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ABSTRACT: The concept that a fluid has a position-dependent free energy
density appears in the literature but has not been fully developed or accepted. We
set this concept on an unambiguous theoretical footing via the following strategy.
First, we set forth four desiderata that should be satisfied by any definition of the
position-dependent free energy density, f(R), in a system comprising only a fluid
and a rigid solute: its volume integral, plus the fixed internal energy of the solute,
should be the system free energy; it deviates from its bulk value, f bulk, near a solute
but should asymptotically approach f bulk with increasing distance from the solute; it
should go to zero where the solvent density goes to zero; and it should be well-
defined in the most general case of a fluid made up of flexible molecules with an
arbitrary interaction potential. Second, we use statistical thermodynamics to
formulate a definition of the free energy density that satisfies these desiderata. Third, we show how any free energy density satisfying
the desiderata may be used to analyze molecular processes in solution. In particular, because the spatial integral of f(R) equals the
free energy of the system, it can be used to compute free energy changes that result from the rearrangement of solutes as well as the
forces exerted on the solutes by the solvent. This enables the use of a thermodynamic analysis of water in protein binding sites to
inform ligand design. Finally, we discuss related literature and address published concerns regarding the thermodynamic plausibility
of a position-dependent free energy density. The theory presented here has applications in theoretical and computational chemistry
and may be further generalizable beyond fluids, such as to solids and macromolecules.

1. INTRODUCTION
The molecules of living systems reside in an aqueous solvent,
and most laboratory and industrial chemistry takes place in
either an aqueous or an organic solvent. In all of these settings,
the solvent can strongly influence the thermodynamics of
important processes, such as conformational changes of the
solute (e.g., protein folding1−4), molecular binding events (such
as protein−protein and protein−drug association5−11), and
chemical reactions.12 To understand how solvent affects
chemistry and to support various applications, researchers
have developed theories and associated computational tools to
optimize the conformational sampling of solvent configurations
in and around solute molecules in molecular simulations,13−24

and that spatially resolve a solute’s solvation free energy (and
sometimes its enthalpy and entropy) into contributions from
locations around the solute. Approaches to the spatial mapping
of solvation thermodynamics include inhomogeneous solvation
theory (IST),25−28 which underpins the WaterMap,29−31

STOW,32 Grid Inhomogeneous Solvation Theory
(GIST),33−39 and related40,41 technologies, classical density
functional theory (DFT),42−45 Grid-Cell Theory (GCT),46 the
three-dimensional reference interaction site model (3D-
RISM),47−50 and others,51−55 as recently reviewed.56 Such
spatial decompositions have been of particular interest in studies
of the physical chemistry of noncovalent binding33,57−62 and as
guides to host−guest chemistry and structure-based drug
design.63−72 For example, a ligand that displaces thermodynami-

cally unfavorable water from a receptor site is expected to bind
the receptor more tightly than one that does not, other things
being equal.29,35,73 Alternatively, a modification to the ligand
that stabilizes water within the site may enhance binding.9,74−79

This body of work assumes that one can meaningfully discuss
the local densities of free energy, enthalpy, and entropy in a fluid
and that concepts such as “unfavorable”, “disfavored”,
“unstable”, “high energy”, or “low entropy” water are well-
founded in theory.

There are macroscopic precedents for the spatial localization
of thermodynamic properties in a material at equilibrium. The
surface tension of a liquid is a particularly clear-cut case. The
total free energy of, for example, a large water droplet increases
in proportion to its surface area, while the properties of water
deep within the droplet are essentially those of the bulk (i.e.,
unperturbed) liquid. It is thus evident that water at and near the
surface makes a different contribution to the system free energy
than bulk water away from the surface. Another example comes
from macroscopic electrostatic theory, which is the foundation
of widely used implicit solvent models.80−84 Thus, classical
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electrostatics provides a well-defined, position-dependent free
energy density, ϵE2(R)/2, associated with an electrical field
E(R) at location R in a medium with a uniform (i.e., not
position-dependent) dielectric constant ϵ. This is a free energy
density, rather than a potential energy density, because the
dielectric response can include a contribution from orientational
polarization,85 which is associated with a change in entropy and
which makes the dielectric constant, and hence the field energy,
temperature-dependent.

There are also microscopic perspectives that support the
legitimacy of a spatial decomposition of solvation thermody-
namics. In 1955, Stratonovich derived an expression for the
entropy in a subvolume of a container of interacting particles,
subject to the physically reasonable requirement that particle−
particle correlations die off quickly enough with distance.86 A
few years later, Nettleton and Green built on this work to
provide an expression for the entropy density in a subvolume of a
fluid in terms of potentials of mean force.87 These early efforts
set the stage for the subsequent derivation of IST, referenced
above. More recently, the expectation that solvation thermody-
namics is local to the solute was used by Gallicchio and co-
workers to facilitate simulation studies of solvation.88

Furthermore, Chen and workers documented excellent agree-
ment between the numerical integral of the hydration enthalpy
density near a solute, computed with GIST, with the result
provided by a reliable reference method, while addition of an
IST-based entropy approximation yielded hydration free
energies close to those obtained by formal thermodynamic
integration.89 Classical density function theory (DFT) of fluids
also offers various approaches to the formulation of a free energy
density,43,90−92 and the three-dimensional reference interaction
site model (3D-RISM), an integral equation approach to
solvation, can yield a position-dependent free energy density
around a solute.47,50

Nonetheless, the concept that the density of free energy,
energy, or entropy, in the presence of an inhomogeneity, can be
regarded as a spatially varying, localizable quantity is subject to
controversy. (Here, the inhomogeneity usually is a solute or
interface, but it can be anything whose interaction with the fluid
varies with position.) Thus, Ben-Naim93−95 and Ben-Amotz96,97

have argued that, because the chemical potential of the solvent is
not a function of position, even in the presence of an
inhomogeneity, and because the chemical potential is a measure
of stability, it does not make sense to speak of a free energy
density that varies with position. Similarly, it has been asked
whether it makes sense to speak of “thermodynamically
unfavorable” water at a given location in a system at equilibrium,
given that water is in fact at that location: after all, if it is
unfavorable there, should it not go somewhere else?98,99 In
addition, the existence of distinct, competing, formulations of
the solvation free energy density, such as IST, GCT, 3DRISM,
and classical DFT, raises the question of how to compare their
validity and usefulness, as recently highlighted by Persson.99

Motivated by its practical value and the controversies it has
generated, we offer a new analysis of this topic. First, in Section
2, we lay out a set of desiderata that a free energy, enthalpy, or
entropy density should satisfy to be physically meaningful and
useful. Section 3 summarizes definitions of the free energy
density, energy density, and entropy density that are expected to
satisfy the present desiderata for fluids with arbitrary potential
functions, made up of either rigid or flexible molecules. (We do
not insist, however, that these are the only definitions that could
satisfy the desiderata.) Section 4 connects the free energy

density to solvation free energy and surface tension and
introduces a useful definition of the local chemical potential of
a fluid. Section 5 discusses the concept of “thermodynamically
unfavorable solvent” and resolves the apparent paradox that a
system at equilibrium can nonetheless have regions where the
fluid is thermodynamically unfavorable. Section 6 discusses the
application of these concepts to noncovalent binding in solution,
with a focus on applications to protein−ligand binding. Sections
7−9 provide derivations of the thermodynamic densities
summarized in Section 3, offer insights into the various terms
of the energy and entropy densities, and consider the
relationship of the present theory to prior work. The Supporting
Information provides derivations of the solvation free energy in
terms of a local integral of the free energy density, a surface-
energy analysis of dewetting of the gap between parallel plates in
a liquid, a demonstration that our expression for the entropy
density yields the correct result, i.e., the Sackur−Tetrode
equation, in the special case of an ideal gas, and an approach to
defining the energy density for an arbitrary potential function.

2. DESIDERATA FOR THE FREE ENERGYDENSITY OF A
FLUID

Because multiple definitions of the free energy density of a fluid
may be proposed, at least in principle, it is useful to lay out the
desiderata that we think any definition of free energy density,
f(R), of a fluid as a function of location in the lab frame, R,
should satisfy for it to be useful and physically coherent. In the
following, we write only f(R), but analogous desiderata apply to
the potential energy and entropy densities, u(R) and s(R).

To be definite, we first specify the general nature of the system
under discussion. We consider the Helmholtz free energy, F, of
an equilibrium system of N solvent molecules at 1 atm pressure,
temperature T, and volume V. There may also be a single
inhomogeneity, such as a solute or an interface, which is rigid
and fixed in the laboratory frame of reference. The value of N is
large enough that the chemical potential of solvent, even in the
presence of any inhomogeneity, closely approximates the value
for bulk solvent μbulk = Fbulk/N at the same pressure as the system
of interest so that the number density of solvent far from the
inhomogeneity closely approximates the bulk density of the
fluid, ρbulk. The Helmholtz free energy of the system is F = −RT
ln ∫ e−βU(r d

N)drN, where U(rN) is the potential energy as a
function of the translation, rotational, and internal coordinates
of the solvent molecules, rN.

With this general system in mind, we propose the following
desiderata for the Helmholtz free energy density of the fluid in
the absence or presence of an inhomogeneity:

1. The Helmholtz free energy of the system should be given
by the integral of the free energy density over the volume
of the fluid, i.e., F = ∫ f(R) dR, where R is the coordinates
of a point within the volume, plus the internal energy of
the rigid solute. This should hold in both the absence and
presence of an inhomogeneity. In the absence of an
inhomogeneity, the free energy density should be
independent of R and thus must equal f bulk = μbulkρbulk.
This is the most fundamental requirement of a free energy
density.

2. Near the inhomogeneity, if one is present, the free energy
density can deviate from f bulk, but it should asymptotically
approach f bulk with increasing distance from the
inhomogeneity. This makes physical sense, enables useful
applications, and avoids a trivial definition of the free
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energy density as the product of the chemical potential
and the number density.

