
Prof. Anchordoqui

Problems set # 12 Physics 169 May 12, 2015

1. Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges

±Q. The empty space between the spheres is half-filled by a hemispherical shell of dielectric (of

dielectric constant ε/ε0), as shown in Fig. 1. (i) Find the electric field everywhere between the

spheres. (ii) Calculate the surface-charge distribution on the inner sphere. (iii) Calculate the

polarization-charge density induced on the surface of the dielectric at r = a.

Solution This is a somewhat curious problem. It should be obvious that without any dielectric

the electric field between the spheres would be radial ~E = Q
4πε0

r̂
r2

. We cannot expect this to be

unmodified by the dielectric. However, we note that the radial electric field is tangential to the

interface between the dielectric and empty region. Thus the tangential matching condition E
‖
1 = E

‖
2

is automatically satisfied. At the same time there is no perpendicular component to the interface,

so there is nothing to worry about for the D⊥1 = D⊥2 matching condition. This suggests that we

guess a solution of the radial form E = Ar̂/r2, where A is a constant to be determined. This guess

is perhaps not completely obvious because one may have expected the field lines to bend into or out

of the dielectric region. However, we could also recall that parallel fields do not get bent across the

dielectric interface. We may use the integral form of Gauss law in a medium to determine the above

constant A, i.e.,
v
~D · n̂dA = Q⇒ ε0A

r2
2πr2 + εA

r2
2πr2 = Q, or A = Q

2π(ε+ε0) . Hence, ~E = Q
2π(ε+ε0)

r̂
r2

.

Note that (ε+ ε0)/2 may be viewed as the average permittivity in the volume between the spheres.

(ii) The surface-charge density is given by σ = D⊥|r=a, where either D⊥ = ε0E
⊥ or D⊥ = εE⊥

depending on region. This gives

σ =

{
ε

ε+ε0
Q

2πa2
; dielectric side

ε
ε0+ε0

Q
2πa2

; empty side
. (1)

Note that the total charge obtained by integrating σ over the surface of the inner sphere gives

Q as expected. (iii) The polarization charge density is given by ρpol = −~∇ · ~P , where ~P =

ε0χe ~E = (ε − ε0) ~E. Since the surface of the dielectric at r = a is against the inner sphere, we

can take the polarization to be zero inside the metal (“outside” the dielectric). Gauss’ law in this

case gives σpol = −P⊥|r=a = −(ε − ε0)E⊥|r=a = − ε−ε0
ε+ε0

Q
2πa2

. Note that when this is combined

with (1), the total (free and polarization) charge density is σtot = σ + σpol = ε0
ε+ε0

Q
2πa2

on either

half of the sphere. Since this is uniform, this is why the resulting electric field is radially symmetric.

2. A coaxial capacitor of length l = 6 cm uses an insulating dielectric material with ε/ε0 = 9,

see Fig. 2. The radii of the cylindrical conductors are 0.5 cm and 1 cm. If the voltage applied

across the capacitor is V (t) = 50 sin(120πt) what is the displacement current?

Solution To find the displacement current, we need to know ~E in the dielectric space between

the cylindrical conductors. Using Gauss law we obtain ~E = − Q
2πεrl r̂ and so V = Q

2πεl ln(a/b).

Therefore, ~E = − V
r ln(a/b) r̂ = 50 sin(120πt)

r ln 2 r̂ = −72.1
r sin(120πt)r̂ V/m. This implies that ~D = εE =



κε0E = −9 · 8.85 × 10−12 · 72.1
r sin(120πt)r̂ = −5.75×10−9

r sin(120πt)r̂ C/m2. The displacement

current flows between the conductors through an imaginary cylindrical surface of length l and

radius r. The current flowing from the outer conductor to the inner conductor along −r̂ crosses

surface ~S where ~S = −2πrlr̂. Therefore, Id = ∂ ~D
∂t · ~S = − ∂

∂t

[
5.75×10−9

r sin(120πt)
]
r̂ · (−r̂2πrl) =

5.75×10−9 ·120π ·2πl cos(120πt) = 0.82 cos(120πt) µA. Alternatively, since the coaxial capacitor is

lossless, its displacement current has to be equal to the conduction current flowing through the wires

connected to the voltage sources. The capacitance of a coaxial capacitor is given by C = 2πεl
ln(a/b) .

The current is I = C dV
dt = 2πεl

ln(b/a) [120π × 50 cos(120πt)] = 0.82 cos(120πt) µA, which is the same

answer we obtained before.

3. The parallel-plate capacitor shown in Fig. 3 is filled with a lossy dielectric material of relative

permittivity κ and conductivity σ. The separation between the plates is d and each plate is of area

A. The capacitor is connected to a time-varying voltage source V (t). (i) Obtain an expression for

Ic, the conduction current flowing between the plates inside the capacitor, in terms of the given

quantities. (ii) Obtain an expression for Id, the displacement current flowing inside the capacitor.

