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1. A semicircular conductor of radius R = 0.250 m is rotated about the axis AC at a constant

rate of 120 rev/min (Fig. 1). A uniform magnetic field in all of the lower half of the figure is

directed out of the plane of rotation and has a magnitude of 1.30 T. (i) Calculate the maximum

value of the emf induced in the conductor. (ii) What is the value of the average induced emf for

each complete rotation? (iii) How would the answers to (i) and (ii) change if B were allowed to

extend a distance R above the axis of rotation? Sketch the emf versus time (iv) when the field is

as drawn in Fig. 1 and (v) when the field is extended as described in (iii).

Solution (i) εmax = BAω = BπR2ω/2 = 1.30 T · π2 · (0.25 m)2 · 4.00π rad/s = 1.60 V. (ii)

ε̄ = 1
2π

∫ 2π
0 ε dθ = BAω

2π

∫ 2π
0 sin θ dθ = 0. (iii) The maximum and average ε would remain un-

changed. (iv) See Fig. 2. (v) See Fig. 2.

2. An AC power supply produces a maximum voltage of V0 = 100 V. This power supply is

connected to a 24.0 − Ω resistor, and the current and resistor voltage are measured with an ideal

AC ammeter and an ideal AC voltmeter, as shown in Fig. 3 What does each meter read? Recall

that an ideal ammeter has zero resistance and an ideal voltmeter has infinite resistance.

Solution The meters measure the rms values of potential difference and current. These are

Vrms = V0√
2

= 70.7 V and Irms = Vrms
R = 2.95 A.

3. (i) For the series RLC connection of Fig. 4, draw a phasor diagram for the voltages. The

amplitudes of the voltage drop across all the circuit elements involved should be represented with

phasors. (ii) An RLC circuit consists of a 150-Ω resistor, a 21-µF capacitor and a 460-mH inductor,

connected in series with a 120-V, 60-Hz power supply. What is the phase angle between the current

and the applied voltage? (iii) Which reaches its maximum earlier, the current or the voltage?

Solution (i) For the series connection, the instantaneous voltage across the system is equal to the

sum of voltage across each element. The phase angle between the voltage (across the system) and

the current (through the system) is: φ = arctanXL−XC
R . In Fig. 5 the phasor diagram for a series

RLC circuit is shown for both the inductive case XL > XC and the capacitive case XL < XC . On

the one hand, in the inductive case, V0,L > V0,c, we see that ~V0 leads ~I0 by a phase φ. On the other

hand, in the capacitance case, V0,C > V0,L, we have that ~I0 leads ~V0 by a phase φ. (ii) From the

definition, the inductive reactance of the inductor is XL = ωL = 2π · 60 Hz · 0.46 H = 173 Ω. From

the definition, the capacitive reactance of the capacitor is XC = 1
ωC = 1

2π·60 Hz·21×10−6 F
= 126 Ω.

The phase angle between the voltage (across the system) and the current (through the system) is:

φ = arctanXL−XC
R = arctan174 Ω−126 Ω

150 Ω = 17.4◦ (iii) The voltage leads the current.

4. Figure 6 shows a parallel RLC circuit. The instantaneous voltage (and rms voltage) across

each of the three circuit elements is the same, and each is in phase with the current through the



resistor. The currents in the capacitor and the inductor lead or lag behind the current in the re-

sistor. (i) Show that the rms current delivered by the source is Irms = Vrms

[
1
R2 +

(
ωC − 1

ωL

)2]1/2
.

(ii) Show that the phase angle between the voltage and the current is tanϕ = −R
(

1
XC
− 1

XL

)
.

(iii) Draw a phasor diagram for the currents. The amplitudes of the currents across all the circuit

elements involved should be represented with phasors.