3. The free energy density should go to zero where the
density of the fluid goes to zero so that the free energy
density is clearly connected with the molecules of the fluid
and so that one can reason about the thermodynamic
consequences of displacing solvent from the neighbor-
hood of a solute, as detailed in Section 6.2.

4. The free energy density should be definable not only for a
pairwise additive potential function acting among rigid
molecules but also for potential functions of any higher
order, including ones without a known multibody
expansion, and for flexible molecules, so that the free
energy can be understood as a physical quantity rather
than a mathematical construct that might apply only in
artificial special cases.

In summary, the free energy density of a fluid is a scalar field
whose integral over the entire volume of the fluid (plus the
internal energy of any rigid solutes or inhomogeneities present)
equals the system free energy, and which is expected to trend
asymptotically to the bulk value of the solvent with increasing
distance from an inhomogeneity or solute. There may be
systems for which no definition of the local free energy density
can satisfy Desideratum D2, notably a fluid near its critical point,
because this can exhibit such long-ranged correlations that the
perturbation induced by an inhomogeneity cannot be
localized99 as required by Desideratum D2. However, we
anticipate that the solvation of an inhomogeneity is local enough
for most fluid systems of chemical and biological interest that
Desideratum D2 is satisfied, as discussed in Section 3 and
previously demonstrated in several examples.89,100 Although this
paper, for simplicity, focuses on rigid solutes and inhomogene-
ities, the present theory can be generalized to address
conformational flexible solutes and inhomogeneities in fluids.

3. CONSTRUCTING A FREE ENERGY DENSITY
This section proposes a formulation of the free energy density, as
well as the energy and entropy densities, of a fluid that we believe
satisfies the desiderata, at least in many cases of interest. The free
energy density as a function of position in the lab frame of
reference, f(R), will be written in terms of the potential energy
density u(R) and the entropy density s(R). In turn, the potential
energy density, which will be termed the energy density, and the
entropy density are both written as multibody expansions that
converge to the exact result at full order:

=

= + + +

= + + +

f u Ts

u u u u

s

R R R

R R R R

R R R R

( ) ( ) ( )

( ) ( )
1
2

( )
1
3

( ) ...

( ) s ( )
1
2

s ( )
1
3

s ( ) ...

(1) (2) (3)

(1) (2) (3)

(1)

Here, u(n)(R) is the thermodynamic mean of the sum of all n-
body interactions engaged in by molecules at R, including their
interactions with any solute or inhomogeneity that may be
present. For example, u(2)(R) is the mean pair interaction of
molecules at R with all other molecules in the system. The
factors of

n
1 ensure that U = ∫ u(R) dR and that the n-body

energy contribution from each n-tuple of molecules is
distributed equally among its n molecules. Similarly, s(1)(R) is
the one-body entropy of molecules at R, and s(n)(R) for n > 1

accounts for the total mutual information of order n of the
molecules at R with all other molecules in the system. The
expressions in eq 1 are developed in Section 7, which explicitly
links them to the total free energy, energy, and entropy and thus
makes clear that they satisfy Desideratum D1.

Because both intermolecular interactions and intermolecular
correlations die away with distance in a fluid (away from its
critical point), these local thermodynamic quantities approach
their bulk values with increasing distance from a heterogeneity,
as required for Desideratum D2. Indeed, even the longest-
ranged perturbations in the free energy density of a liquid, those
induced by a solute with a nonzero net electrical charge, will
normally die off as r4, where r is the distance from the solute. In
this case, classical electrostatics and dielectric theory are
expected to give an increasingly accurate estimate of the energy
density of the field with increasing range as ϵE2(R)/2, where ϵ is
the dielectric constant of the liquid and E(R) is the magnitude of
the electrical field generated by the solute. Because the field
strength dies off as r−2, the energy density dies off as r−4,
implying only a local perturbation of the liquid by a charged
solute. It has also been shown that the contribution of
orientational correlations to the entropy of liquid water derives
almost entirely from correlations among water molecules in each
other’s first hydration shells.101

The thermodynamic densities proposed in eq 1 go to zero,
where the fluid density is zero, as required by Desideratum D3.
To satisfy Desideratum D4, Section 7.2 defines an entropy
density that accounts for conformational flexibility of the
molecules of the fluid, and Section 7.3 and the Supporting
Information show that the energy density may be defined even if
one does not have an explicit multibody expression for the
potential function.

The energy and entropy densities in eq 1 may be estimated
using a molecular simulation of solvent molecules with or
without a solute molecule fixed in the lab frame, much as done
currently with the GIST method.33 For a pairwise additive
potential function, such as the AMBER,102 CHARMM,103

OPLS,104 or OpenFF105 force fields, the energy density
expansion terminates after the pairwise term and is reasonably
straightforward to evaluate. However, estimating mutual
information requires extensive sampling (i.e., long simulations),
and it may be difficult to generate well converged results even for
the pairwise term in the entropy expansion.34,101,106,107

We have focused so far on the Helmholtz free energy density,
as this is a simple sum of the potential energy density and the
entropy density. However, when considering a process (such as
adding a solute to solvent) carried out at constant pressure, one
is generally more interested in the change in the Gibbs free
energy because this equals the reversible work associated with
the constant-pressure process. The difference between the
Helmholtz free energy and the Gibbs free energy is PV. For
many processes of interest, the change in PV is trivially small;
therefore, it is often neglected. Nonetheless, it is of interest to
consider a density formulation of this term. We propose that a
natural definition of the “PV density” δPV(R) is the product of
the number density of each molecular species, s, present in the
system as a function of position, ρs(R), and the partial molar
volume of the species vs:

= vR R( ) ( )PV
s

s s
(2)

In the systems considered here, the molecular species would be
the solvent and, if present, the solute. Note that this definition
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will, in general, place a small amount of Gibbs free energy
density in the solvent-excluded region of a solute, so the Gibbs
free energy density will not fully satisfy Desideratum D3.

4. SOLVATION THERMODYNAMICS, SURFACE
TENSION, AND A DEFINITION OF THE LOCAL
CHEMICAL POTENTIAL

The free energy of solvation, ΔFsolv, is the change in free energy
of the system between an initial state comprising the solute
molecule at a fixed location in vacuum and a container with N
solvent molecules located far enough from the solute that their
interactions are negligible and a final state with the solute at a
fixed location within the container of solvent, with both systems
at the same pressure, so that the free energy density of the fluid
far from the solute is the same as the bulk or pure value for both
systemsa. Desideratum 1 implies that the Helmholtz solvation
free energy for this process can be written as the difference
between the integrals of the solvent free energy density with and
without the solute, i.e., in the final and initial states of the
solvation process, where both integrals are taken over the entire
volume of the respective systems and hence encompass the same
number of solvent molecules. (Note that due to the constant
pressure condition, the second volume is larger than the first by
VS, the partial molar volume of the solute.) That is,

=

=

= =

F F F

F f

F Vf N

R R( )d

solv bulk

bulk bulk bulk (3)

where f(R) is the free energy density of the liquid in the presence
of the solute, F and Fbulk are the free energies of the final (solute
in solvent) and initial (bulk solvent) states, respectively, and V in
line 3 is that of the pure solvent, while the volume of the solvent/
solute system is V +VS. Desideratum 2 implies that the change in
the Helmholtz free energy upon solvation can be approximated
via an integral over only the region of space near the solute,
where the free energy density and number density as a function
of position differ significantly from bulk:108

F f NR R( )dsolv
near

near bulk (4)

where Nnear is the mean number of water molecules in the “near”
region. This result is derived in the Supporting Information. For
a free energy density satisfying Desideratum D2, the
approximation in eq 4 will asymptotically approach the exact
result with increasing the size of the “near” region.

Note that the reversible work of inserting the solute at
constant pressure is not the change in the Helmholtz free energy
at constant pressure considered above but the change in the
Gibbs free energy. To obtain this, one must add Δ(PV) = PΔV.
This PV contribution, which represents the work done by the
system on its surroundings and is negligibly small for many
processes of interest, is considered at the end of Section 3.

We furthermore define the solvation free energy density as a
function of position, ϕ(R):

= fR R R( ) ( ) ( ) bulk (5)

where ρ(R) is the number density in the presence of the solute.
Note that ϕ(R) is expected to asymptotically approach zero with
increasing distance from the solute so that

=F R R R R( )d ( )dsolv
near (6)

The parallelism of the two terms on the right-hand side of eq 5
leads naturally to the definition of a local chemical potential as

= f
R

R
R

( )
( )
( ) (7)

so that

= [ ]R R R( ) ( ) ( )bulk (8)

Closely related expressions have appeared previously in
applications of IST42,109 and the classical DFT of liquids.90,91

Analogous molar quantities for the potential energy and entropy
may also be defined as u(R)/ρ(R) and s(R)/ρ(R), respectively.

Note that μ(R) is not the work of inserting a solvent molecule
at R, except in the limit where R is far enough from the solute
that μ(R) goes to μbulk. Note, too, that μ(R) is not the excess
chemical potential μex(R). The latter is given by110,111 μex(R) =
μbulk − RT ln ρ(R), and integrating ρ(R)μex(R) does not yield
the system free energy or a solvation free energy, so it does not
satisfy or connect in any clear way with the Desiderata in Section
2, particularly D1, which requires that the volume integral of the
free energy density yield the free energy. In fact, as previously
pointed out,42 the excess chemical potential is the same as the
free energy density associated with the first-order entropy term
of IST.

