. (iii) Show that for x << L, the potential

approaches the form V (x) = V (0) + αx2. (iv) Use the result of Part (iii) to derive an expression

for the angular frequency of oscillation of the mass m if it is displaced slightly from the origin and

released. (Assume the potential equals zero at points far from the rings.)

Solution: (i) Express the potential due to the ring charges as the sum of the potentials due

to each of their charges: V (x) = Vringto
theleft

+ Vringto
theright

. The potential for a ring of charge is V (x) =

Q
4πε0

1√
x2+a2

where a is the radius of the ring and Q is its charge. For the ring to the left we

have: Vringto
theleft

= Q
4πε0

1√
(x+L)2+L2

. For the ring to the right we have: Vringto
theright

= Q
4πε0

1√
(x−L)2+L2

.

Substitute for Vringto
theleft

and Vringto
theright

to obtain V (x) = Q
4πε0

(
1√

(x+L)2+L2
+ 1√

(x−L)2+L2

)
. (ii) To

show that V (x) is a minimum at x = 0, we must show that the first derivative of V (x) = 0

at x = 0 and that the second derivative is positive. Evaluate the first derivative to obtain
dV
dx = Q

4πε0

{
L−x

[(L−x)2+L2]3/2
− L+x

[(L+x)2+L2]3/2

}
= 0 for extrema. Solving for x yields x = 0. Eval-

uate d2V
dx2

= Q
4πε0

{
3(L−x)2

[(L−x)2+L2]5/2
− 1

[(L−x)2+L2]3/2
+ 3(L+x)2

[(L+x)2+L2]5/2
− 1

[(L+x)2+L2]3/2

}
. Evaluating this

expression for x = 0 yields: d2V (0)
dx2

= Q
4πε0

1
2
√

2L3 > 0. Thus, V (x) is a minimum at x = 0. (iii) Use

a Taylor expansion to show that, for x� L, the potential approaches the form V (x) = V (0)+αx2.

The Taylor expansion of V (x) is: V (x) = V (0) + V ′(0)x + 1
2V
′′(0)x2+ higher order terms. For

x� L, V (x) ≈ V (x) ≈ V (0)+V ′(0)x+ 1
2V
′′(0)x2. Substitute the results from (i) and (ii) to obtain:

V (x) = Q
4πε0

(√
2
L + 1

4
√

2L3x
2
)
, or V (x) = V (0) + αx2, where V (0) = Q

4πε0

√
2
L and α = Q

4πε0
1

4
√

2L3 .

(iv) we can obtain the potential energy function from the potential function and, noting that it is

quadratic in x, find the spring constant and the angular frequency of oscillation of the particle pro-

vided its displacement from its equilibrium position is small. Express the angular frequency of oscil-

lation of a simple harmonic oscillator: ω =
√

k
m , where k is the restoring constant. From the result

in part (iii) and the definition of electric potential U(x) = qV (0)+ 1
2

(
qQ

8πε0
√

2L3

)
x2 = qV (0)+ 1

2kx
2,

where k = qQ

8πε0
√

2L3 . Substituting for k in the expression for ω yields: ω =
√

qQ

8πε0m
√

2L3 .



Problems 737

under the influence of the forces exerted by the three
fixed charges. Find a value for s for which Q is in equilib-
rium. You will need to solve a transcendental equation.

Two small spheres of mass m are suspended from strings of
length ! that are connected at a common point. One
sphere has charge Q ; the other has charge 2Q. The strings
make angles !1 and !2 with the vertical. (a) How are !1 and
!2 related? (b) Assume !1 and !2 are small. Show that the
distance r between the spheres is given by

66. Review problem. Four identical particles, each having
charge " q, are fixed at the corners of a square of side L. A
fifth point charge # Q lies a distance z along the line per-
pendicular to the plane of the square and passing through
the center of the square (Fig. P23.66). (a) Show that the
force exerted by the other four charges on # Q is

Note that this force is directed toward the center of the
square whether z is positive (# Q above the square) or neg-
ative (# Q below the square). (b) If z is small compared
with L, the above expression reduces to F ≈ #(constant)z k̂.
Why does this imply that the motion of the charge # Q is
simple harmonic, and what is the period of this motion if
the mass of # Q is m?