Solution We are asked to find the impedance and the phase angle for this system of elements

connected in parallel. It will be easier to analyze the complex impedance. For elements connected

in parallel the equivalent complex impedance of the system is equal to the sum of inverse impedance

of each element 1
Zeq

= 1
ZR

+ 1
ZL

+ 1
ZC

= 1
R + 1

iωL + iωC = 1
R + i

(
ωC − 1

ωL

)
, or Zeq = 1

1
R

+i(ωC− 1
ωL)

=

1
R
−i(ωC− 1

ωL)
( 1
R)

2
+(ωC− 1

ωL)
2 . (i) Hence Irms = I0√

2
= 1√

2

∣∣∣ V0Zeq

∣∣∣ = V0√
2

∣∣∣ 1
Zeq

∣∣∣ = Vrms

√(
1
R

)2
+
(
ωC − 1

ωL

)2
, and

(ii) tanϕ =
ImZeq

ReZeq
=
−(ωC− 1

ωL)
1
R

. (iii) The phasor diagram for a parallel RLC circuit is shown in

Fig. 7, for both the inductive case XL > XC and the capacitive case XL < XC .

5. Draw to scale a phasor diagram showing Z, XL, XC , and ϕ for an AC series circuit for which

R = 300 Ω, C = 11 µF, L = 0.2 H, and f = 500/π Hz.

Solution Before drawing the diagram, we find the complex impedance of each element. The

complex impedance of a resistor is equal to its resistance, ZR = R = 300 Ω. It is therefore

a real number which we marked in the complex plane on the Re axis of Fig. 8. The complex

impedance of an inductor is an imaginary number dependent on the angular frequency of the

current and the inductance of the inductor ZL = iωL = 2π · 500
π s−1 · 0.2 H· = 200i Ω. This

number is on the Im axis. Finally, the complex impedance of the capacitor is also an imaginary

number dependent on the angular frequency of the current and the capacitance of the capacitor

ZC = − i
ωC = − i

2π
π

500 s−1 (11×10−6 F)−1 = −90.9i Ω. This number is also on the Im axis. Since the

elements are connected in series the equivalent complex impedance is equal to the sum of the com-

plex impedance of each element: Z = ZR+ZL+ZC = 300 Ω+200i Ω−90.9i Ω = (300+109.1i) Ω.

The complex impedance of each element is indicated in Fig. 8. One tic corresponds to 100 Ω. The

diagram also illustrates how to find the equivalent complex impedance. Note that the phase of the

complex impedance of the resistor is 0◦, the phase of the complex impedance of the capacitor is

−90◦ and the phase of the complex impedance of the inductor is 90◦.

6. Draw to scale a phasor diagram showing the relationship between the current (common for

all elements) and the voltages in an AC series circuit for which R = 300 Ω, C = 11 µF, L = 0.2 H,

f = 500/π Hz, and I0 = 20 mA.

Solution The complex voltage across the resistor can be found by multiplying the complex cur-

rent (through the resistor) by the complex impedance of the resistor VR(t) = I(t)ZR. Consistent

with the given values, the absolute value of this voltage is V0,R = I0R = 20 mA · 300 Ω = 6 V.

Since the phase of the complex impedance of the resistor is zero, the phase of the voltage across

the resistor agrees with the phase of the current. The complex voltage across the inductor can be



found by multiplying the complex current (through the inductor) by the complex impedance of the

inductor VL(t) = I(t)ZL. Consistent with the given values, the absolute value of this voltage is

V0,L = I0XL = 20 mA · 200 ω = 4 V. Since the phase of the complex impedance of the inductor

is 90◦, the voltage across the inductor leads with the current by a 90◦ phase angle. Finally, the

complex voltage across the capacitor can be found by multiplying the complex current (through the

capacitor) by the complex impedance of the capacitor VC(t) = I(t)ZC . Consistent with the given

values, the absolute value of this voltage is V0,C = I0 ·XC = 20 mA · 91 Ω = 1.8 V. Since the phase

of the complex impedance of the capacitor is −90◦, the voltage across the capacitor lags behind the

current by 90◦. If we want to find the complex voltage across the entire system, we can add the

complex voltages across all three elements (they are connected in series). I indicated this operation

on the phasor diagram. That voltage can also be found by multiplying the current by the equivalent

impedance of the system. Notice that the phase difference between the voltage across the system and

the current through the system is equal to the phase angle of the system (the phase of the equivalent

impedance). The absolute value of the voltage is V0 = I0Z = 20 mA·
√

(300 Ω)2 + (109 Ω)2 ≈ 6.4 V.