Like the liquid near a solute, the liquid at a liquid−vapor
interface will in general have a perturbed free energy density
( f(R) > fbulk) and hence a nonzero solvation free energy density
(ϕ(R) > 0). For a sufficiently expansive system, such as a
macroscopic water drop, ϕ(R) varies along only the surface
normal, z. For a system at equilibrium, the local chemical
potential μ(z) asymptotically approaches the same bulk value
μbulk deep in the liquid (z≫ 0) and deep in the vapor phase (z≪
0), so ϕ(z) → 0 deep in each phase, per eq 8. Thus, a graph of
ϕ(z) has the general form shown in Figure 1. Because the surface

tension of the liquid, γ, is the increment in the system free energy
per unit surface area, it is apparent that the surface tension is
given by the line integral of ϕ(z) through its peak:

= z z( )d
z

z

g

l

(9)

where the limits of integration, (zg, zl), must fully contain the
peak of ϕ(z), and γ approaches its exact value as the integration
domain expands into each phase. Note that this approach to the
surface tension, which appears to be novel (though prefigured by
Lazaridis27), does not require one to choose a potentially
arbitrary definition of the location of the surface along the z axis.
We have thus derived the well-accepted concept of the surface

Figure 1. Qualitative depiction of the solvation free energy density as a
function of position along the vector (z coordinate) normal to a locally
flat vapor−liquid interface.
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tension from the less familiar concept of a free energy density
that varies with position in a system at equilibrium.

To the extent that the interface is rough on a size scale less
than or equal to the distance over which molecules of the liquid
are correlated, the definition of the surface tension becomes
ambiguous, because the local surface normals can intersect
within the perturbed region just below the surface, making it
unclear which part of the surface, or surface element, should be
assigned the free energy density of the nearby liquid. Similarly, if
the distance separating two interfaces (e.g., two nonpolar plates)
is larger than the correlation length of the liquid, then one may
readily define the surface tension at each interface, but if the
distance becomes smaller than the correlation length, the
effective surface tension at each interface will change and may
become difficult to define.

5. THERMODYNAMICALLY UNFAVORABLE SOLVENT,
SOLVENT STABILITY, AND DEWETTING

To discuss this topic rigorously, we start by defining key terms.
Thermodynamically unfavorable solvent is defined as solvent
whose local chemical potential (eq 7) is greater than the fluid’s
bulk chemical potential (i.e., μ(R) > μbulk) due to interactions
with a nearby solute or inhomogeneity. Conversely, thermody-
namically favorable solvent is said to exist where μ(R) < μbulk.
We define thermodynamic favorability in terms of the local
chemical potential, μ(R), rather than the free energy density,
f(R), for two reasons. First, this definition avoids classifying bulk
vapor as being either favorable or unfavorable relative to a liquid
phase with which it is at equilibrium: although the local chemical
potentials of these two phases are the same, their free energy
densities differ due to the large difference between their
respective number densities. Second, the thermodynamically
favorability defined in terms of μ(R) has a specific physical
meaning: thermodynamically favorable and unfavorable solvent
regions make, respectively, favorable and unfavorable contribu-
tion to the solvation free energy of the solute or inhomogeneity,
per eq 6 and 8.

Note, however, that the integrals of ϕ(R) or f(R) over a
subregion of the system do not yield the free energy change of
removing the solvent from the subregion. They are merely the
contributions of the subregion to the overall solvation free
energy, ΔFsolv, or free energy, F, respectively, of the current state
of the system, in their integral formulations (eq 6 and 3),
respectively). Accordingly, we recommend not using the phrase

“unstable solvent” for thermodynamically unfavorable solvent.
Indeed, if the solvent is present at equilibrium, it is, manifestly,
stable. Also, to avoid confusion between potential energy and
free energy, we recommend reserving the expression “high
energy water”57,58,77,112 for water in regions where the potential
energy per molecule, u(R)/ρ(R), is greater than its bulk value.

Despite these definitions, the concept that water (for
example) may be thermodynamically disfavored in one region
relative to another, in a system at equilibrium, may seem facially
incorrect. After all, as previously remarked,98,99 if the water is
thermodynamically unfavorable there, why does it not move
someplace more favored? The resolution to this seeming
paradox is that the realizable physical process of vacating
water from such a region would generate a vapor-filled bubble,
leading to a net increase in the free energy of the system because
of the high free energy density of water at a water−vapor
interface (Figure 2a). Note that water at a vapor interface is
likely to be even more thermodynamically unfavorable than
water at the surface of a hydrophobic solute, because a
hydrophobic solute provides stabilizing dispersion interactions,
whereas the near-vacuum inside a bubble provides virtually no
stabilizing interactions.

Further insight into this issue can be gained by considering a
model system comprising two parallel, hydrophobic plates in
water (Figure S1). As detailed in the Supporting Information,
thermodynamically unfavorable water will be present in the
space between the plates unless they are close enough together
that the free energy cost of forming a new cylindrical vapor−
water interface around the newly vacated (i.e., dewetted) region
between the plates is low enough.113 Because the area of the new
vapor−water interface is proportional to the distance between
the plates, dewetting occurs only when the distance between the
plates falls below a threshold, which can be determined from the
parameters of the problem. This example highlights the
distinction between thermodynamic unfavorability, as defined
here, and stability, with the latter being defined based on
physically realizable and clearly specified initial and final states of
the system. Section 6.2 develops these concepts further in the
context of ligand−protein binding.

Note that unfavorable water can generate forces on solutes
and inhomogeneities and can do work if the solutes or
inhomogeneities are movable. For example, the binding of two
hydrophobic molecules in solution is driven by the “release” of
unfavorable water from their surfaces into the bulk upon

Figure 2. Hypothetical dewetting of a protein binding site. Left: the hydrophobic surface of the binding site contains thermodynamically unfavorable
water (pale red). Right: if the binding site water relocates to the bulk solvent, then the binding site is occupied by a bubble whose interface with the
solvent induces highly unfavorable water (deep red). Therefore, the system with the binding site filled with mildly unfavorable water (left) is more
stable overall than the system with the empty binding site (right).
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binding, leading to a fall in the overall free energy of the system.
A nonspherical water drop in zero gravity provides another
example: here, the high local chemical potential of water at the
surface, manifested as surface tension, drives the drop to become
spherical. The change in shape reduces the number of
unfavorable surface waters, releasing them instead into the
bulk at the interior of the drop and again lowering the overall
system free energy. Similarly, the free energy falls when two
spherical water drops merge to form a single spherical drop
because the single drop has a smaller surface area and hence less
thermodynamically unfavorable water. More generally, the fact
that water is at equilibrium does not imply that there is no stored
free energy in the water at the surface of a hydrophobic solute,
much as an equilibrium system comprising a spring compressed
in a clamp has energy stored in the spring. Note, too, that the
mechanical energy density is much higher in the spring than in
the clamp, so again, we have a system at equilibrium with varying
energy densities in its different parts.

It has been argued that the presence of unfavorable water at
the surfaces of two hydrophobic solutes in water cannot explain
their tendency to associate with each other because the chemical
potential of water near the solute is the same as the chemical
potential of water far from the solute.93,97,98 However, the
chemical potential is not a suitable quantity to assess a position-
dependent free energy density. The chemical potential of water
is the change in system free energy upon adding one
unrestrained water molecule to the system.114 Even if one
computes the work of initially adding a water molecule at a fixed
position near a solute, one must then add in the work of releasing
it to wander the whole system like all the other water molecules.
The same goes for a calculation where the water molecule is
initially added far from the solute. If one obtains different results
from these two calculations, then one must be computing
something other than the chemical potential. Thus, the chemical
potential is incapable of reporting the local properties of the
solvent in a system at equilibrium. In contrast, the free energy
density and local chemical potential developed in the present
work are localizable via their construction in terms of local
molecular interactions and correlations (eq 1), and the spatial
integral of the free energy density gives the free energy of the
system and therefore can be used to compute free energy
changes that result from the rearrangement of solutes as well as
the forces exerted on the solutes by the solvent.

6. CONTRIBUTIONS OF SOLVATION TO BINDING
THERMODYNAMICS
6.1. Binding and Solvent Free Energy Density. The

theory presented above provides a framework to analyze the role

of solvation free energy in the association of two molecules in
solution, such as a protein and a small molecule ligand. Once
again, it is essential to consider the initial and final states of the
system. To focus on the contribution of the solvent to the
binding free energy, we consider the association of a rigid
receptor and a rigid ligand (Figure 3A) to form a rigid complex
(Figure 3B), where the free and bound species are all considered
to be rotationally and translationally fixed. However, these ideas
may be generalized to models with full solute degrees of
freedom. With these simplifications, the binding free energy may
be written as

= +

=

F U F

F R r R r( )d ( )d

bind PL solv

solv PL P&L (10)

where ΔUPL is the interaction potential energy between the
protein and ligand in the bound state, ΔΔFsolv is the change in
the solvation free energy of the two solutes upon binding,
ϕPL(R) is the solvation free energy density around the protein−
ligand complex, and ϕP&L(R)is the solvation free energy density
fields around the free protein (P) and ligand (L) far apart in
solution. The integrals are over the entire volume of the system,
and the coordinates of the protein are considered to remain
unchanged on binding. (Note that maintaining the pressure at 1
atm means that there will, in general, be a small difference in the
volume of the system before and after binding because the sum
of the partial molar volumes of the protein and ligand is not
identical to the partial molar volume of their bound complex.)
Because the solvation free energy densities are expressed as
volume integrals, partitioning the system into subvolumes allows
partitioning the change in solvation free energy on binding into
various contributions, and any such partitioning is valid as long
as it encompasses the entire volume of the system. One can also
construct efficient approximations by focusing only on regions
near enough to the solutes that ϕPL(R) − ϕP&L(R) deviates
significantly from zero.
6.2. Initial State Displacement Approximation. In prior

work, we35,115,116 and others31,73,117 have used what we will term
the initial state displacement (ISD) approximation to estimate
the solvent contribution to the protein−ligand binding free
energy. This approximation is based upon the supposition that
the main contributions to ΔFsolv come from the displacement of
water from the binding site by the ligand and the desolvation of
the ligand on binding. The region from which water will be
displaced, Vdisp, is demarcated by a dashed red line in Figure 3A
and is covered by the ligand (orange) in Figure 3B. Thus, we
have

Figure 3.Displacement and restructuring of binding site water upon ligand binding. (A) Protein (green) surrounded by thermodynamically perturbed
(favorably or unfavorably) water (upward hatching) and an unbound ligand (orange) surrounded by thermodynamically perturbed water (downward
hatching). (B) Protein−ligand complex where the ligand has displaced water from region Vdisp, demarcated by the red dashed boundary in panel A, and
water in region Vrestr (cross-hatched) has been restructured so that its thermodynamic properties differ from both those of the corresponding regions
around the free ligand and protein.
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where Vlig is the region near the uncomplexed ligand where the
solvation free energy density is significantly different from zero.
The second equality stems from the fact that there is, by
definition, no water in the displacement volume in the bound
state (PL), so the solvation free energy density is zero there, in
accordance with Desideratum 3. The final equality is provided
mainly for completeness because applications of the ISD
approximation typically handle the change in solvation of the
ligand by some auxiliary method, rather than by integrating its
solvation free energy density, although this approach could, in
principle, be used. Note that ΔFdisp does not correspond to the
actual physical process of vacating of water from the binding
pocket but is simply the integral of −ϕP&L(R) within the
displacement volume. In contrast, physically vacating the water
from this region would lead to the thermodynamically costly
formation of a vacuum−liquid interface, as discussed in Section
5. Note, too, that the entire displacement approximation is
predicated on the applicability of Desideratum 3 since this
requires that solvent is present everywhere that the free energy
density is nonzero and that the free energy density goes to zero
wherever solvent has been displaced.