(iii) Based on your expressions for parts (i) and (ii), give an equivalent-circuit representation for

the capacitor. (iv) Evaluate the values of the circuit elements for A = 4 cm2, d = 0.5 cm, κ = 4,

σ = 2.5 (S/m), and V (t) = 10 cos(3π103t) V. [Hint: 1 S = 1Ω−1, (S stands for siemens)]

Solution The resistance is R = d
σA , and so Ic = V

R = V σA
d . (ii) The electric field is E = V/d and

so Id = ∂D
∂t A = εA∂E

∂t = εA
d
∂V
∂t . (iii) The conduction current is directly proportional to V , as char-

acteristic of a resistor, whereas the displacement current varies as ∂V/∂t, which is characteristic of

a capacitor. Hence, R = d
σA and C = εA

d . The circuit is shown in Fig. 3. (iv) R = 0.5×10−2

2.5·4×10−4 = 5 Ω

and C = 4·8.85×10−12·4×10−4

0.5×10−2 = 2.84× 10−12 F.

4. Figure 4 shows a plane electromagnetic sinusoidal wave propagating in the x-direction. Sup-

pose that the wavelength is 50 m, and the electric field vibrates in the xy plane with an amplitude

of 22 V/m. Calculate (i) the frequency of the wave and (ii) the magnitude and direction of the

magnetic field when the electric field has its maximum value in the negative y-direction. (iii) Write

an expression for the magnetic field with the correct unit vector, with numerical values for Bmax,

k, and ω, and its magnitude in the form B = Bmax cos(kx− ωt).

Solution (i) During one oscillation (one period) the wave moves by a distance equal to the

wavelength of the wave. Therefore T = λ/c. If one oscillation take time T , in one second the

number of oscillations will be f = T−1 = c/λ = 3×108m/s
50 m = 6 MHz. (ii) The magnetic flux through

the vertical, differential surface indicated on Fig. 4 is proportional to the magnitude of the mag-

netic field. Therefore the rate at which this magnetic flux changes is related only to the rate at

which the magnetic field varies. The flux is dΦB
dt = d

dt(B dxdy) = ∂B
∂t dx dy. The linear integral of

the electric field vector can be related directly to the electric field strength at the location of the

differential surface
∮
~E ·d~s = 0+E(x+dx)dy+0−E(x)dy =

[
E(x) + ∂E

∂x dx− E(x)
]
dy = ∂E

∂x dx dy.

Therefore, from Faraday’s law (using the general form for a sinusoidal wave), the above equa-

tion requires that −Emaxk sin(kx − ωt) = ∂E
∂x = −∂B

∂t = −Bmaxω sin(kx − ωt), from which



the magnitude of the magnetic field is Bmax = k
ωEmax = 2π

2πfλEmax = Emax
c = 22 V/m

3×108 m/s
=

73.3 nT. Using the right-hand rule, when the y-component of the electric field is negative,

the z-component of the magnetic field is negative too; hence ~B = −73.3 nTk̂. We can arrive

at the same solution from Ampere-Maxwell’s law. From the definition, the displacement cur-

rent through the horizontal, differential surface is related to the rate of change in the electric

flux Id = ε0
dΦE
dt = ε0

d
dt(Edxdz) = ε0

∂E
∂t dxdy. The linear integral of the magnetic field vector

can be related directly to the magnetic field strength at the location of the differential surface∮
~B · d~s = 0 − B(x + dx)dz + 0 + B(x)dz =

[
−B(x)− ∂B

∂x dx+B(x)
]
dz = −∂B

∂x dxdz. Ampere-

Maxwell’s law yields −Bmaxk sin(kx − ωt) = ∂B
∂x = −µ0ε0

∂E
∂t = −µ0ε0Emaxω sin(kx − ωt), from

which Bmax = µ0ε0
ω
kEmax = Emax

c that leads to the same answer. (iii) From the frequency of the

wave, its angular frequency is ω = 2πf = 2π · 6 MHz = 37.7 MHz. From the given wavelength,

the value of the x-component of the propagation vector is k = 2π
λ = 2π

50 m = 0.126 m−1. (The

peak value of the magnetic field was found in part (ii)). Hence B(x, t) = Bmax cos(kx − ωt)k̂ =

73.3 nT cos(0.126 m−1 · x− 37.7 MHz · t)k̂.

5. Some science fiction writers have described solar sails that could propel interstellar spaceships.

Imagine a giant sail on a spacecraft subjected to radiation pressure from our Sun. (i) Explain why

this arrangement works better if the sail is highly reflective rather than highly absorptive. (ii) If

the sail is assumed highly reflective, show that the force exerted by the sunlight on the spacecraft’s

sail is given by Frad = P�A
2πr2c

, where P� is the power output of the Sun (3.8 × 1026 W), A is the

surface area of the sail, r is the distance from the Sun, and c is the speed of light. (Assume that

the area of the sail is much larger than the area of the spacecraft so that all the force is due to

radiation pressure on the sail, only. (iii) Using a reasonable value for A, compute the force on the

spacecraft due to the radiation pressure and the force on the spacecraft due to the gravitational

force of the Sun on the spacecraft. Does this result imply that such a system will work? Explain

your answer.