7. A coil of inductance 0.12 H and resistance 3 kΩ is connected in parallel with a 0.02 µF

capacitor and is supplied at 40 V at a frequency of 5 kHz; see Fig. 10. Determine (i) the current in

the coil, and (ii) the current in the capacitor. (iii) Draw to scale the phasor diagram and measure

the supply current and its phase angle; check the answer by calculation. Determine (iv) the circuit

impedance and (v) the power consumed.

Solution (i) Inductive reactance,XL = 2πfL = 2π × 5000 × 0.12 = 3770Ω. Impedance of coil,

Z1 =
√
R2 +X2

L =
√

30002 + 37702 = 4818 Ω. Current in the coil, ILR = V
Z1

= 40
4818 = 8.30 mA.

Branch phase angle φ = arctanXL
R = arctan3770

3000 = 51.5◦ lagging. (ii) Capacitive reactance,

XC = 1
2πfC = 1

2π5000×0.02×10−6 = 1592 Ω. Capacitor current, IC = V
XC

= 40
1592 = 25.13 mA

leading V by 90◦. (iii) Currents ILR and IC are shown in the phasor diagram of Fig. 11. The

parallelogram is completed as shown and the supply current is given by the diagonal of the par-

allelogram. The current I is measured as 19.3 mA leading voltage V by 74.5◦. By calculation,

I
√

(ILR cos 51.5◦)2 + (IC − ILR sin 51.5◦)2 = 19.34 mA and φ = arctan
(
IC−ILR sin 51.1◦

ILR cos 51.5◦

)
= 74.5◦.

(iv) Circuit impedance, Z = V
I = 40

19.34×10−3 = 2.068 kΩ. (v) Power consumed, P = V I cosφ =

40×19.34×10−3×cos 74.5◦ = 206.7 mW. Alternatively, P = I2
RR = I2

LRR = (8.3×10−3)2×3000 =

206.7 mW.

8. A transmission line that has a resistance per unit length of 4.5× 10−4 Ω/m is to be used to

transmit 5 MW over 400 miles (6.44 × 105 m); see Fig. 12. The output voltage of the generator

is 4.5 kV. (i) What is the line loss if a transformer is used to step up the voltage to 500 kV?

(ii) What fraction of the input power is lost to the line under these circumstances? (iii) What diffi-

culties would be encountered in attempting to transmit the 5 MW at the generator voltage of 4.5 kV.

Solution (i) In order to send out power of P = 5 MW at 500 kV potential difference, the current

in the grid (transmission lines) must be Irms,a = P
Vrms,a

= 10 A. The resistance of the two wires of

the transmission lines (connected is series) is R = 2Lλ = 580 Ω. Hence the loss of power in the lines
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at t ! 0.) Determine the emf generated in the coil as a
function of time.

38. A bar magnet is spun at constant angular speed " around
an axis as shown in Figure P31.38. A stationary flat rectan-
gular conducting loop surrounds the magnet, and at
t ! 0, the magnet is oriented as shown. Make a qualitative
graph of the induced current in the loop as a function of
time, plotting counterclockwise currents as positive and
clockwise currents as negative.

39. A motor in normal operation carries a direct current of
0.850 A when connected to a 120-V power supply. The
resistance of the motor windings is 11.8 #. While in
normal operation, (a) what is the back emf generated by
the motor? (b) At what rate is internal energy produced in
the windings? (c) What If? Suppose that a malfunction
stops the motor shaft from rotating. At what rate will inter-
nal energy be produced in the windings in this case? (Most
motors have a thermal switch that will turn off the motor
to prevent overheating when this occurs.)