F $ #
4k e q Qz

[z2 " (L2/2)]3/2   k̂

r ! " 4ke Q  2!

mg #1/3

65.

69. Eight point charges, each of magnitude q, are located on
the corners of a cube of edge s, as shown in Figure P23.69.
(a) Determine the x, y, and z components of the resultant
force exerted by the other charges on the charge located
at point A. (b) What are the magnitude and direction of
this resultant force?

R

R

m

R

m

Figure P23.68

Figure P23.69 Problems 69 and 70.

Point
A

x

y

z

q

q q

q

q
q

q

q

s

s

s

L

L

+q +q

z

–Q

z

+q +q

Figure P23.66

67. Review problem. A 1.00-g cork ball with charge 2.00 %C is
suspended vertically on a 0.500-m-long light string in the
presence of a uniform, downward-directed electric field of
magnitude E $ 1.00 & 105 N/C. If the ball is displaced
slightly from the vertical, it oscillates like a simple pendu-
lum. (a) Determine the period of this oscillation.
(b) Should gravity be included in the calculation for part
(a)? Explain.

68. Two identical beads each have a mass m and charge q.
When placed in a hemispherical bowl of radius R with fric-
tionless, nonconducting walls, the beads move, and at
equilibrium they are a distance R apart (Fig. P23.68). De-
termine the charge on each bead.

70. Consider the charge distribution shown in Figure P23.69.
(a) Show that the magnitude of the electric field at the
center of any face of the cube has a value of 2.18keq/s2.
(b) What is the direction of the electric field at the center
of the top face of the cube?

Review problem. A negatively charged particle # q is
placed at the center of a uniformly charged ring, where
the ring has a total positive charge Q as shown in Example
23.8. The particle, confined to move along the x axis, is
displaced a small distance x along the axis (where x '' a)
and released. Show that the particle oscillates in simple
harmonic motion with a frequency given by

72. A line of charge with uniform density 35.0 nC/m lies
along the line y $ # 15.0 cm, between the points with co-
ordinates x $ 0 and x $ 40.0 cm. Find the electric field it
creates at the origin.

73. Review problem. An electric dipole in a uniform electric
field is displaced slightly from its equilibrium position, as
shown in Figure P23.73, where ! is small. The separation
of the charges is 2a, and the moment of inertia of the
dipole is I. Assuming the dipole is released from this

f $
1

2(
 " ke q Q

ma3 #1/2

71.
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(d) Let q1 = q3 = 2.00 PC and q2  = q4 = �2.00 PC: 
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69 •• [SSM] Four point charges are fixed at the corners of a square 
centered at the origin. The length of each side of the square is 2a. The charges are 
located as follows: +q is at (–a, +a), +2q is at (+a, +a), –3q is at (+a, –a), and +6q 
is at (–a, –a). A fifth particle that has a mass m and a charge +q is placed at the 
origin and released from rest. Find its speed when it is a very far from the origin. 
 
Picture the Problem The diagram 
shows the four point charges fixed at 
the corners of the square and the fifth 
charged particle that is released from 
rest at the origin. We can use 
conservation of energy to relate the 
initial potential energy of the particle to 
its kinetic energy when it is at a great 
distance from the origin and the 
electrostatic potential at the origin to 
express Ui. 

a

a

a2

x

y
q q2

q3−q6

qm,

 

 
Use conservation of energy to relate 
the initial potential energy of the 
particle to its kinetic energy when it 
is at a great distance from the origin: 
 

0 '�' UK  
or, because Ki = Uf = 0, 

0if  �UK  

Express the initial potential energy 
of the particle to its charge and the 
electrostatic potential at the origin: 
 

� �0i qVU   

Substitute for Kf and Ui to obtain: 
 � � 002

2
1  � qVmv �

� �
m

qVv 02
  

 

Figure 1: Problem 1.

8. 15 points. Five identical point charges +q are arranged in two di�erent manners as shown below - in
once case as a face-centered square, in the other as a regular pentagon. Find the potential energy of each
system of charges, taking the zero of potential energy to be infinitely far away. Express your answer in
terms of a constant times the energy of two charges +q separated by a distance a.

a

+q

a

+q

Using the principle of superposition, we know that the potential energy of a system of charges is just the
sum of the potential energies for all the unique pairs of charges. The problem is then reduced to figuring
out how many di�erent possible pairings of charges there are, and what the energy of each pairing is.
The potential energy for a single pair of charges, both of magnitude q, separated by a distance d is just:

PEpair =
keq

2

d

Since all of the charges are the same in both configurations, all we need to do is figure out how many
pairs there are in each situation, and for each pair, how far apart the charges are.