The ISD approximation leads to the design concept that one
may boost ligand affinity by identifying unfavorable regions of
solvation free energy in the binding site of the free protein and
ensuring that such regions are nonexistent in the bound state.
Multiple studies have used this approximation to inform rational
lead compound modification, where the initial state is the
protein complexed with an unmodified ligand, and the final state
is the protein complexed with a modified ligand. In addition,
we116 and Uehara and Tanaka117 have used this approximation
in protein−ligand docking calculations by mapping out regions
in the binding site of the unbound protein that contain

thermodynamically unfavorable water and accounting for ligand
occupancy of these regions with a modified scoring function.
This solvent-centric perspective must, of course, be integrated
with other determinants of affinity such as direct ligand−protein
interactions, ligand desolvation, configurational entropy, and
proptein and ligand strain.

The free energy density of binding site water may also be
useful in assessing the druggability of a binding pocket because
the presence of unfavorable water there increases the potential
for development of a ligand that gains affinity by displacing it.
This capability may be particularly relevant for tasks such as
identifying protein−protein interfaces susceptible to disruption
by small-molecule ligands, a classically difficult problem, and
determining whether a shallow allosteric site is amenable to
targeting with a high-affinity ligand. Molecular dynamics
simulations are often used to discover hitherto unknown�i.e.,
cryptic�binding pockets in proteins, and one might expect that
two cryptic sites that appear with equal probability should be
equally suitable for targeting with a small molecule drug.
However, if one site contains water that is more thermodynami-
cally unfavorable than the other, this may make it easier to target
with a high-affinity ligand due to the free energy benefit of
displacing its high free energy water to bulk.
6.3. Thermodynamic Contributions of Water Restruc-

turing around the Complex. The ISD approximation
assumes that the difference between ϕPL(R) and ϕP&L(R) is
negligible near the protein except insofar as the ligand displaces
solvent. This is partly justified by the assumption of protein
rigidity and the locality of solvent perturbations (Desideratum
D2), which, in combination, imply that the solvation free energy
density of solvent far from the binding site is likely to be
minimally changed when a ligand binds. However, although the
use of this approximation has led to some apparent successes, it
is becoming clear that the thermodynamics of restructuring
water around the protein on binding should not be neglected.
Restructuring, as opposed to simple displacement, occurs where
the water is perturbed by both the ligand and the protein in the
final state. One such scenario is illustrated in Figure 3B, where
the cross-hatched region labeled Vrestr contains water that is
strongly perturbed by both the protein and the ligand in the
bound state, and thus has been restructured by binding. The
change in solvation free energy from this region can be written as

Figure 4. A ligand integrates with an existing water network in a protein binding site. (A) Water network modeled into the binding site of the human
delta opioid receptor (PDB ID 4N6H) by explicit solvent MD simulations and analysis with SSTMAP. (B) Hydroxyl group of the crystallographic
ligand in 4N6H displaces one water from the network but maintains the rest of the network by making hydrogen bonds that mimic those made by the
displaced water. See text for citations.
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Another scenario occurs when the final state includes a water-
filled region that did not exist in the initial state, such as when the
initial state has a large ligand in the binding site and the final state
has a smaller bound ligand.22 In both scenarios, it is essential to
consider the free energy density of the final-state water in
question, because this can impact ligand affinity. Water trapped
in a hydrophobic cavity between the protein and ligand will have
a high free energy density and will therefore make an unfavorable
contribution to the overall system free energy, opposing ligand
binding. However, if the final-state water makes good hydrogen
bonds with the protein and ligand, then its free energy density
will be low, so it can make a favorable contribution to the system
free energy, favoring ligand binding.

This reorganization of binding site water has been shown to
be important in a number of studies, where a common theme is
the design of ligands that form thermodynamically favorable
interactions with retained water molecules or water networks in
the binding site.76,77,118,119 For example, in Figure 4, a ligand
hydroxyl group displaces one water from a stable water network
in human delta opioid receptor120 (modeled by molecular
dynamics and analyzed with SSTMAP37) but maintains the
network’s stability by substituting its own hydrogen bonds for
those made by the displaced water.121

7. DERIVATION OF A GENERAL FREE ENERGY
DENSITY

This section provides the theoretical underpinnings of the
density definitions in Section 3, using the mutual information
expansion for the entropy, including the case of flexible fluid
molecules and demonstrating the form of the energy density for
interaction potentials that are not pairwise additive.
7.1. SystemDefinition.We consider an equilibrium system

made up of N ≫ 1 indistinguishable molecules in a fluid state at
pressure P ∼1 atm and temperature T and enclosed in a volume
V. The system may also include a rigid solute molecule
immersed in the fluid (or another inhomogeneity, such as a free
surface) that is fixed in the lab coordinate frame. Solvent
molecule i is considered to have three translational coordinates
Ri. Unless it is monatomic, it also has orientational and internal
coordinates qi. Thus, the full coordinate set of molecule i is ri =
(Ri, qi) and the full set of system coordinates is rN = (R1, q1, ...,
RN, qN). In the classical approximation of statistical thermody-
namics, the Helmholtz free energy is given by
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whereU(rN) is the potential energy of the system as a function of
the molecular coordinates and β = 1/kBT with kB being the
Boltzmann constant. We have omitted momenta and a factor
involving Planck’s constant as these will cancel in the calculation
of any properties of interest, such as the binding free energy of
two molecules in solution.122 The factor of N! also will not
contribute but is temporarily included to clarify its appearance in
the expression for the entropy. A more complete treatment
derivation, which includes momenta, is provided in the
Supporting Information.

We consider the Helmholtz free energy rather than the Gibbs
free energy because it is simpler, captures all of the important
physics, and is close to the Gibbs energy for processes of interest
here. For applications where the Gibbs free energy is more
important, one may simply add PV to the Helmholtz free energy.
Alternatively, one may treat P as an additional contribution to
the free energy density, but this would violate Desideratum in,
for example, the case of a dewetted cavity, and it is not clear what
insight this would provide.

The ensemble averaged potential energy, U, is given by

=U p Ur r r( ) ( )dN N N
(14)

where p(rN) is the probability density over the fluid’s
coordinates:

=p
e
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The entropy is given by86

= !S k p p k Nr r r( )ln ( )d lnN N N
B B (16)

The following check confirms that this expression gives the
expected relationship between S, U, and F:
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where the second line follows from ∫ p(rN) drN = 1, the third line
follows from eq 15, and the fourth line follows from eq 13 and eq
14. Because the kB ln N! contribution to S is constant over a
change in the probability density, such as that induced by
addition of a solute inhomogeneity to the system, it does not
contribute to the entropy of solvation or any other change that
does not change N. We therefore omit it in what follows.
7.2. Entropy Density of a Fluid via Mutual Information

Expansion. The mutual information expansion (MIE),123−125

a series expansion of the entropy of a multivariate probability
density function in one-body, two-body, three-body, and higher
order, contributions, allows the entropy density as a function of
position to be written in a form analogous to that of the energy
density, as written in eq 1. We demonstrate this here by deriving
the first- and second-order terms, starting with the expression for
the system entropy given in eq 16, but omitting the N! term as
explained above:

=S k p pr r r( )ln ( )dN N N
B (18)

For simplicity, we consider any solute or inhomogeneity
present to be rigid, but this derivation generalizes to the flexible
case. To construct a second-order approximation of the entropy
density, we truncate the MIE after the 2-body term and thus
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obtain the sum of all single-molecule marginal entropies, Si, and
the sum of all molecule−molecule mutual information terms,
Mij:
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Here, Sij is the joint marginal entropy of molecules i and j, and
pi(R, q) and pij(R, q, R’, q’) are the single-molecule and two-
particle marginal probability distribution functions, and Si = Sj
because of the indistinguishability of the molecules. Following
Lazaridis,27,28 we use the product rule of probability to treat the
translational coordinates R of each molecule separately from its
orientational and internal coordinates q:
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where pq|R,i is the probability distribution of the orientational and
internal coordinates of molecule i conditioned on its location,
and pR,i(R) = ∫ pi(R,q) dq is the marginal probability
distribution of molecule i over its location, i.e., its probability
density function. Substituting into the expression for Si in eq 19
and using the fact that molecules i and j are identical and
therefore have identical distribution functions, we obtain
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where we have used the fact that, for a given value of R, pq|R,i(q |
R) is a normalized probability density function, i.e.,∫ pq|R,i(q | R)
dq = 1. The third line of eq 21 expresses the single-body entropy
as the sum of a translational part and an orientational/
conformational part, where the orientational/conformational
entropy of molecule i as a function of location, S R( )i

q , is weighted

by the local probability density pR,i(R). Similarly, substituting
the last line of eq 20 into the expression for Sij in eq 19, we obtain
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The notation here is analogous to that in eq 21.
Because the solvent molecules are mutually indistinguishable,

we may introduce one symbol for the one-body and two-body
probability density functions, pi(R, q) = pj(R, q) = p(1)(R, q) and
pij(R, q, R’, q’) = pkl(R, q, R’, q’) = p(2)(R, q, R’, q’) for all i, j, k,
and l, and each molecule accordingly makes an identical
contribution to the one-body and two-body number densities of
the fluid, ρ(R) and ρ(R, R’), and every pair of molecules ij has
the same the two-body mutual information Mij. Therefore, using
the fact that there areN molecules andN N( 1)