Solution (i) If the sail is reflective then it gets twice as much of a momentum kick from the light

as it does if it was absorptive. This is because the reflective sail has to reflect the light back, pushing

the sail back harder. This accelerates the sail better than simply absorbing the light. (ii) The radi-

ation force can be expressed in terms of the radiation pressure, Frad = PradA, where A is the area of

the sail. The radiation pressure is 2I/c, where I is the intensity, and the factor of 2 comes from the

fact that the sail is reflective. Now, the intensity comes from the sun, and can be written as I = P�
4πr2

where r is the distance to the sail. Thus, we finally find that the force is Frad = P�A
2πr2c

. (iii) The ratio

of the radiation force to the Newtonian gravitational force is Frad
FG

=
P�A
2πr2c

GNmM�
r2

= P�A
2πGNmM�c

. All of

these are constants, except for the area, A, and mass, m, of the ship. So, plugging in the numbers

for everything except m and A, Frad
FG

= P�A
2πGNmM�c

= 3.8×1026

2π·6.672×10−11·2.00×1030·3×108
A
m = 0.0015 A

m .

In order for this to be an effective means of propulsion we need Frad/FG > 1, which requires that

0.0015Am > 1→ m/A < 0.0015. So, we would need a tremendously huge sail, and a very light ship.

For example, for a 1000 kg ship we would need an area bigger of at least 670,000 square meters,

would be a circle of more than 460 meters! It seems like this would be a practically difficult method

of space travel, at least if powered by the Sun. However, perhaps by firing lasers from the surface



of the Earth to the sail and pushing it with extra light we could build up a good speed.

6. A pulsed laser fires a 1000 MW pulse that has a 200 ns duration at a small object that has

a mass equal to 10.0 mg and is suspended by a fine fiber that is 4.00 cm long. If the radiation

is completely absorbed by the object, what is the maximum angle of deflection of this pendulum?

[Hint: Think of the system as a ballistic pendulum and assume the small object was hanging ver-

tically before the radiation hit it.]

Solution Consider the pendulum in Fig. 5. Initially the object has zero energy, but it is then hit

with the pulse which gives it a kick, lifting it up to a height h, which can be expressed in terms of

the angle as h = L−L cos θ = L(1− cos θ). When it is pushed up to the height h, the object has a

potental energy EP = mgh = mgL(1−cos θ). Equating this to the initial kinetic energy of the pulse

EK = mgL(1−cos θ). Solving this expression for the angle gives θ = cos−1
[
1− EK

mgL

]
. Now, we just

need to figure out the kinetic energy of the pulse. The pulse carries momentum, which transfers to

the object. Hence, ppulse = pobject, which gives it kinetic energy equal to the kinetic energy of the

pulse. Hence, EK,pulse = EK,object. Now, EK,object =
p2object

2m =
p2pulse
2m . Hence, θ = cos−1

[
1− p2pulse

2m2gL

]
.

To finish we just need to find the momentum of the pulse. This can be found by looking at the

energy of the wave, which is related to the momentum by E = pc, and the energy can be related

to the power, P , by E = P∆t, which, finally, gives θ = cos−1
[
1− P 2∆t2

2m2c2gL

]
. Thus, we can plug in

the numbers to find θ = cos−1
[
1− P 2∆t2

2m2c2gL

]
= cos−1

[
1− (109)2(2×10−7)2

2(0.01)2(3×108)2·9.8·0.04

]
= 0.0061◦.

7. An electromagnetic wave has a frequency of 100 MHz and is traveling in a vacuum. The

magnetic field is given by B(z, t) = 1.00 × 10−8 cos(kz − ωt)̂ı. (i) Find the wavelength and the

direction of propagation of this wave. (ii) Find the electric field vector, ~E(z, t). (iii) Determine

the Poynting vector, and use it to find the intensity of the wave.

Solution (i) The direction is easy to find by looking at the sign of the ωt term in the wave.

Since it is negative, this tells us that the wave is traveling to the right. Because wave depends on

z, this tells us that the wave is moving along the z direction. Furthermore, since λf = c, where λ

is the wavelength, f is the frequency, and c is the speed of light, we can solve for the wavelength,

λ = c
f = 3×108

100×106
= 3.00 m. (ii) The electric field has the same form as the magnetic field, but

it points along −y (it has to be perpendicular to both the direction of the magnetic field and the

direction of the propagation of the wave, such that ~E × ~B points along z). We also know that the

amplitude of the electric field is related to the amplitude of the magnetic field by E = cB. Thus,

E = 1.00×10−8·3×108 = 3 V/m. Hence, the electric field is ~E = −3.00 V/m cos(kz−ωt)̂. (iii) The

Poynting vector is ~S = 1
µ0
~E× ~B = − 1

µ0
E0B0 cos2(kz−ωt)̂× ı̂ = 1

µ0
E0B0 cos2(kz−ωt)̂× ı̂k̂. Plug-

ging in for the amplitudes and µ0 gives ~S = 3.00×10−8

4π×10−7 cos2(kz−ωt)k̂ = 0.024 W/m2 cos2(kz−ωt)k̂.