40. A semicircular conductor of radius R ! 0.250 m is rotated
about the axis AC at a constant rate of 120 rev/min (Fig.
P31.40). A uniform magnetic field in all of the lower half
of the figure is directed out of the plane of rotation and
has a magnitude of 1.30 T. (a) Calculate the maximum
value of the emf induced in the conductor. (b) What is the
value of the average induced emf for each complete rota-
tion? (c) What If? How would the answers to (a) and (b)
change if B were allowed to extend a distance R above the
axis of rotation? Sketch the emf versus time (d) when the
field is as drawn in Figure P31.40 and (e) when the field is
extended as described in (c).

41. The rotating loop in an AC generator is a square 10.0 cm
on a side. It is rotated at 60.0 Hz in a uniform field of
0.800 T. Calculate (a) the flux through the loop as a
function of time, (b) the emf induced in the loop, (c) the

current induced in the loop for a loop resistance of
1.00 #, (d) the power delivered to the loop, and (e) the
torque that must be exerted to rotate the loop.

Section 31.6 Eddy Currents
42. Figure P31.42 represents an electromagnetic brake that

uses eddy currents. An electromagnet hangs from a
railroad car near one rail. To stop the car, a large current
is sent through the coils of the electromagnet. The moving
electromagnet induces eddy currents in the rails, whose
fields oppose the change in the field of the electromagnet.
The magnetic fields of the eddy currents exert force on
the current in the electromagnet, thereby slowing the car.
The direction of the car’s motion and the direction of the
current in the electromagnet are shown correctly in the
picture. Determine which of the eddy currents shown on
the rails is correct. Explain your answer.

A conducting rectangular loop of mass M, resistance
R, and dimensions w by ! falls from rest into a magnetic
field B as shown in Figure P31.43. During the time interval
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(c) The maximum and average H  would remain
unchanged.

(d) See Figure 1 at the right.

(e) See Figure 2 at the right.
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Section 31.6 Eddy Currents

P31.42 The current in the magnet creates an  upward magnetic field, so the N and S poles on the

solenoid core are shown correctly. On the rail in front of the brake, the upward flux of B increases as

the coil approaches, so a current is induced here to create a downward magnetic field. This is 

clockwise current, so the S pole on the rail is shown correctly. On the rail behind the brake, the
upward magnetic flux is decreasing. The induced current in the rail will produce upward magnetic

field by being  counterclockwise as the picture correctly shows.

Chapter 31     227

P31.40 (a) H Z S Zmax   FHG
I
KJBA B R

1
2

2

H
S

S

H

max

max

. . .

.

 

 

1 30
2

0 250 4 00

1 60

2 T  m  rad s

 V

a f a f b g

(b) H
H
S

T
Z
S

T T
S S

   z z2 2
0

0

2

0

2

d
BA

dsin

(c) The maximum and average H  would remain
unchanged.

(d) See Figure 1 at the right.

(e) See Figure 2 at the right.

Figure 2

H

H

Figure 1

t

t

FIG. P31.40

P31.41 (a) )B BA BA t t t    �cos cos . . cos . . cosT Z S0 800 0 010 0 2 60 0 8 00 377 T  m  mT m2 2a fe j a f e j a f

(b) H  �  
d
dt

tB)
3 02 377. sin Va f a f

(c) I
R

t  
H

3 02 377. sin Aa f a f

(d) P   I R t2 29 10 377. sin Wa f a f

(e) P   Fv WZ  so W
Z

  �
P

24 1 3772. sin mN ma f a ft

Section 31.6 Eddy Currents

P31.42 The current in the magnet creates an  upward magnetic field, so the N and S poles on the

solenoid core are shown correctly. On the rail in front of the brake, the upward flux of B increases as

the coil approaches, so a current is induced here to create a downward magnetic field. This is 

clockwise current, so the S pole on the rail is shown correctly. On the rail behind the brake, the
upward magnetic flux is decreasing. The induced current in the rail will produce upward magnetic

field by being  counterclockwise as the picture correctly shows.

Figure 2: Solution of problem 1.