2
molecule pairs,126

we obtain
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It also follows that
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For any i, j, eqs 23 and 24 allow us to write the first-order
approximation of the entropy, S(1), as follows:
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Examination of the first line of eq 25 shows that S(1) can be
written as the spatial integral of the first-order entropy density,
s(1)(R):
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This is our first-order estimate of the entropy density of the
fluid.
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The second-order contribution (see eq 19) is obtained

analogously. We first write
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Now, because there are N(N − 1)/2 pairs, we have
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where
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Note that the one-body and two-body number densities

needed to evaluate these expressions, ρ(R) and ρ(R,R’), may be

estimated from molecular simulations.33,34 When the molecules

of the fluid are uncorrelated, as in the special case of an ideal gas,

the mutual information Mij should be zero for all pairs of

molecules ij, making S(2) = 0. This may be confirmed by

substituting p(2)(R, R’) = p(1)(R)p(1)(R’), where p(1)(R) =

p(1)(R’) and Sq(R, R’) = Sq(R) + Sq(R’) and S(q)(R) = S(q)(R′)

into eq 28:

= [ ]

[ ]

+ [ + ]

=

(
)

S N N k p p

p S

N N
k p p p p

N N
p p S S

R R R

R R R

R R R R R

R

R R R R R R

( 1) ( )ln ( ) d

( ) ( )d

( 1)
2

( ) ( )ln ( ) ( ) d

d

( 1)
2

( ) ( ) ( ) ( ) d d

0

q

q q

(2)
B

(1) (1)

(1)

B
(1) (1) (1) (1)

(1) (1) ( )

(30)

Referring to eqs 1 and 28, we can now write the second-order
contribution to the entropy density, s(2)(R), as

= +

+

i
k
jjjj

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

y
{
zzzzs N k

N
S

k
N N

S

R R
R

R R

R R
R R

R R R R R

R

1
2

( ) ( 1) ( )ln
( )

( ) ( )

( , )ln
( , )
( 1)

d ( , ) ( , )

d

q

q

(2)
B

B

(31)

Thus, we have derived first- and second-order estimates of the
entropy density, whose integrals over the system volume give the
corresponding first- and second-order estimates of the system
entropy, as required for Desideratum D1. The Supporting
Information derives the entropy of an ideal gas to confirm that
this entropy expansion approach avoids the need for correction
terms like those introduced by Baranyai and Evans,127 which
also appear in IST.27

Note that the MIE can be used to derive higher-order
approximations of the entropy density to account for three-body
correlations, four-body correlations, etc. It has been argued,
based on numerical experiments, that the MIE can converge well
as a function of the order of truncation (e.g., two-body) for
systems without long-ranged correlations, but that this can
become problematic for highly correlated systems.128 We do not
expect long-ranged correlations in noncritical fluids, and there is
evidence that accounting for water−water (i.e., two-body)
correlations suffices to capture the entropy of pure water to
within about 20% error,101 so we anticipate that truncating the
MIE at second order will be enough to capture much relevant
physics for aqueous systems. (See also related work on
nonaqeuous fluids.129) Nonetheless, it is of interest that, by
expressing the entropy density in terms of probability density
functions, instead of correlation functions as done in IST, the
present derivation opens the possibility of replacing the MIE
with alternative entropy expansions, such as the maximum
information spanning tree (MIST),130 which might have
advantageous convergence properties in some settings.
7.3. Energy Density of a Fluid with a Multibody

Potential Energy Function. The IST has been set forth for a
two-body potential. Here, we demonstrate the generalization of
the potential energy density of a fluid to higher-order multibody
potentials, where a “body” is one molecule of fluid and the
potential energy of a given configuration of the system is
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Here, the order of each ϕ defining the potential function is
given by its superscript, and interactions with any solute or
inhomogeneity are included implicitly (see the Supporting
Information). Note that any arbitrary potential, including one
that accounts explicitly for electronic polarizability via, e.g., the
widely used Silberstein/Applequist model131−133 can be fully
described by such a multibody expansion, and that the potential
function does not need to be explicitly provided in terms of a
multibody expansion, as detailed in the Supporting Information.
We again limit attention, for simplicity, to the case of a rigid
solute or inhomogeneity while noting that this derivation
generalizes to the flexible case. We define the energy associated
with molecule i for a given system configuration rN as
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Note that the total energy is given by the sum of these
molecular energies:
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The ensemble-averaged contribution of molecule i to the
desired energy density at R is given by
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The ensemble average energy of molecule i is given by the
spatial integral of its energy density:

=U ur R R( ) ( )di
N

i (37)

Finally, because all N molecules are indistinguishable, the
total energy density at R is simply
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for any i, where
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The ensemble average of the total energy is given by the
spatial integral of the energy density, as required by Desideratum
D1:

=U u R R( )d (40)

8. PHYSICAL INTERPRETATION OF THE ENERGY AND
ENTROPY EXPANSION TERMS

The one-body potential energy term defined above comprises
the mean internal (i.e., conformation-dependent) energy and
the mean solvent−solute interaction energy (if any) of the fluid
molecules as a function of their location in the system. The two-
body energy term then accounts for the mean pairwise
interaction of the fluid molecules at a given location with all
other molecules in the system, the three-body term accounts for
the mean three-body interactions of the molecules at a given
location, and so on at higher orders. For simulations with a
pairwise additive potential function,104,105,134−136 all terms
above pairwise are identically zero, whereas a multibody
potential function, such as a polarizable force field,133,137−141

will have nonzero higher-order terms.
The one-body entropy term has a translational component

that goes as the log of the local number density and that is thus
closely related to the excess chemical potential,42 with higher
density giving lower entropy; and an orientation/conformation
component that falls as the molecules at a given location are
more orientationally and conformationally restricted by any
solute or inhomogeneity that may be present. The two-body
translational term reflects the degree to which the presence or
absence of a molecule at a given location correlates with the

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c01173
J. Chem. Theory Comput. 2024, 20, 2871−2887

2881

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01173/suppl_file/ct3c01173_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01173/suppl_file/ct3c01173_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01173/suppl_file/ct3c01173_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01173?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


presence or absence of molecules elsewhere,34 while the two
body orientation/correlation component falls as the molecules
at a given location become more orientationally and conforma-
tionally correlated with molecules elsewhere.

If no solute or other inhomogeneity is present, then all terms
in the energy and entropy expansions are independent of
position, reporting simply on properties of the pure fluid. In the
presence of a solute or other inhomogeneity, the terms in the
expansion tend to deviate from their pure fluid values near the
inhomogeneity while asymptotically approaching their pure
fluid values with increasing distance from it.

A solute that interacts strongly and directionally with solvent
molecules (e.g., a sodium ion in water) will tend to generate a
strongly favorable first-order energy term nearby along with a
strongly unfavorable (low entropy) first-order entropy term.
However, the higher-order entropy terms will tend to be small in
magnitude because molecules with sharply reduced positional,
orientational, and conformational fluctuations cannot have large
mutual information with other molecules: in effect, there is little
motion to be correlated in this setting. By contrast, a solute that
interacts weakly with solvent molecules (e.g., a methane
molecule in water) will yield only a small interaction energy
with the solvent, and the first-order entropy terms may not be
particularly small since the method does not strongly restrict
nearby solvent molecules. However, because solvent molecules
near the solute remain mobile, second- and higher-order entropy
terms can become large, falling with increased correlation
among solvent molecules near the solute. Accordingly, we
expect much of the drop in water entropy near a hydrophobic
solute, such as methane, to result from increased water−water
correlations rather than from restriction of water mobility in the
reference frame of the solute. More broadly, a drop in the one-
body entropy (due to restriction) is likely to anticorrelate with a
drop in entropy due to higher-order entropy terms (i.e., due to
correlations), as indeed observed in the case of aqueous
solvation.89

9. RELATED CONTRIBUTIONS AND CONCEPTS
The definition of a free energy density presented here is closely
related to inhomogeneous solvation theory (IST) and is perhaps
best regarded as an elaboration of IST that explicitly handles
systems with arbitrarily complex potential functions and flexible
molecules. (We reserve a detailed exploration of the relationship
between the IST and the present approach for future work.) This
generalization is theoretically significant because it confirms the
existence of a rigorous and general definition of the free energy
density of a fluid that can satisfy all of our Desiderata (Section
2). It thus demonstrates that the thermodynamic densities are
general, in the sense that they are not limited to systems
complying with the approximations normally associated with
IST. In addition, the present derivation of the entropy density
(Section 7.2), which is based on the MIE,123−125 avoids
bookkeeping problems that can arise in the traditional
correlation function-based derivation of the entropy density.127

The MIE derivation also may be more transparent to researchers
not versed in liquid state theory, and it should be easier to
generalize it to more complex and heterogeneous systems, since
the MIE does not require an assumption of particle
indistinguishability. Note that connections between IST and
MIE are well documented in the literature.40,53,106,124 It is also
worth mentioning that the energy and entropy densities derived
here lead directly to tools for analyzing the outputs of molecular
simulations, along the lines of WaterMap73 and GIST.33