The intensity of the wave is given by the average of the Poynting vector, which gives a factor of

1/2 from the cosine term. Thus, I = 0.024
2 = 12 mW/m2.

8. A dish antenna having a diameter of 20 m receives (at normal incidence) a radio signal from a

distant source as shown in Fig. 6. The radio signal is a continuous sinusoidal wave with amplitude



Em = 0.2µV/m. Assume the antenna absorbs all the radiation that falls on the dish. (i) What is

the amplitude of the magnetic field in this wave? (ii) What is the intensity of the radiation received

by the antenna? (iii) What is the power received by the antenna? (iv) What force is exerted by

the radio waves on the antenna?

Solution (i) The magnitude of the electric field vector and the magnitude of the magnetic field

vector are proportional to each other Bm = Em/c = 0.2×10−6 V/m
3×108m/s

= 6.7×10−16 T. (ii) By definition,

the intensity of electromagnetic wave is equal to the average value of the magnitude of the Poynting

vector. It can also be expressed in terms of the magnitude of the electric field vector or the magni-

tude of the magnetic field vector. The intensity is I = 〈S〉 = E2
m

2µ0c
= cB2

m
2µ0

= 3×108 m/s(6.7×10−16 T)2

2·4π×10−7 Tm/A
=

5.31× 10−17 W/m2. (iii) The power received by the antenna is related to the size of the antenna

and the intensity of the approaching wave 〈P 〉 = I πD
2

4 = 5.31×10−17 W
m2

π(20m)2

4 = 1.67×10−14 W.

(iv) The force exerted on the antenna is equal to product of the antenas area and the wave pressure,

related to the magnitude of the Poyting vector F = PA = 〈S〉
c
πD2

4 = 5.31×10−17 W/m2

3×108 m/s
· π(20 m)2

4 =

5.56× 10−23 N.

9. Show that any function of the form y(x, t) = f(x−ct)+g(x+ct) satisfies the one-dimensional

wave equation for light, ∂2y
∂x2
− 1

c2
∂2y
∂t2

= 0.

Solution This problem relies on using the chain rule. Suppose that we call u = x ± ct

(this takes care of both functions at once). Then, ∂
∂xf(x − ct) = ∂

∂xf(u) = ∂f
∂u

∂u
∂x = ∂f

∂u , while
∂2

∂x2
f(x − ct) = ∂

∂x

(
∂f
∂x

)
= ∂

∂x

(
∂f
∂u

)
= ∂2f

∂u2
∂u
∂x = ∂2f

∂u2
. Furthermore, ∂

∂tf(x − ct) = ∂
∂tf(u) =

∂f
∂u

∂u
∂t = ±c∂f∂u , while ∂2

∂t2
f(x − ct) = ∂

∂t

(
∂f
∂t

)
= ±c ∂∂t

(
∂f
∂u

)
= ±c∂2f

∂u2
∂u
∂t = c2 ∂2f

∂u2
. This means that

1
c2

∂2

∂t2
f(x − ct) = 1

c2
c2 ∂2f
∂u2

= ∂2f
∂u2

, and so ∂2y
∂x2
− 1

c2
∂2y
∂t2

= ∂2f
∂u2
− ∂2f

∂u2
= 0. Thus, we see that these

functions do, indeed, satisfy the one-dimensional wave equation for light.

10. Suppose that we have a cylindrical capacitor, as seen in the Fig. 7. Suppose further that we

put an AC current across the plates, starting at a low frequency, ω. As the voltage alternates, the

positive charge on the top plate is take off and negative charge is put on. While that is happening,

the electric field disappears and then builds up in the opposite direction. As the charge sloshes

back and forth slowly, the electric field follows. At each instant the electric field is uniform, as

shown in the figure, except for some edge effects which we are going to disregard. We can write the

electric field as E = E0 cos(ωt), where E0 = Q0/ε0A is constant, and A = πa2 is the area of the

plate. Now will this continue to be right as the frequency goes up? No, because as the electric field

is going up and down, there is a flux of electric field through any circular loop, say Γ, of radius r

inside the capacitor. And, as you know, a changing electric field acts to produce a magnetic field.

From Maxwell’s equations, the magnetic field is given by a

c2
∮
~B · d~̀=

d

dt

∫
~E · d ~A⇒ c2B2πr =

d

dt
(Eπr2),

or

B = − ωr
2c2

E0 sin(ωt).