How many unique pairs of charges are there? There are not so many that we couldn’t just list them
by brute force - which we will do as a check - but we can also calculate how many there are. In both
configurations, we have 10 charges, and we want to choose all possible groups of 2 charges that are not
repetitions. So far as potential energy is concerned, the pair (2, 1) is the same as (1, 2). Pairings like
this are known as combinations, as opposed to permutations where (1, 2) and (2, 1) are not the same.
Calculating the number of possible combinations is done like this:ii

ways of choosing pairs from five charges =

✓
5

2

◆
= 5C2 =

5!

2! (5 � 2)!
=

5 · 4 · 3 · 2 · 1

2 · 1 · 3 · 2 · 1
= 10

So there are 10 unique ways to choose 2 charges out of 5. First, let’s consider the face-centered square
lattice. In order to enumerate the possible pairings, we should label the charges to keep them straight.
Label the corner charges 1�4, and the center charge 5 (it doesn’t matter which way you number the
corners, just so long as 5 is the middle charge). Then our possible pairings are:

(1, 2) (1, 3) (1, 4) (1, 5)

(2, 3) (2, 3) (2, 5)

(3, 4) (3, 5)

(4, 5)

And there are ten, just as we expect. In this configuration, there are only three di�erent distances
that can separate a pair of charges: pairs on adjacent corners are a distance a

p
2 apart, a center-corner

pairing is a distance a apart, and a far corner-far corner pair is 2a apart. We can take our list above,
and sort it into pairs that have the same separation:

iiA nice discussion of combinations and permutations is here: http://www.themathpage.com/aPreCalc/

permutations-combinations.htm

Table 1: Charge pairings in the square lattice

#, pairing type separation pairs
4, center-corner a (1, 5) (2, 5) (3, 5) (4, 5)

4, adjacent corners a
p

2 (1, 4) (3, 4) (2, 3) (1, 2)
2, far corner 2a (1, 3) (2, 4)

And we are nearly done already. We have four pairs of charges a distance a apart, four that are a
p

2
apart, and two that are 2a apart. Write down the energy for each type of pair, multiply by the number
of those pairs, and add the results together:

PEsquare = 4 (center-corner pair) + 2 (far corner pair) + 4 (adjacent corner pair)

= 4


keq

2

a

�
+ 2


keq

2

2a

�
+ 4


keq

2

a
p

2

�

=
keq

2

a


4 + 1 +

4p
2

�

=
keq

2

a

h
5 + 2

p
2
i
⇡ 7.83

kq2

a

For the pentagon lattice, things are even easier. This time, just pick one charge as “1”, and label the
others from 2-5 in a clockwise or counter-clockwise fashion. Since we still have 5 charges, there are
still 10 pairings, and they are the same as the list above. For the pentagon, however, there are only
two distinct distances - either charges can be adjacent, and thus a distance a apart, or they can be
next-nearest neighbors. What is the next-nearest neighbor distance?

In a regular pentagon, each of the angles is 108�, and in our case, each of the sides has length a, as
shown below. We can use the law of cosines to find the distance d between next-nearest neighbors.

1
0
8
o
d

a

a

d2 = a2 + a2 � 2 · a · a cos 108� = 2a2 (1 � cos 108�)

=) d = a
p

2 � 2 cos 108� = a� ⇡ 1.618a

Here the number � is known as the “Golden Ratio.” The distances a and d automatically satisfy the
golden ratio in a regular pentagon, d/a=�. Given the nearest neighbor distance in terms of a, we can
then create a table of pairings for the pentagon (Table 2).

Table 2: Charge pairings in the pentagonal lattice

#, pairing type separation pairs
5, next-nearest neighbors d (1, 3) (1, 4) (2, 4) (2, 5) (3, 5)
5, adjacent a (1, 2) (2, 3) (3, 4) (4, 5) (5, 1)

Figure 2: Problem 2.
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For the pentagon lattice, things are even easier. This time, just pick one charge as “1”, and label the
others from 2-5 in a clockwise or counter-clockwise fashion. Since we still have 5 charges, there are
still 10 pairings, and they are the same as the list above. For the pentagon, however, there are only
two distinct distances - either charges can be adjacent, and thus a distance a apart, or they can be
next-nearest neighbors. What is the next-nearest neighbor distance?