The classical density function theory (DFT) of liquids is well
founded in liquid state theory126,142 and, as reviewed elsewhere,
may be used to formulate definitions of the free energy density
by either a perturbation92 or a density expansion90,91

approach.43 Application of DFT typically avoids the need to
run a molecular simulation, instead providing useful approx-
imations through semianalytic calculations. The perturbation
approach is regarded as better suited to strongly heterogeneous
systems43 and appears to lead to definitions of the free energy
that satisfies Desiderata D1, D2, and D4, but that may not go to
zero where the solvent density is zero92 and so may not satisfy
Desideratum D3 (Section 2). Deeper insights into the
relationship between a perturbative DFT approach and IST
are provided by a prior study.42 The density expansion approach
yields a free energy density that includes a factor of the local
particle density and thus is expected to satisfy Desideratum D3,
but we are not aware of a formulation in the literature that yields
the exact free energy as the volume integral of the free energy
density for an arbitrary potential function. Overall, DFT appears
to offer a valuable and theoretically sound pathway to useful
definitions of the free energy density, and progress has been
made in applying DFT to heterogeneous systems of biological
and biomedical interest.143,144

Like DFT, the three-dimensional reference interaction site
approach (3D-RISM)48,49,145,146 provides estimates of the
properties of liquids in heterogeneous systems without the
need to run molecular simulations. It also is based on rigorous
derivation that appears amenable to providing a definition of the
free energy density that satisfies all four desiderata, along with
numerical approximations that can be applied in a practical
setting and that have been compared with IST results for water
in protein binding sites.50

Grid Cell Theory46 (GCT) provides an approximation of the
free energy density when applied to a molecular simulation and
has given encouraging agreement with solvation free energies
obtained from free energy methods with explicit solvent
molecular simulations. It can therefore be a valuable practical
tool to analyze solvation. However, GCT does not approach an
exact result for a given liquid system in any limit, such as that of
infinite simulation sampling or infinitesimal cell volume, so it
does not seem to address one of the questions posed in this
work, namely, whether there exists a rigorous definition of the
free energy that satisfies the present desiderata.

In summary, there are several other promising approaches to
defining the free energy density of a fluid, and more study is
needed to fully understand how they relate to each other, both
theoretically and in terms of numerical accuracy and computa-
tional performance.

It is also natural to ask how the chemical potential, μ, and the
excess chemical potential, μex(R), of a fluid relate to the free
energy density developed in this work. As discussed in Sections 4
and 5, the chemical potential is not a position-dependent
quantity but is instead a property of a molecular species�here
of the solvent�in the system. Thus, although one could use it to
formally define a free energy density that would satisfy
Desideratum D1, i.e., μρ(R), this definition would not satisfy
Desideratum D2. The excess chemical potential may appear to
be a more promising candidate for an alternative definition of
the free energy density because it varies with position in the
context of an inhomogeneity.110,111 In addition, it is given by the
Widom particle insertion process,110 which may seem a logical
way to probe the stability of water as a function of position.
Indeed, the relationship between the excess chemical potential
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and IST has been previously explored.42 However, the excess
chemical potential is related to the chemical potential as μex(R)
= μ − RT ln ρ(R)110,111 so it is apparent that the integral of
μex(R) equals neither the free energy of the system nor the
solvation free energy of an inhomogeneity so it does not satisfy
Desideratum D1. More generally, we are not aware of any
rigorous mapping from the number density of a liquid at location
R to its free energy density at R.

10. CONCLUSIONS
We have provided a rigorous definition of the free energy density
of a fluid, elucidated its meaning and interpretation, and
analyzed approximations often used in accounting for the role of
solvent in binding thermodynamics. Although we have
developed one specific formulation for the free energy density
(as well as the potential energy and entropy densities), other
formulations may also satisfy the desiderata for a free energy
density laid out in Section 2. If so, then these should, similarly,
provide a solvation free energy density that allows the solvation
free energy of a solute to be estimated from a local integral and
whose integral along a surface normal yields the surface tension
(Section 4), and they should also support drug discovery
applications based on analysis of the thermodynamic properties
of binding-site water (Section 6). However, they will provide
somewhat different spatial distributions of the free energy
density and solvation free energy density. There is room for
further research on such formulations and the definition of a
metric that could be used to determine whether, or in what
settings, one formulation should be preferred over another.

The present work also sets the free energy density in the
context of the related literature. In particular, we have shown
that that the concept of a position-varying free energy density in
a fluid at equilibrium makes physical sense and indeed is
consistent with and explanatory of familiar concepts such as the
surface tension of a liquid (Section 4). We also note that neither
the chemical potential nor the excess chemical potential
provides free energy densities that satisfy the desiderata: the
chemical potential is not a position-dependent quantity, and,
although the excess chemical potential is position-dependent,
the product μex(R)ρ(R) does not integrate to the system free
energy. Instead, we provide a definition of the local chemical
potential which does have this property and therefore can be
used to thermodynamically characterize a fluid in a manner that
is clearly linked to the overall free energy of the system. We hope
that the concepts and derivations introduced here will be found
useful in future theoretical and computational analyses of the
role of solvent in molecular processes.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01173.

Detailed developments of the following topics: (1)
solvation free energy as a local integral of the free energy
density near the solute; (2) surface-energy analysis of
dewetting between parallel plates in a liquid; (3)
consistency of the MIE approach with the Sackur−
Tetrode equation for the entropy of an ideal gas; and (4)
energy density for an arbitrary potential energy function
(PDF)

■ AUTHOR INFORMATION
Corresponding Authors

Michael K Gilson − Skaggs School of Pharmacy and
Pharmaceutical Sciences and Department of Chemistry and
Biochemistry, UC San Diego, La Jolla, California 92093,
United States; orcid.org/0000-0002-3375-1738;
Email: mgilson@ucsd.edu

Tom Kurtzman − PhD Programs in Chemistry, Biochemistry,
and Biology, The Graduate Center of the City University of
New York, New York, New York 10016, United States;
Department of Chemistry, Lehman College, The City
University of New York, Bronx, New York 10468, United
States; orcid.org/0000-0003-0900-772X;
Email: simpleliquid@gmail.com

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.3c01173

Author Contributions
M.G.: conceptualization (equal); funding acquisition (equal);
investigation (equal); writing/original draft preparation (lead);
writing/review and editing (equal). T.K.: conceptualization
(equal); funding acquisition (equal); investigation (equal);
writing/original draft preparation (supporting); writing/review
and editing (equal).
Notes
The authors declare the following competing financial
interest(s): MKG has an equity interest in and is a cofounder
and scientific advisor of VeraChem LLC. TK is founder and
scientific advisor of Deep Waters NYC, LLC; has an equity
interest in and is a scientific advisor for Ventus Therapeutics; has
an equity interest and is a director and scientific advisor for
InCerebro Inc.; and is an author on U.S. patents 7,756,674;
7,970,580, 7,970,581.

■ ACKNOWLEDGMENTS
T.K. thanks the NIGMS/NIH R35-GM144089 for funding.
M.K.G. thanks the NIGMS/NIH R01GM061300 for funding.
This work does not necessarily represent the views of the NIH.
The authors are grateful to Drs. Scott Bembenek, Ronald Levy,
Nobuyuki Matubayasi, and Rasmus Persson, for insightful
discussions, to the reviewers for valuable comments that led to
significant improvements in this work, and to Joseph Cruz for his
careful review of the mathematics.

■ ADDITIONAL NOTE
aIf the pressure is not held constant, the proposed method will
still accurately describe the Helmholtz free energy densities of
the initial and final systems, but their difference, i.e., the
solvation free energy density, will not be fully localized near the
solute, because the solvent density far from the solute will have
changed on going from the initial (pure solvent) to the final
(solvent + solute) state.

■ REFERENCES
(1) Wolfenden, R. V.; Cullis, P. M.; Southgate, C. C. F. Water, Protein

Folding, and the Genetic Code. Science 1979, 206 (4418), 575−577.
(2) Rhee, Y. M.; Sorin, E. J.; Jayachandran, G.; Lindahl, E.; Pande, V. S.

Simulations of the Role of Water in the Protein-Folding Mechanism.
Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (17), 6456−6461.
(3) Levy, Y.; Onuchic, J. N. Water Mediation in Protein Folding and

Molecular Recognition.Annu. Rev. Biophys. Biomol. Struct. 2006, 35 (1),
389−415.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c01173
J. Chem. Theory Comput. 2024, 20, 2871−2887

2883

https://pubs.acs.org/doi/10.1021/acs.jctc.3c01173?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01173/suppl_file/ct3c01173_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+K+Gilson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3375-1738
mailto:mgilson@ucsd.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tom+Kurtzman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0900-772X
mailto:simpleliquid@gmail.com
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01173?ref=pdf
https://doi.org/10.1126/science.493962
https://doi.org/10.1126/science.493962
https://doi.org/10.1073/pnas.0307898101
https://doi.org/10.1146/annurev.biophys.35.040405.102134
https://doi.org/10.1146/annurev.biophys.35.040405.102134
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01173?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(4) Baldwin, R. L.; Rose, G. D. How the Hydrophobic Factor Drives
Protein Folding. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (44), 12462−
12466.
(5) Poornima, C. S.; Dean, P. M. Hydration in Drug Design. 1.

Multiple Hydrogen-Bonding Features of Water Molecules in Mediating
Protein-Ligand Interactions. J. Comput-Aided Mol. Des 1995, 9 (6),
500−512.
(6) Poornima, C. S.; Dean, P. M. Hydration in Drug Design. 2.

Influence of Local Site Surface Shape on Water Binding. J. Comput-
Aided Mol. Des 1995, 9 (6), 513−520.
(7) Poornima, C. S.; Dean, P. M. Hydration in Drug Design. 3.