So, the changing electric field has produced a magnetic field circulating around inside the capacitor,



and oscillating at the same frequency as the electric field. Now, are we done? No! This magnetic

field also oscillates, which produces a new electric field! The uniform field, E1 = E0 cos(ωt), is

only the first term! The changing magnetic field produces a new electric field, E2, such that the

total field is E = E1 + E2. Now, in general, E2 is also oscillating! This means that there will be

a new magnetic field from E2, which will be oscillating, which will create a new electric field, E3,

which will create a new magnetic field.... Your task is to calculate the first four terms of the series,

enough to get the pattern, and write the total electric field, taking the field at the center of the

capacitor to be exactly E0 cos(ωt), (i.e., there is no correction at the center). Then, compare your

result with Bessel functions, and see if you can write the full electric field you find in terms of one

of the Bessel functions, in closed form. Can you find an exact expression in terms of one of the

Bessel functions for the magnetic field?

Solution As given above, the uniform field generates a magnetic field, B = − ωr
2c2
E0 sin(ωt).

Now, Faraday’s law reads
∮
~E · d~s = − d

dt

∫
~B · d ~A Now, we want to take a loop for which the

electric field is constant everywhere along the integration path. We’ll take a rectangular loop,

that goes up along the axis of the capacitor, out to a radial distance r along the top plate, down

vertically to the bottom plate, and then back to the axis. Now, the field is E = E1 + E2, but the

loop integral of E1 is zero, since E1 is uniform. Therefore, only E2 contributes. Now along the

loop, E2 = 0 at the center, as per our assumption, while the part of the loop running along the

plates is zero since the field is perpendicular to the path. So, the whole integral is just −E2(r)h,

where h is the distance between the plates. The negative sign comes in because the path travels

down while the field is pointing up. Now, the flux of B through the surface bounded by the

loop is just ΦB =
∫
BdA = h

∫ r
0 Bdr, since the loop is a rectangle of height h, and we have

to integrate over the width of the rectangle, since B changes with distance. Now, using our

expression for B = − ωr
2c2

E0 sin(ωt), then h
∫ r
0 Bdr = −hωr2

4c2
E0 sin(ωt), and so, from Faraday’s law,

E2(r) = −ω2r2

4c2
E0 cos(ωt). So, we have so far that E = E1+E2, or E =

(
1− ω2r2

22c2

)
E0 cos(ωt). Now,

we need to continue on. This new term, E2 will produce a new magnetic field. Let’s call the magnetic

field that we found before B1. Then E2 produces a new magnetic field B2 such that the total field

is B = B1 +B2. To get B2, we apply the same trick that we used to find B1, that is c2
∮
~B2 · d~s =

d
dt

∫
~E2 · d ~A. Taking the same loop gives c2B2(2πr) for the left hand side. Now, because E2 varies

with radius, the right hand integral reads
∫
EdA = 2π

∫ r
0 E2rdr = −2π ω2

4c2
E0 cos(ωt)

∫ r
0 r

3dr =

−2π ω
2r4

42c2
E0 cos(ωt). Thus, taking the derivative gives B2 = ω3r3

24c4
E0 sin(ωt). But, we need to keep

going! This changing magnetic field produces a new electric field, E3, which we can calculate just

as before for E2. Doing so gives E3 = ω4r4

2242c4
E0 cos(ωt). This, again, produces a new magnetic

field, which produces a new electric field... The pattern keeps continuing, and we keep iterating.

The next correction to the electric field is E4 = − 1
224262

(
ωr
c

)6
E0 cos(ωt). So, the electric field is

given by E = E0

[
1− 1

(1!)2

(
ωr
2c

)2
+ 1

(2!)2

(
ωr
2c

)4 − 1
(3!)2

(
ωr
2c

)6
+ · · ·

]
cos(ωt). Now, we can look up the

Bessel functions, and we find that the zeroth-order function, J0(x) = 1 − 1
(1!)2

(
x
2

)2
+ 1

(2!)2

(
x
2

)4 −
1

(3!)2

(
x
2

)6
+ · · ·, and so, we finally find that the electric field is given by E = E0J0

(
ωr
c

)
cos(ωt).

We can look up the series for the magnetic field to find the first-order Bessel function, J1(x) =(
x
2

) − 1
2!

(
x
2

)3
+ 1

2!3!

(
x
2

)5 − · · ·, to find B = −E0
c J1

(
ωr
c

)
sin(ωt). (We could also plug the electric

field back into the Maxwell equations, noting that
∫
J1(x)dx = −J0(x).) That completely solves



Physics 505 Fall 2005

Homework Assignment #7 — Solutions

Textbook problems: Ch. 4: 4.10
Ch. 5: 5.3, 5.6, 5.7

4.10 Two concentric conducting spheres of inner and outer radii a and b, respectively, carry
charges ±Q. The empty space between the spheres is half-filled by a hemispherical
shell of dielectric (of dielectric constant ✏/✏00, as shown in the figure.

aQ−

Q+

b

a) Find the electric field everywhere between the spheres.

This is a somewhat curious problem. It should be obvious that without any
dielectric the electric field between the spheres would be radial

~E =
Q

4⇡✏0

r̂

r2

We cannot expect this to be unmodified by the dielectric. However, we note that
the radial electric field is tangential to the interface between the dielectric and

empty region. Thus the tangential matching condition E
k
1 = E

k
2 is automatically

satisfied. At the same time there is no perpendicular component to the interface,
so there is nothing to worry about for the D?