(dissipated in the lines) is Pa = I2
rmsR = (10 A)2580 Ω = 58 kW. (ii) A relative small fraction is

lost in the lines Pa
P = 58 kW

5 MW = 0.01 = 1%. (iii) If the power were send at 4.5 kV potential difference,

the current in the grid (transmission lines) should be much larger Irms,c = P
Vrms,c

= 5 MW
4.5 kV = 1.1 kA.

But even if nothing were connected at the end of the lines, with the potential difference of 4.5 kV,

the current in the lines would be Irms,max =
Vrms,c

R = 4.5 kV
58 Ω = 77 A. It would be impossible to send

5 MW of power into the lines.
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Section 33.1 AC Sources

Section 33.2 Resistors in an AC Circuit

1. The rms output voltage of an AC source is 200 V and the
operating frequency is 100 Hz. Write the equation giving
the output voltage as a function of time.

2. (a) What is the resistance of a lightbulb that uses an
average power of 75.0 W when connected to a 60.0-Hz
power source having a maximum voltage of 170 V?
(b) What If? What is the resistance of a 100-W bulb?

3. An AC power supply produces a maximum voltage
!Vmax " 100 V. This power supply is connected to a 24.0-#
resistor, and the current and resistor voltage are measured
with an ideal AC ammeter and voltmeter, as shown in
Figure P33.3. What does each meter read? Note that an
ideal ammeter has zero resistance and that an ideal
voltmeter has infinite resistance.

7. An audio amplifier, represented by the AC source and
resistor in Figure P33.7, delivers to the speaker alternating
voltage at audio frequencies. If the source voltage has
an amplitude of 15.0 V, R " 8.20 #, and the speaker is
equivalent to a resistance of 10.4 #, what is the time-
averaged power transferred to it?

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide

= coached solution with hints available at http://www.pse6.com = computer useful in solving problem

= paired numerical and symbolic problems

P R O B L E M S

Note: Assume all AC voltages and currents are sinusoidal,
unless stated otherwise.
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∆Vmax = 100 V

Figure P33.3
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R
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4. In the simple AC circuit shown in Figure 33.2, R " 70.0 #
and !v " !Vmax sin $t. (a) If !vR " 0.250 !Vmax for the
first time at t " 0.010 0 s, what is the angular frequency of
the source? (b) What is the next value of t for which
!vR " 0.250 !Vmax?

The current in the circuit shown in Figure 33.2 equals
60.0% of the peak current at t " 7.00 ms. What is the
smallest frequency of the source that gives this current?

6. Figure P33.6 shows three lamps connected to a 120-V AC
(rms) household supply voltage. Lamps 1 and 2 have
150-W bulbs; lamp 3 has a 100-W bulb. Find the rms
current and resistance of each bulb.

5.

Section 33.3 Inductors in an AC Circuit

8. An inductor is connected to a 20.0-Hz power supply that
produces a 50.0-V rms voltage. What inductance is needed
to keep the instantaneous current in the circuit below
80.0 mA?

In a purely inductive AC circuit, as shown in Figure 33.6,
!Vmax " 100 V. (a) The maximum current is 7.50 A at
50.0 Hz. Calculate the inductance L. (b) What If? At what
angular frequency $ is the maximum current 2.50 A?

10. An inductor has a 54.0-# reactance at 60.0 Hz. What is
the maximum current if this inductor is connected to a
50.0-Hz source that produces a 100-V rms voltage?

For the circuit shown in Figure 33.6, !Vmax " 80.0 V,
$ " 65.0% rad/s, and L " 70.0 mH. Calculate the current
in the inductor at t " 15.5 ms.

12. A 20.0-mH inductor is connected to a standard electrical
outlet (!V rms " 120 V; f " 60.0 Hz). Determine the
energy stored in the inductor at t " (1/180) s, assuming
that this energy is zero at t " 0.

13. Review problem. Determine the maximum magnetic flux
through an inductor connected to a standard electrical
outlet (!V rms " 120 V, f " 60.0 Hz).

11.

9.

Figure 3: Problem 2.

  
 
Figure 12.2.6 (a) Time dependence of ( )CI t  and across the capacitor. (b) Phasor 
diagram for the capacitive circuit. 