Conserved Water Molecules at the Ligand-Binding Sites of
Homologous Proteins. J. Comput-AidedMol. Des 1995, 9 (6), 521−531.
(8) Ladbury, J. E. Just Add Water! The Effect of Water on the

Specificity of Protein-Ligand Binding Sites and Its Potential Application
to Drug Design. Chem. Biol. 1996, 3 (12), 973−980.
(9) de Beer, S. B. A.; Vermeulen, N. P. E.; Oostenbrink, C. The Role of

Water Molecules in Computational Drug Design. Curr. Top. Med.
Chem. 2010, 10 (1), 55−66.
(10) Maurer, M.; Oostenbrink, C. Water in Protein Hydration and

Ligand Recognition. J. Mol. Recognit. 2019, 32 (12), No. e2810.
(11) Samways, M. L.; Taylor, R. D.; Macdonald, H. E. B.; Essex, J. W.

Water Molecules at Protein−Drug Interfaces: Computational
Prediction and Analysis Methods. Chem. Soc. Rev. 2021, 50 (16),
9104−9120.
(12) Buncel, E.; Stairs, R. A.; Wilson, H. The Role of the Solvent in

Chemical Reactions, 1st ed.; Oxford University Press: Oxford, 2003.
(13) Mezei, M. A Cavity-Biased (T, V, μ) Monte Carlo Method for the

Computer Simulation of Fluids. Mol. Phys. 1980, 40 (4), 901−906.
(14) Mezei, M. Grand-Canonical Ensemble Monte Carlo Study of

Dense Liquid: Lennard-Jones, Soft Spheres and Water. Mol. Phys. 1987,
61 (3), 565−582.
(15) Deng, Y.; Roux, B. Computation of Binding Free Energy with

Molecular Dynamics and Grand Canonical Monte Carlo Simulations. J.
Chem. Phys. 2008, 128, No. 115103.
(16) Woo, H.-J.; Dinner, A.; Roux, B. Grand Canonical Monte Carlo

Simulations of Water in Protein Environments. J. Chem. Phys. 2004, 121
(13), 6392−6400.
(17) Ross, G. A.; Bodnarchuk, M. S.; Essex, J. W. Water Sites,

Networks, And Free Energies with Grand Canonical Monte Carlo. J.
Am. Chem. Soc. 2015, 137 (47), 14930−14943.
(18) Ross, G. A.; Bruce Macdonald, H. E.; Cave-Ayland, C.; Cabedo

Martinez, A. I.; Essex, J. W. Replica-Exchange and Standard State
Binding Free Energies with Grand Canonical Monte Carlo. J. Chem.
Theory Comput. 2017, 13 (12), 6373−6381.
(19) Ge, Y.; Wych, D. C.; Samways, M. L.; Wall, M. E.; Essex, J. W.;

Mobley, D. L. Enhancing Sampling of Water Rehydration on Ligand
Binding: A Comparison of Techniques. J. Chem. Theory Comput. 2022,
18 (3), 1359−1381.
(20) Ben-Shalom, I. Y.; Lin, C.; Kurtzman, T.; Walker, R. C.; Gilson,

M. K. Simulating Water Exchange to Buried Binding Sites. J. Chem.
Theory Comput. 2019, 15 (4), 2684−2691.
(21) Ben-Shalom, I. Y.; Lin, C.; Kurtzman, T.; Walker, R.; Gilson, M.

K. Equilibration of Buried Water Molecules to Enhance Protein-Ligand
Binding Free Energy Calculations. Biophys. J. 2020, 118 (3), 144a.
(22) Ben-Shalom, I. Y.; Lin, Z.; Radak, B. K.; Lin, C.; Sherman, W.;

Gilson, M. K. Accounting for the Central Role of Interfacial Water in
Protein-Ligand Binding Free Energy Calculations. J. Chem. Theory
Comput. 2020, 16 (12), 7883−7894.
(23) Melling, O. J.; Samways, M. L.; Ge, Y.; Mobley, D. L.; Essex, J. W.

Enhanced Grand Canonical Sampling of Occluded Water Sites Using
Nonequilibrium Candidate Monte Carlo. J. Chem. Theory Comput.
2023, 19 (3), 1050−1062.
(24) Ross, G. A.; Russell, E.; Deng, Y.; Lu, C.; Harder, E. D.; Abel, R.;

Wang, L. Enhancing Water Sampling in Free Energy Calculations with
Grand Canonical Monte Carlo. J. Chem. Theory Comput. 2020, 16 (10),
6061−6076.
(25) Morita, T.; Hiroike, K. A New Approach to the Theory of

Classical Fluids. III. Prog. Theor. Phys. 1961, 25 (4), 537−578.

(26) Wallace, D. C. On the Role of Density Fluctuations in the
Entropy of a Fluid. J. Chem. Phys. 1987, 87 (4), 2282.
(27) Lazaridis, T. Inhomogeneous Fluid Approach to Solvation

Thermodynamics. 1. Theory. J. Phys. Chem. B 1998, 102 (18), 3531−
3541.
(28) Lazaridis, T. Inhomogeneous Fluid Approach to Solvation

Thermodynamics. 2. Applications to Simple Fluids. J. Phys. Chem. B
1998, 102 (18), 3542−3550.
(29) Young, T.; Abel, R.; Kim, B.; Berne, B. J.; Friesner, R. A. Motifs

for Molecular Recognition Exploiting Hydrophobic Enclosure in
Protein-Ligand Binding. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (3),
808−813.
(30) Yang, Y.; Lightstone, F. C.; Wong, S. E. Approaches to Efficiently

Estimate Solvation and Explicit Water Energetics in Ligand Binding:
The Use of WaterMap. Expert Opin. Drug Discovery 2013, 8 (3), 277−
287.
(31) Cappel, D.; Sherman, W.; Beuming, T. Calculating Water

Thermodynamics in the Binding Site of Proteins − Applications of
WaterMap to Drug Discovery. Curr. Top. Med. Chem. 2017, 17 (23),
2586−2598.
(32) Li, Z.; Lazaridis, T. Computing the Thermodynamic

Contributions of Interfacial Water. Methods Mol. Biol. Clifton NJ.
2012, 819, 393−404.
(33) Nguyen, C. N.; Kurtzman Young, T.; Gilson, M. K. Grid

Inhomogeneous Solvation Theory: Hydration Structure and Thermo-
dynamics of the Miniature Receptor Cucurbit[7]Uril. J. Chem. Phys.
2012, 137 (4), No. 044101.
(34) Nguyen, C. N.; Kurtzman, T.; Gilson, M. K. Spatial

Decomposition of Translational Water−Water Correlation Entropy
in Binding Pockets. J. Chem. Theory Comput. 2016, 12 (1), 414−429.
(35) Nguyen, C. N.; Cruz, A.; Gilson, M. K.; Kurtzman, T.

Thermodynamics of Water in an Enzyme Active Site: Grid-Based
Hydration Analysis of Coagulation Factor Xa. J. Chem. Theory Comput.
2014, 10 (7), 2769−2780.
(36) Ramsey, S.; Nguyen, C.; Salomon-Ferrer, R.; Walker, R. C.;

Gilson, M. K.; Kurtzman, T. Solvation Thermodynamic Mapping of
Molecular Surfaces in AmberTools: GIST. J. Comput. Chem. 2016, 37
(21), 2029−2037.
(37) Haider, K.; Cruz, A.; Ramsey, S.; Gilson, M. K.; Kurtzman, T.

Solvation Structure and Thermodynamic Mapping (SSTMap): An
Open-Source, Flexible Package for the Analysis of Water in Molecular
Dynamics Trajectories. J. Chem. Theory Comput. 2018, 14 (1), 418−
425.
(38) Waibl, F.; Kraml, J.; Hoerschinger, V. J.; Hofer, F.; Kamenik, A.

S.; Fernández-Quintero, M. L.; Liedl, K. R. Grid Inhomogeneous
Solvation Theory for Cross-Solvation in Rigid Solvents. J. Chem. Phys.
2022, 156 (20), No. 204101.
(39) Roe, D. R.; Brooks, B. R. MPI-Parallelization of the Grid

Inhomogeneous Solvation Theory Calculation. J. Comput. Chem. 2023,
45 (10), 633.
(40) Huggins, D. J. Quantifying the Entropy of Binding for Water

Molecules in Protein Cavities by Computing Correlations. Biophys. J.
2015, 108 (4), 928−936.
(41) Huggins, D. J. Application of Inhomogeneous Fluid Solvation

Theory to Model the Distribution and Thermodynamics of Water
Molecules around Biomolecules. Phys. Chem. Chem. Phys. 2012, 14
(43), 15106.
(42) Levy, R. M.; Cui, D.; Zhang, B. W.; Matubayasi, N. Relationship

between Solvation Thermodynamics from IST and DFT Perspectives.
J. Phys. Chem. B 2017, 121 (15), 3825−3841.
(43) Wu, J. Z. Density Functional Theory for Liquid Structure and

Thermodynamics. In Molecular Thermodynamics of Complex Systems;
Structure and Bonding; Springer-Verlag Press: Berlin, Heidelberg,
2009; pp 1−73.
(44) Calais, J.-L. Theory of Molecular Fluids. Volume 1:

Fundamentals. By C. G. Gray and K. E. Gubbins, The Clarendon
Press, Oxford University Press, New York, 1984. Int. J. Quantum Chem.
1990, 38 (3), 497.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c01173
J. Chem. Theory Comput. 2024, 20, 2871−2887