1 = D?
2 matching condition. This

suggests that we guess a solution of the radial form

~E = A
r̂

r2

where A is a constant to be determined. This guess is perhaps not completely
obvious because one may have expected the field lines to bend into or out of the
dielectric region. However, we could also recall that parallel fields do not get bent
across the dielectric interface.

We may use the integral form of Gauss’ law in a medium to determine the above
constant A

I
~D · n̂ da = Q ) ✏0A

r2
(2⇡r2) +

✏A

r2
(2⇡r2) = Q

Figure 1: Problem 1.

Problem 6.15 A coaxial capacitor of length l = 6 cm uses an insulating dielectric
material with εr = 9. The radii of the cylindrical conductors are 0.5 cm and 1 cm. If
the voltage applied across the capacitor is

V (t) = 50sin(120πt) (V)

what is the displacement current?
Solution:

l

r

Id

+

-
V(t) 2a 2b

Figure P6.15:

To find the displacement current, we need to knowE in the dielectric space between
the cylindrical conductors. From Eqs. (4.114) and (4.115),

E= −r̂ Q
2πεrl

,

V =
Q
2πεl

ln
(
b
a

)
.

Hence,

E= −r̂ V
r ln

(b
a
) = −r̂ 50sin(120πt)

r ln2
= −r̂ 72.1

r
sin(120πt) (V/m),

D= εE
= εrε0E

= −r̂9×8.85×10−12× 72.1
r
sin(120πt)

= −r̂ 5.75×10−9

r
sin(120πt) (C/m2).

The displacement current flows between the conductors through an imaginary
cylindrical surface of length l and radius r. The current flowing from the outer
conductor to the inner conductor along −r̂ crosses surface S where

S= −r̂2πrl.

Figure 2: Problem 2.

the problem!



Problem 6.16 The parallel-plate capacitor shown in Fig. P6.16 is filled with a lossy
dielectric material of relative permittivity εr and conductivity σ . The separation
between the plates is d and each plate is of area A. The capacitor is connected to
a time-varying voltage source V (t).

V(t)

I

A

dε, σ

Figure P6.16: Parallel-plate capacitor containing a lossy dielectric material (Problem 6.16).

(a) Obtain an expression for Ic, the conduction current flowing between the plates
inside the capacitor, in terms of the given quantities.

(b) Obtain an expression for Id, the displacement current flowing inside the
capacitor.

(c) Based on your expressions for parts (a) and (b), give an equivalent-circuit
representation for the capacitor.

(d) Evaluate the values of the circuit elements for A= 4 cm2, d = 0.5 cm, εr = 4,
σ = 2.5 (S/m), and V (t) = 10cos(3π×103t) (V).

Solution:
(a)

R=
d
σA

, Ic =
V
R

=
VσA
d

.

(b)
E =

V
d

, Id =
∂D
∂ t

·A= εA
∂E
∂ t

=
εA
d
∂V
∂ t

.

(c) The conduction current is directly proportional to V , as characteristic of a
resistor, whereas the displacement current varies as ∂V/∂ t, which is characteristic

of a capacitor. Hence,

R =
d
σA

and C =
εA
d

.

+

-
V(t)

I
Id

C
Ic

RV(t)
+

-
ε, σ

Actual Circuit Equivalent Circuit

Figure P6.16: (a) Equivalent circuit.

(d)

R =
0.5×10−2

2.5×4×10−4 = 5 Ω,

C =
4×8.85×10−12 ×4×10−4

0.5×10−2 = 2.84×10−12 F.

Figure 3: Problem 3.
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Problem 34.9 
Figure 34.4b shows a plane electromagnetic sinusoidal wave propagating in the 
x-direction. Suppose that the wavelength is 50 m, and the electric field vibrates in 
the xy plane with an amplitude of 22 V/m. Calculate (a) the frequency of the wave 
and (b) the magnitude and direction of the magnetic field when the electric field 
has its maximum value in the negative y-direction. (c) Write an expression for the 
magnetic field with the correct unit vector, with numerical values for Bmax, k, and 
Z, and its magnitude in the form 

B = Bmax cos (kx-Zt). 

 

 
 
 
 
 
 
 
 
 
 
 
a) Solution 1 (formal) 
Wave phase speed is determined by the relation between these 
two quantities. It moves with such a way that the phase remains 
constant value 
 � � .constttkx  Z�  

From which 

 
kdt

dxc Z
   

B 

E 

c 

x 

y 

z 

O 

Em 

dy 

)B 
dz 

dx 

)E 

Figure 4: Problem 4.



3. A pulsed laser fires a 1000 MW pulse that has a 200 ns duration at a small object
that has a mass equal to 10.0 mg and is suspended by a fine fiber that is 4.00 cm long.
If the radiation is completely absorbed by the object, what is the maximum angle of
deflection of this pendulum? (Think of the system as a ballistic pendulum and assume
the small object was hanging vertically before the radiation hit it.)