( )CV t

 
Notice that at , the voltage across the capacitor is zero while the current in the circuit 
is at a maximum. In fact, 

0t  
( )CI t  reaches its maximum before  by one quarter of a 

cycle (
( )CV t

/ 2I S ). Thus, we say that   
 

 

The current leads the voltage by S/2 in a capacitive circuit 
 

 
 
12.3 The RLC Series Circuit 
 
Consider now the driven series RLC circuit shown in Figure 12.3.1. 
 

 
 

Figure 12.3.1 Driven series RLC Circuit 
 
Applying Kirchhoff’s loop rule, we obtain  
 

 ( ) ( ) ( ) ( ) ( ) 0R L C
dI QV t V t V t V t V t IR L
dt C

� � �  � � �   (12.3.1) 

 
which leads to the following differential equation: 
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Figure 4: Problem 3.

  
Figure 12.8.1 Phasor diagram for the series RLC circuit for (a) L CX X! and (b) 

L CX X� . 
 

From Figure 12.8.1(a), we see that  in the inductive case and  leads 0L CV V! 0 0V
G

0I
G

 by a 
phaseI . On the other hand, in the capacitive case shown in Figure 12.8.1(b),  

and 
0 0C LV V!

0I
G

 leads  by a phase0V
G

I .  
 

4. When , or 0L CV V 0 0I  , the circuit is at resonance. The corresponding resonant 

frequency is 0 1/ LCZ  , and the power delivered to the resistor is a maximum.  
 
5.  For parallel connection, draw a phasor diagram for the currents. The amplitudes of the 

currents across all the circuit elements involved should be represented with phasors. In 
Figure 12.8.2 the phasor diagram for a parallel RLC circuit is shown for both the 
inductive case L CX X!  and the capacitive case L CX X� .  

 

  
Figure 12.8.2 Phasor diagram for the parallel RLC circuit for (a) L CX X! and (b) 

L CX X� . 
 

From Figure 12.8.2(a), we see that 0L C0I I!  in the inductive case and  leads 0V
G

0I
G

 by a 
phaseI . On the other hand, in the capacitive case shown in Figure 12.8.2(b), 0 0C LI I!  

and 0I
G

 leads  by a phase0V
G

I .  
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Figure 5: Phasor diagram for the series RLC circuit for XL > XC (left) and XL < XC (right).
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Thus, we see that the ratio of the output voltage to the input voltage is determined by the 

turn ratio . If , then , which means that the output voltage in the 

second coil is greater than the input voltage in the primary coil. A transformer with 

 is called a step-up transformer. On the other hand, if 

2 /N N 2N N! 2V V!

2N N! 2N N� , then , and 

the output voltage is smaller than the input. A transformer with 

2V V� 1

12N N�  is called a step-
down transformer. 
 
  
12.6 Parallel RLC Circuit 
 
Consider the parallel RLC circuit illustrated in Figure 12.6.1. The AC voltage source is 

0( ) sinV t V tZ . 

 

 
 

Figure 12.6.1 Parallel RLC circuit. 
 
Unlike the series RLC circuit, the instantaneous voltages across all three circuit elements 
R, L, and C are the same, and each voltage is in phase with the current through the 
resistor. However, the currents through each element will be different.  
 
In analyzing this circuit, we make use of the results discussed in Sections 12.2 – 12.4. 
The current in the resistor is  
 

 0
0

( )
( ) sin sinR

VV t
RI t t I

R R
tZ Z    (12.6.1) 

 

where 0 0 /RI V R . The voltage across the inductor is  

 

 0( ) ( ) sin L
L

dIV t V t V t L
dt

Z    (12.6.2) 

which gives 
 

 0 0 0
0

0
( ) sin ' ' cos sin sin

2 2

t

L L
L

V V VI t t dt t t I t
L L X

S SZ Z Z
Z

§ · §  �  �  ¨ ¸ ¨
© ¹ © ¹³ Z ·� ¸  (12.6.3) 
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Figure 6: Problem 4.
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5.  For parallel connection, draw a phasor diagram for the currents. The amplitudes of the 

currents across all the circuit elements involved should be represented with phasors. In 
Figure 12.8.2 the phasor diagram for a parallel RLC circuit is shown for both the 
inductive case L CX X!  and the capacitive case L CX X� .  