2884

https://doi.org/10.1073/pnas.1610541113
https://doi.org/10.1073/pnas.1610541113
https://doi.org/10.1007/BF00124321
https://doi.org/10.1007/BF00124321
https://doi.org/10.1007/BF00124321
https://doi.org/10.1007/BF00124322
https://doi.org/10.1007/BF00124322
https://doi.org/10.1007/BF00124323
https://doi.org/10.1007/BF00124323
https://doi.org/10.1007/BF00124323
https://doi.org/10.1016/S1074-5521(96)90164-7
https://doi.org/10.1016/S1074-5521(96)90164-7
https://doi.org/10.1016/S1074-5521(96)90164-7
https://doi.org/10.2174/156802610790232288
https://doi.org/10.2174/156802610790232288
https://doi.org/10.1002/jmr.2810
https://doi.org/10.1002/jmr.2810
https://doi.org/10.1039/D0CS00151A
https://doi.org/10.1039/D0CS00151A
https://doi.org/10.1080/00268978000101971
https://doi.org/10.1080/00268978000101971
https://doi.org/10.1080/00268978700101321
https://doi.org/10.1080/00268978700101321
https://doi.org/10.1063/1.2842080
https://doi.org/10.1063/1.2842080
https://doi.org/10.1063/1.1784436
https://doi.org/10.1063/1.1784436
https://doi.org/10.1021/jacs.5b07940?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.5b07940?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00738?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00738?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00590?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00590?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01284?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.bpj.2019.11.908
https://doi.org/10.1016/j.bpj.2019.11.908
https://doi.org/10.1021/acs.jctc.0c00785?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00785?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00823?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00823?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00660?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00660?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1143/PTP.25.537
https://doi.org/10.1143/PTP.25.537
https://doi.org/10.1063/1.453158
https://doi.org/10.1063/1.453158
https://doi.org/10.1021/jp9723574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp9723574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp972358w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp972358w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.0610202104
https://doi.org/10.1073/pnas.0610202104
https://doi.org/10.1073/pnas.0610202104
https://doi.org/10.1517/17460441.2013.749853
https://doi.org/10.1517/17460441.2013.749853
https://doi.org/10.1517/17460441.2013.749853
https://doi.org/10.2174/1568026617666170414141452
https://doi.org/10.2174/1568026617666170414141452
https://doi.org/10.2174/1568026617666170414141452
https://doi.org/10.1007/978-1-61779-465-0_24
https://doi.org/10.1007/978-1-61779-465-0_24
https://doi.org/10.1063/1.4733951
https://doi.org/10.1063/1.4733951
https://doi.org/10.1063/1.4733951
https://doi.org/10.1021/acs.jctc.5b00939?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00939?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00939?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct401110x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct401110x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.24417
https://doi.org/10.1002/jcc.24417
https://doi.org/10.1021/acs.jctc.7b00592?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00592?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00592?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0087549
https://doi.org/10.1063/5.0087549
https://doi.org/10.1002/jcc.27278
https://doi.org/10.1002/jcc.27278
https://doi.org/10.1016/j.bpj.2014.12.035
https://doi.org/10.1016/j.bpj.2014.12.035
https://doi.org/10.1039/c2cp42631e
https://doi.org/10.1039/c2cp42631e
https://doi.org/10.1039/c2cp42631e
https://doi.org/10.1021/acs.jpcb.6b12889?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.6b12889?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/qua.560380310
https://doi.org/10.1002/qua.560380310
https://doi.org/10.1002/qua.560380310
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01173?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(45) Cui, D.; Zhang, B. W.; Matubayasi, N.; Levy, R. M. The Role of
Interfacial Water in Protein−Ligand Binding: Insights from the Indirect
Solvent Mediated Potential of Mean Force. J. Chem. Theory Comput.
2018, 14 (2), 512−526.
(46) Gerogiokas, G.; Southey, M. W. Y.; Mazanetz, M. P.; Hefeitz, A.;

Bodkin, M.; Law, R. J.; Michel, J. Evaluation of Water Displacement
Energetics in Protein Binding Sites with Grid Cell Theory. Phys. Chem.
Chem. Phys. 2015, 17 (13), 8416−8426.
(47) Yamazaki, T.; Kovalenko, A. Spatial Decomposition of Solvation

Free Energy Based on the 3D Integral Equation Theory of Molecular
Liquid: Application to Miniproteins. J. Phys. Chem. B 2011, 115 (2),
310−318.
(48) Imai, T.; Kovalenko, A.; Hirata, F. Solvation Thermodynamics of

Protein Studied by the 3D-RISM Theory. Chem. Phys. Lett. 2004, 395
(1−3), 1−6.
(49) Sindhikara, D. J.; Hirata, F. Analysis of Biomolecular Solvation

Sites by 3D-RISM Theory. J. Phys. Chem. B 2013, 117 (22), 6718−
6723.
(50) Nguyen, C.; Yamazaki, T.; Kovalenko, A.; Case, D. A.; Gilson, M.

K.; Kurtzman, T.; Luchko, T. A Molecular Reconstruction Approach to
Site-Based 3D-RISM and Comparison to GIST Hydration Thermody-
namic Maps in an Enzyme Active Site. PloS One 2019, 14 (7),
No. e0219473.
(51) Olano, L. R.; Rick, S. W. Hydration Free Energies and Entropies

for Water in Protein Interiors. J. Am. Chem. Soc. 2004, 126 (25), 7991−
8000.
(52) Hamelberg, D.; McCammon, J. A. Standard Free Energy of

Releasing a Localized Water Molecule from the Binding Pockets of
Proteins: Double-Decoupling Method. J. Am. Chem. Soc. 2004, 126
(24), 7683−7689.
(53) Velez-Vega, C.; McKay, D. J. J.; Kurtzman, T.; Aravamuthan, V.;

Pearlstein, R. A.; Duca, J. S. Estimation of Solvation Entropy and
Enthalpy via Analysis of Water Oxygen−Hydrogen Correlations. J.
Chem. Theory Comput. 2015, 11 (11), 5090−5102.
(54) Persson, R. A. X.; Pattni, V.; Singh, A.; Kast, S. M.; Heyden, M.

Signatures of Solvation Thermodynamics in Spectra of Intermolecular
Vibrations. J. Chem. Theory Comput. 2017, 13 (9), 4467−4481.
(55) Heinz, L. P.; Grubmüller, H. Per|Mut: Spatially Resolved

Hydration Entropies from Atomistic Simulations. J. Chem. Theory
Comput. 2021, 17 (4), 2090−2098.
(56) Mukherjee, S.; Schäfer, L. V. Spatially Resolved Hydration

Thermodynamics in Biomolecular Systems. J. Phys. Chem. B 2022, 126
(20), 3619−3631.
(57) Biedermann, F.; Uzunova, V. D.; Scherman, O. A.; Nau, W. M.;

De Simone, A. Release of High-Energy Water as an Essential Driving
Force for the High-Affinity Binding of Cucurbit[n]Urils. J. Am. Chem.
Soc. 2012, 134 (37), 15318−15323.
(58) Biedermann, F.; Nau, W. M.; Schneider, H.-J. The Hydrophobic

Effect Revisited�Studies with Supramolecular Complexes Imply
High-Energy Water as a Noncovalent Driving Force. Angew. Chem.,
Int. Ed. 2014, 53 (42), 11158−11171.
(59) Wickstrom, L.; Deng, N.; He, P.; Mentes, A.; Nguyen, C.; Gilson,

M. K.; Kurtzman, T.; Gallicchio, E.; Levy, R. M. Parameterization of an
Effective Potential for Protein−Ligand Binding from Host−Guest
Affinity Data. J. Mol. Recognit. 2016, 29 (1), 10−21.
(60) Metherell, A. J.; Cullen, W.; Williams, N. H.; Ward, M. D.

Binding of Hydrophobic Guests in a Coordination Cage Cavity Is
Driven by Liberation of “High-Energy” Water. Chem. − Eur. J. 2018, 24
(7), 1554−1560.
(61) Wehrhan, L.; Leppkes, J.; Dimos, N.; Loll, B.; Koksch, B.; Keller,

B. G. Water Network in the Binding Pocket of Fluorinated BPTI−
Trypsin Complexes�Insights from Simulation and Experiment. J. Phys.
Chem. B 2022, 126 (48), 9985−9999.
(62) Vasilakaki, S.; Kraml, J.; Schauperl, M.; Liedl, K. R.; Kokotos, G.

Hydration Thermodynamics of Cytosolic Phospholipase A2 GIVA
Predict Its Membrane-Associated Parts and Its Highly Hydrated
Binding Site. J. Biomol. Struct. Dyn. 2021, 39 (3), 953−959.
(63) Pantsar, T.; Kaiser, P. D.; Kudolo, M.; Forster, M.; Rothbauer,

U.; Laufer, S. A. Decisive Role of Water and Protein Dynamics in

Residence Time of P38α MAP Kinase Inhibitors. Nat. Commun. 2022,
13 (1), 569.
(64) Minuesa, G.; Albanese, S. K.; Xie, W.; Kazansky, Y.; Worroll, D.;

Chow, A.; Schurer, A.; Park, S.-M.; Rotsides, C. Z.; Taggart, J.; Rizzi, A.;
Naden, L. N.; Chou, T.; Gourkanti, S.; Cappel, D.; Passarelli, M. C.;
Fairchild, L.; Adura, C.; Glickman, J. F.; Schulman, J.; Famulare, C.;
Patel, M.; Eibl, J. K.; Ross, G. M.; Bhattacharya, S.; Tan, D. S.; Leslie, C.
S.; Beuming, T.; Patel, D. J.; Goldgur, Y.; Chodera, J. D.; Kharas, M. G.
Small-Molecule Targeting of MUSASHI RNA-Binding Activity in
Acute Myeloid Leukemia. Nat. Commun. 2019, 10 (1), 2691.
(65) Pearlstein, R. A.; Sherman, W.; Abel, R. Contributions of Water

Transfer Energy to Protein-Ligand Association and Dissociation
Barriers: Watermap Analysis of a Series of P38α MAP Kinase
Inhibitors. Proteins Struct. Funct. Bioinforma. 2013, 81 (9), 1509−1526.
(66) Cuzzolin, A.; Deganutti, G.; Salmaso, V.; Sturlese, M.; Moro, S.

AquaMMapS: An Alternative Tool to Monitor the Role of Water
Molecules During Protein−Ligand Association. ChemMedChem. 2018,
13 (6), 522−531.
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