In a regular pentagon, each of the angles is 108�, and in our case, each of the sides has length a, as
shown below. We can use the law of cosines to find the distance d between next-nearest neighbors.
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Here the number � is known as the “Golden Ratio.” The distances a and d automatically satisfy the
golden ratio in a regular pentagon, d/a=�. Given the nearest neighbor distance in terms of a, we can
then create a table of pairings for the pentagon (Table 2).
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Table 1: Charge pairings in the square lattice

#, pairing type separation pairs
4, center-corner a (1, 5) (2, 5) (3, 5) (4, 5)

4, adjacent corners a
p

2 (1, 4) (3, 4) (2, 3) (1, 2)
2, far corner 2a (1, 3) (2, 4)

And we are nearly done already. We have four pairs of charges a distance a apart, four that are a
p

2
apart, and two that are 2a apart. Write down the energy for each type of pair, multiply by the number
of those pairs, and add the results together:

PEsquare = 4 (center-corner pair) + 2 (far corner pair) + 4 (adjacent corner pair)
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For the pentagon lattice, things are even easier. This time, just pick one charge as “1”, and label the
others from 2-5 in a clockwise or counter-clockwise fashion. Since we still have 5 charges, there are
still 10 pairings, and they are the same as the list above. For the pentagon, however, there are only
two distinct distances - either charges can be adjacent, and thus a distance a apart, or they can be
next-nearest neighbors. What is the next-nearest neighbor distance?

In a regular pentagon, each of the angles is 108�, and in our case, each of the sides has length a, as
shown below. We can use the law of cosines to find the distance d between next-nearest neighbors.
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d2 = a2 + a2 � 2 · a · a cos 108� = 2a2 (1 � cos 108�)

=) d = a
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2 � 2 cos 108� = a� ⇡ 1.618a

Here the number � is known as the “Golden Ratio.” The distances a and d automatically satisfy the
golden ratio in a regular pentagon, d/a=�. Given the nearest neighbor distance in terms of a, we can
then create a table of pairings for the pentagon (Table 2).

Table 2: Charge pairings in the pentagonal lattice

#, pairing type separation pairs
5, next-nearest neighbors d (1, 3) (1, 4) (2, 4) (2, 5) (3, 5)
5, adjacent a (1, 2) (2, 3) (3, 4) (4, 5) (5, 1)



3.8 Solved Problems  
 
3.8.1 Electric Potential Due to a System of Two Charges 
 
Consider a system of two charges shown in Figure 3.8.1.  
 

 
 

Figure 3.8.1 Electric dipole 
 

Find the electric potential at an arbitrary point on the x axis and make a plot. 
 
Solution: 
 
The electric potential can be found by the superposition principle. At a point on the x 
axis, we have 
 

 
0 0 0

1 1 ( ) 1( )
4 | | 4 | | 4 | | | |

q q qV x 1
x a x a x a xSH SH SH a

ª º�
 �  �« »� � � �¬ ¼

   

 
The above expression may be rewritten as 
 

 
0

( ) 1 1
| / 1| | / 1|

V x
V x a x a

 �
� �

   

 
where 0 / 4V q a0SH . The plot of the dimensionless electric potential as a function of x/a. 
is depicted in Figure 3.8.2. 
 

           Figure 3.8.2 
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Figure 3: The lectric dipole of problem 3.
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Because Q = +1.11 u 10–8 C: 
 

� �
VV

r C
mN77.99C1011.1

C
mN108.988

28
2

2
9 �

 
u¸̧

¹

·
¨̈
©

§ �
u

 

�

    (1) 

 
Use equation (1) to complete the following table: 
 

V (V) 20.0 40.0 60.0 80.0 100.0
r (m) 4.99 2.49 1.66 1.25 1.00  

  
The equipotential surfaces are 
shown in cross-section to the 
right: 
 

20.0 V

40.0 V

60.0 V
80.0 V

100.0 V
point charge

 
(c) No. The equipotential surfaces are closest together where the electric field 
strength is greatest. 
 