————————————————————————————————————

Solution

Consider the pendulum in the diagram to the
right. Initially the object has zero energy, but it’s
then hit with the pulse which gives it a kick, lift-
ing it up to a height h, which can be expressed
in terms of the angle as h = L � L cos ✓ =
L (1 � cos ✓). When it’s pushed up to the height
h, the the object has a potential energy

PE = mgh = mgL (1 � cos ✓) .

Equating this to the initial kinetic energy of the
pulse, KE, we have

KE = mgL (1 � cos ✓) .

                               Maxwell’s Equations and Electromagnetic Waves 
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39 •• [SSM] A pulsed laser fires a 1000-MW pulse that has a 200-ns 

duration at a small object that has a mass equal to 10.0 mg and is suspended by a 

fine fiber that is 4.00 cm long. If the radiation is completely absorbed by the 

object, what is the maximum angle of deflection of this pendulum? (Think of the 

system as a ballistic pendulum and assume the small object was hanging vertically 

before the radiation hit it.) 

 

Picture the Problem The diagram 

shows the displacement of the 

pendulum bob, through an angle T, as a 

consequence of the complete absorption 

of the radiation incident on it. We can 

use conservation of energy (mechanical 

energy is conserved after the collision) 

to relate the maximum angle of 

deflection of the pendulum to the initial 

momentum of the pendulum bob. 

Because the displacement of the bob 

during the absorption of the pulse is 

negligible, we can use conservation of 

momentum (conserved during the 

collision) to equate the momentum of 

the electromagnetic pulse to the initial 

momentum of the bob. 

 

h

m

LL cos 

θ

θ

0g =U

 

 

Apply conservation of energy to 

obtain: 

 

0
ifif
 ��� UUKK  

or, because Ui = Kf = 0 and 
m

p
K

2

2

i

i
 , 

0
2

f

2

i  �� U
m

p
 

 

Uf is given by: 

 

� �Tcos1
f

�  mgLmghU  

Substitute for Uf: 

 
� � 0cos1

2

2

i  ��� TmgL
m

p
 

 

Solve for T  to obtain: 

 ¸̧
¹

·
¨̈
©

§
� �

gLm
p

2

2

i1

2
1cosT                 

 

Solving this expression for the angle gives

✓ = cos�1


1 � KE

mgL

�
.

Now, we just need to figure out the kinetic energy of the pulse. The pulse carries
momentum, which transfers to the object. Hence, ppulse = pobject, which gives it kinetic
energy equal to the kinetic energy of the pulse. Hence, KEpulse = KEobject. Now,

KEobject =
p2
object

2m
=

p2
pulse

2m
. Thus,

✓ = cos�1


1 �

p2
pulse

2m2gL

�
.

To finish we just need to find the momentum of the pulse. This can be found by
looking at the energy of the wave, which is related to the momentum by E = pc, and
the energy can be related to the power, P , by E = P�t, which, finally, gives

✓ = cos�1


1 � P 2�t2

2m2c2gL

�
.

Thus, we can plug in the numbers to find

✓ = cos�1


1 � P 2�t2

2m2c2gL

�
= cos�1


1 � (109)2(2 ⇥ 10�7)2

2(0.01)2(3 ⇥ 108)2(9.8)(.04)

�
= 0.0061�.

5

Figure 5: Problem 6.
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wavelength antenna for a transmitter generating ELF
waves of frequency 75.0 Hz. How practical is this?

46. What are the wavelength ranges in (a) the AM radio band
(540–1 600 kHz), and (b) the FM radio band (88.0–-
108 MHz)?

Additional Problems

47. Assume that the intensity of solar radiation incident on
the cloudtops of the Earth is 1 340 W/m2. (a) Calculate
the total power radiated by the Sun, taking the average
Earth–Sun separation to be 1.496 ! 1011 m. (b) Deter-
mine the maximum values of the electric and magnetic
fields in the sunlight at the Earth’s location.

48. The intensity of solar radiation at the top of the Earth’s
atmosphere is 1 340 W/m2. Assuming that 60% of the
incoming solar energy reaches the Earth’s surface and
assuming that you absorb 50% of the incident energy,
make an order-of-magnitude estimate of the amount of
solar energy you absorb in a 60-min sunbath.

Review problem. In the absence of cable input or a
satellite dish, a television set can use a dipole-receiving
antenna for VHF channels and a loop antenna for
UHF channels (Fig. Q34.12). The UHF antenna
produces an emf from the changing magnetic flux
through the loop. The TV station broadcasts a signal
with a frequency f, and the signal has an electric-field
amplitude E max and a magnetic-field amplitude B max at
the location of the receiving antenna. (a) Using
Faraday’s law, derive an expression for the amplitude of
the emf that appears in a single-turn circular loop
antenna with a radius r, which is small compared with
the wavelength of the wave. (b) If the electric field in the
signal points vertically, what orientation of the loop gives
the best reception?