 

  
Figure 12.8.2 Phasor diagram for the parallel RLC circuit for (a) L CX X! and (b) 

L CX X� . 
 

From Figure 12.8.2(a), we see that 0L C0I I!  in the inductive case and  leads 0V
G

0I
G

 by a 
phaseI . On the other hand, in the capacitive case shown in Figure 12.8.2(b), 0 0C LI I!  

and 0I
G

 leads  by a phase0V
G

I .  
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Figure 7: Phasor diagram for the parallel RLC circuit for XL > XC (left) and XL < XC (right).
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  The diagram also illustrates how to find the equivalent 
complex impedance.  Note that the phase of the complex 
impedance of the resistor is 0, the phase of the complex 
impedance of the capacitor is -90° and the phase of the complex 
impedance of the inductor is 90°.  
 
Supplement. Although it is not asked in the problem, let's see 
in scale the relationship between the current (common for all 
elements) and the voltages in the circuit.  Let's assume that the 
current has value of 20 mA and at a certain instant t it is 
represented by the phasor indicated in the following figure.  In 
the figure one tic corresponds to 10 mA. 

 The complex voltage 
across the resistor can be 
found by multiplying the 
complex current (through the 
resistor) by the complex 
impedance of the resistor 

Z R 

Z 

Re

Im 

ϕ 

Z L 

Z C 

I 

V C 

V L 

ϕ 

V R 

V 

( ) ( ) RR tt ZI=V ⋅  

Consistent with the given 
values, the absolute value of 
this voltage is 
  

5 

Figure 8: Problem 5.
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  The diagram also illustrates how to find the equivalent 
complex impedance.  Note that the phase of the complex 
impedance of the resistor is 0, the phase of the complex 
impedance of the capacitor is -90° and the phase of the complex 
impedance of the inductor is 90°.  
 
Supplement. Although it is not asked in the problem, let's see 
in scale the relationship between the current (common for all 
elements) and the voltages in the circuit.  Let's assume that the 
current has value of 20 mA and at a certain instant t it is 
represented by the phasor indicated in the following figure.  In 
the figure one tic corresponds to 10 mA. 

 The complex voltage 
across the resistor can be 
found by multiplying the 
complex current (through the 
resistor) by the complex 
impedance of the resistor 

Z R 

Z 

Re

Im 

ϕ 

Z L 

Z C 

I 

V C 

V L 

ϕ 

V R 

V 

( ) ( ) RR tt ZI=V ⋅  

Consistent with the given 
values, the absolute value of 
this voltage is 
  

5 

Figure 9: Problem 6.

Problems 
15.1 Calculate the current and power factor (lagging / leading) for the following 

circuits (Fig. 15.5a-d), fed from an ac supply of 200 V. Also draw the phasor 
diagram in all cases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 

- 

200 V 

 (a)  

L R 
 

 

= 20 Ω 

jXL

= j 25 Ω

+ 

- 
  

R

L 

200 V  

 (c)  

C 

= 15 Ω 

jXL

= j25  
Ω

-jXC

=-j20 Ω C 

+ 

- 

200 V 

 (d)  

-jXC

= - j25 Ω
jXC

- j20 Ω

R =
15 Ω

Fig. 15.5

C 

+ 

- 

200 V

 (b)  

R = 
25 Ω 

- jXC

= -j20 Ω 

15.2 A voltage of 200 V is applied to a pure resistor (R), a pure capacitor, C and a 
lossy inductor coil, all of them connected in parallel. The total current is 2.4 A, 
while the component currents are 1.5, 2.0 and 1.2 A respectively. Find the total 
power factor and also the power factor of the coil. Draw the phasor diagram. 