(d) The average value of the 
magnitude of the electric field between 
the 40.0-V and 60.0-V equipotential 
surfaces is given by: 
 

rr
VE

ǻ
V 60V 40

ǻ
ǻ �

� �  

Drop perpendiculars to the r axis from 
40.0 V and 60.0 V to approximate the radii 
corresponding to each of these potential 
surfaces: 
 

m
V29

m7.1m4.2
V 60V 40

est  
�
�

�|E  

The exact value of the electric field at the location midway between these two 
surfaces is given by 2rkQE  , where r is the average of the radii of the 40.0-V 
and 60.0-V equipotential surfaces. Substitute numerical values and evaluate 
Eexact. 
 

Figure 4: Problem 4.
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Substitute and simplify to obtain: 
¸
¹
·

¨
©
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ba
kQ

b
kQ

a
kQVa

11
 

 
45 •• [SSM] Two coaxial conducting cylindrical shells have equal and 

opposite charges. The inner shell has charge +q and an outer radius a, and the 

outer shell has charge –q and an inner radius b. The length of each cylindrical 

shell is L, and L is very long compared with b. Find the potential difference,  

Va – Vb between the shells. 

 

Picture the Problem The diagram is 

a cross-sectional view showing the 

charges on the inner and outer 

conducting shells. A portion of the 

Gaussian surface over which we’ll 

integrate E in order to find V in the 

region a < r  < b is also shown. Once 

we’ve determined how E varies with 

r, we can find Va – Vb from 

³� � drEVV rab .  

 

Express the potential difference  

Vb – Va: 

 

³� � drEVV rab � ³ � drEVV rba  

Apply Gauss’s law to cylindrical 

Gaussian surface of radius r and 

length L: 

 

� �
0

S
2ˆ

�
S qrLEdA r   �³ nE

G
 

Solving for Er yields: 

rL
qEr

02 �S
  

 

Substitute for Er and integrate from  

r = a to b: 

¸
¹
·

¨
©
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a
b

L
kq

r
dr

L
qVV

b

a
ba

ln
2

2 0�S
 

 

46 •• Positive charge is placed on two conducting spheres that are very far 

apart and connected by a long very-thin conducting wire. The radius of the 

smaller sphere is 5.00 cm and the radius of the larger sphere is 12.0 cm. The 

electric field strength at the surface of the larger sphere is 200 kV/m. Estimate the 

surface charge density on each sphere. 

 

Figure 5: Problem 5.
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Exam 2 Practice Problems Part 1 Solutions 

 
Problem 1 Electric Field and Charge Distributions from Electric Potential 
 
An electric potential ( )V z  is described by the function 
 

  

V (z) =

(!2V "m-1)z + 4V ; z > 2.0 m
0 ; 1.0 m < z < 2.0 m
2
3

V ! 2
3

V "m-3#
$%

&
'(

z3; 0 m < z <1.0 m

2
3

V+ 2
3

V "m-3#
$%

&
'(

z3; !1.0 m < z < 0 m

0 ; ! 2.0 m < z < !1.0 m
(2V "m-1)z + 4V ; z < ! 2.0 m

)

*

+
+
+
+
+

,

+
+
+
+
+

 

The graph below shows the variation of an electric potential ( )V z  as a function of z . 

 
 
a) Give the electric field vector E

!
 for each of the six regions in (i) to (vi) below? 

 
Solution: We shall the fact that V= !"E

! !
. Since the electric potential only depends on 

the variable z , we have that the z -component of the electric field is given by 
 

z
dVE
dz

= ! . 

 
The electric field vector is then given by 

b) Make a plot of the z-component of the electric field, zE , as a function of  z .  Make 
sure you label the axes to indicate the numeric magnitude of the field.   
 

 
 
c) Qualitatively describe the distribution of charges that gives rise to this potential 

landscape and hence the electric fields you calculated.  That is, where are the charges, 
what sign are they, what shape are they (plane, slab…)? 

 
In the region 1.0 m 1.0 mz! < < there is a non-uniform (in the z-direction) slab of 
positive charge. Note that the z-component of the electric field is zero at 0 mz = , 
negative for the region 1.0 m 0 mz! < < , and positive for 0 m 1.0 mz< <  as it should 
for a positive slab that has zero field at the center.  
 