50. Consider a small, spherical particle of radius r located
in space a distance R from the Sun. (a) Show that the
ratio Frad/Fgrav is proportional to 1/r, where Frad is
the force exerted by solar radiation and Fgrav is the force
of gravitational attraction. (b) The result of part
(a) means that, for a sufficiently small value of r, the
force exerted on the particle by solar radiation exceeds
the force of gravitational attraction. Calculate the value
of r for which the particle is in equilibrium under
the two forces. (Assume that the particle has a perfectly
absorbing surface and a mass density of 1.50 g/cm3. Let
the particle be located 3.75 ! 1011 m from the Sun, and
use 214 W/m2 as the value of the solar intensity at that
point.)

A dish antenna having a diameter of 20.0 m receives
(at normal incidence) a radio signal from a distant
source, as shown in Figure P34.51. The radio signal
is a continuous sinusoidal wave with amplitude
E max " 0.200 #V/m. Assume the antenna absorbs all
the radiation that falls on the dish. (a) What is the
amplitude of the magnetic field in this wave? (b) What
is the intensity of the radiation received by this
antenna? (c) What is the power received by the antenna?
(d) What force is exerted by the radio waves on the
antenna?

51.

49.

Figure P34.51

Figure P34.54

52. One goal of the Russian space program is to illuminate
dark northern cities with sunlight reflected to Earth
from a 200-m diameter mirrored surface in orbit. Several
smaller prototypes have already been constructed and
put into orbit. (a) Assume that sunlight with intensity
1 340 W/m2 falls on the mirror nearly perpendicularly
and that the atmosphere of the Earth allows 74.6% of
the energy of sunlight to pass through it in clear
weather. What is the power received by a city when the
space mirror is reflecting light to it? (b) The plan is for
the reflected sunlight to cover a circle of diameter 
8.00 km. What is the intensity of light (the average mag-
nitude of the Poynting vector) received by the city? 
(c) This intensity is what percentage of the vertical com-
ponent of sunlight at Saint Petersburg in January, when
the sun reaches an angle of 7.00° above the horizon at
noon?

In 1965, Arno Penzias and Robert Wilson discovered the
cosmic microwave radiation left over from the Big Bang
expansion of the Universe. Suppose the energy density of
this background radiation is 4.00 ! 10$14 J/m3. Deter-
mine the corresponding electric field amplitude.

54. A hand-held cellular telephone operates in the 860- to
900-MHz band and has a power output of 0.600 W
from an antenna 10.0 cm long (Fig. P34.54). (a) Find
the average magnitude of the Poynting vector 4.00 cm
from the antenna, at the location of a typical person’s

53.
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Figure 6: Problem 8.This problem is 15 points extra credit!

Suppose that we have a cylindrical capacitor, as
seen in the figure. Suppose further that, instead
of DC, we put an AC current across the plates,
starting at a low frequency, !. As the voltage
alternates, the positive charge on the top plate
is take o↵ and negative charge is put on. While
that is happening, the electric field disappears and
then builds up in the opposite direction. As the
charge sloshes back and forth slowly, the electric
field follows. At each instant the electric field is
uniform, as shown in the figure, except for some
edge e↵ects which we are going to disregard.

a

E

B

We can write the electric field as

E = E0 cos (!t) ,

where E0 = Q0/✏0A is constant, and A = ⇡a2 is the area of the plate. Now will this
continue to be right as the frequency goes up? No, because as the electric field is going
up and down, there is a flux of electric field through any circular loop, say �, of radius
r inside the capacitor. And, as you know, a changing electric field acts to produce a
magnetic field. From Maxwell’s equations, the magnetic field is given by

c2

I
~B · d~̀=

d

dt

Z
~E · d ~A ) c2B (2⇡r) =

d

dt
E
�
⇡r2

�
,

or
B = �! r

2c2
E0 sin (!t) .

So, the changing electric field has produced a magnetic field circulating around inside
the capacitor, and oscillating at the same frequency as the electric field. Now, are we
done? No! This magnetic field also oscillates, which produces a new electric field ! The
uniform field, E1 ⌘ E0 cos (!t), is only the first term! The changing magnetic field
produces a new electric field, E2, such that the total field is E = E1 + E2. Now, in
general, E2 is also oscillating! This means that there will be a new magnetic field from
E2, which will be oscillating, which will create a new electric field, E3, which will create
a new magnetic field....

Your task is to calculate the first four terms of the series, enough to get
the pattern, and write the total electric field, taking the field at the center
of the capacitor to be exactly E0 cos (!t), (i.e., there is no correction at the
center). Then, look up Bessel functions, either in a book on di↵erential
equations, or on Wikipedia, say, and see if you can write the full electric
field you find in terms of one of the Bessel functions, in closed form. Can
you find an exact expression in terms of one of the Bessel functions for
the magnetic field? Bessel functions are the general solutions to the wave
equation in cylindrical coordinates.

8

Figure 7: Problem 10.