 
15.3 A 200 V. 50Hz supply is connected to a lamp having a rating of 100 V, 200 W, in 

series with a pure inductance, L, such that the total power consumed is the same, 
i.e. 200W. Find the value of L.  

  A capacitance, C is now connected across the supply. Find value of C, to bring 
the supply power factor to unity (1.0). Draw the phasor diagram in the second 
case. 

 
 
1.(a) Find the value of the load resistance (RL) to be connected in series with a real 
 voltage source (VS + RS in series), such that maximum power is transferred from 
 the above source to the load resistance.  
 

 (b) Find the voltage was 8Ω resistance in the circuit shown in Fig. 1(b).  
 
2.(a) Find the Theremin’s equivalent circuit (draw the ckt.) between the terminals A + B,  
  of the circuit shown in Fig. 2(a).  
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Figure 10: Problem 7.

Thus the total vertical component, IV D !2.926 C 2.262

D −0.664 A
IH and IV are shown in Figure 16.7, from which,

I D
√
[◃2.342▹2 C ◃!0.664▹2] D 2.434 A

Angle # D arctan
(0.664
2.342

)
D 15.83° D 15°500 lagging

Figure 16.7
Hence the supply current I = 2.434 A lagging V by 15°50′.

(d) Circuit impedance, Z D V
I

D 240
2.434

D 98.60 Z

(e) Power consumed, P D VI cos# D ◃240▹◃2.434▹ cos 15°500

D 562 W

(Alternatively, P D IR
2R D ILR

2R (in this case)

D ◃3.748▹2◃40▹ D 562 W▹

(f) Apparent power, S D VI D ◃240▹◃2.434▹ D 584.2 VA

(g) Reactive power, Q D VI sin# D ◃240▹◃2.434▹◃sin 15°500▹

D 159.4 var

Problem 7. A coil of inductance 0.12 H and resistance 3 k$ is
connected in parallel with a 0.02 µF capacitor and is supplied at
40 V at a frequency of 5 kHz. Determine (a) the current in the coil,
and (b) the current in the capacitor. (c) Draw to scale the phasor
diagram and measure the supply current and its phase angle; check
the answer by calculation. Determine (d) the circuit impedance and
(e) the power consumed.

The circuit diagram is shown in Figure 16.8(a).

(a) Inductive reactance, XL D 2%fL D 2%◃5000▹◃0.12▹ D 3770 $

Impedance of coil, Z1 D
√

◃R2 C XL
2▹ D

√
[◃3000▹2 C ◃3770▹2]

D 4818 $

Current in coil, ILR D V
Z1

D 40
4818

D 8.30 mA

Branch phase angle # D arctan
XL

R
D arctan

3770
3000

D 51.5° laggingFigure 16.8

mywbut.com
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Figure 11: Solution of problem 7.



 

 Problem 33.43 
 
A transmission line that has a resistance per unit length of 4.5⋅10-4 Ω/m is to 
be used to transmit 5 MW over 400 miles (6.44⋅105 m). The output voltage of 
the generator is 4.5 kV. (a) What is the line loss if a transformer is used to step 
up the voltage to 500 kV? (b) What fraction of the input power is lost to the 
line under these circumstances? (c) What difficulties would be encountered in 
attempting to transmit the 5 MW at the generator voltage of 4.5 kV 
 
 
 
 
 

 

5 MW 

500 kV 
or 

4.5 kV 

L = 6.44⋅105 m

λ = 4.5⋅10-4 Ω/m 

 
 
a) In order to send out power of P = 5MW at 500 kV potential 
difference, the current in the grid (transmission lines) must be 

 A10
V

PI
a,rms

a,rms ==  

The resistance of the two wires of the transmission lines 
(connected is series) is 
 Ω=λ⋅⋅= 580L2R   
Hence the loss of power in the lines (dissipated in the lines) is 
  ( ) kW58580A10RIP 22

rmsa =Ω=⋅=

b) Relative small fraction is lost in the lines 

 %101.0
mW5
kW58

P
Pa ===  

6 

Figure 12: Problem 8.