In the region 1.0 m 2.0 mz< <  there is a conductor where the field is zero. 
 
On the plane 2.0 mz = , there is a positive uniform charge density !  that produces a 
constant field pointing to the right in the region 2.0 mz >  (hence the positive 
component of the electric field). 
 
On the plane 1.0 mz = , there is a negative uniform charge density !" .  
 
In the region 2.0 m 1.0 mz! < < !  there is a conductor where the field is zero. 
 
On the plane 2.0 mz = ! , there is a positive uniform charge density !  that produces a 
constant field pointing to the left in the region 2.0 mz < !  (hence the positive 
component of the electric field). 
 
On the plane 1.0 mz = ! , there is a negative uniform charge density !" .  
 

Figure 6: Problem 6.



Figure 7: Problem 7.

Figure 8: The Farady cage of problem 8.

There is no electric field inside a conductor. Also, the net charge on an isolated conductor 
is zero (i.e. Qa +Qb = Qc +Qd = 0 ). 
 

Qa = !Q , Qb = +Q , Qc = !Q , Qd = +Q  
 
Using the Gauss’s law, 
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b) The inner shell is not connected to ground (floating) but the outer shell is 
grounded – that is, it is fixed at V = 0  and has whatever charge is necessary on it 
to maintain this potential.  A negative charge !Q  is introduced into the center of 
the inner spherical shell. 

 

Since the outer shell is now grounded, Qd = 0  to maintain  
!
E(r) =

!
0  outside the outer 

shell. We have. 
 

 Qa = Q  ,  Qb = !Q ,  Qc = +Q , Qd = 0 . 
 

Again using Gauss’s Law yields 
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c) The inner shell is grounded but the outer shell is not connected to ground.  A 

positive charge +Q  is introduced into the center of the inner spherical shell. 
 
The inner shell is grounded and Qb = 0  to maintain  

!
E(r) =

!
0  outside the inner shell. 

Because there is no electric field on the outer shell, Qc = Qd = 0 . 
 

Qa = !Q , Qb = Qc = Qd = 0  
 
Gauss’s Law then yields 
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Since the outer shell is now grounded, Qd = 0  to maintain  
!
E(r) =
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0  outside the outer 

shell. We have. 
 

 Qa = Q  ,  Qb = !Q ,  Qc = +Q , Qd = 0 . 
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c) The inner shell is grounded but the outer shell is not connected to ground.  A 

positive charge +Q  is introduced into the center of the inner spherical shell. 
 
The inner shell is grounded and Qb = 0  to maintain  

!
E(r) =

!
0  outside the inner shell. 

Because there is no electric field on the outer shell, Qc = Qd = 0 . 
 

Qa = !Q , Qb = Qc = Qd = 0  
 
Gauss’s Law then yields 
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d) Finally, the outer shell is grounded and the inner shell is floating.  This time the 
positive charge +Q  is introduced into the region in between the two shells.  In 
this case the questions “What are  

!
E(r)  and V (r) ?” cannot be answered 

analytically in some regions of space.  In the regions where these questions can be 
answered analytically, give answers.  In the regions where they can’t be answered 
analytically, explain why, but try to draw what you think the electric field should 
look like and give as much information about the potential as possible (is it 
positive or negative, for example).  

 
The electric field within the cavity is zero. If there is any field line that began and ended 
on the inner wall, the integral 

   
!
E ! d!s""  over the closed loop that includes the field line 

would not be zero.  This is impossible since the electrostatic field is conservative, and 
therefore the electric field must be zero inside the cavity. The charge Q between the two 
conductors pulls minus charges to the near side on the inner conducting shell and repels 
plus charges to the far side of that shell. However, the net charge on the outer surface of 
the inner shell (Qb) must be zero since it was initially uncharged (floating). Since the 
outer shell is grounded, Qd = 0  to maintain  

!
E(r) =

!
0  outside the outer shell. Thus, 

 
Qa = Qb = Qd = 0 , Qc = !Q  and   

!
E(r) =

!
0 , r < b  or r > c  

 
For,  

!
E(r)  is in fact well defined but it is very complicated. The field lines are shown in 

the figure below.  

 
 

Figure 9: The electric field lines of problem 8; from left to right (i), (ii), (iii), (iv).


