MATH71000, Spring 2024 Renato Ghini Bettiol

Homework #5

Dur: MAy 10, 2024
All manifolds are assumed to be smooth, connected, and complete.

1. Prove that if (M™, g) has Ric > (n—1)k, where k > 0, and Vol(M",g) > %Vol(S”(ﬁ)),

then M is simply-connected. Give a counter-example if Vol(M", g) = %Vol(S”(ﬁ)).
HinT: Compute the volume of the universal covering of M.

Endow the universal covering M™ of (M™, g) with the pullback metric g, which also has
Ric > (n — 1)k, where k > 0. By Myers’ Theorem, M" is closed, 1 (M) is finite, and

Vol(M™,§) = |y (M)| Vol(M", g) > Vol (8" (1)).
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On the other hand, by Bishop Volume Comparison, Vol(M",g) < Vol(S”(ﬁ)). Thus,
|m (M) =1, ie., M = M is simply-connected.
The conclusion becomes false if, instead, Vol(M™,g) = %VOI(S"(L)), as exemplified

k
by RP”(%) = S”(ﬁ)/ZQ with the “round” metric of sec = k.

2. Suppose that (M",g) has sec > 1 and p,q € M satisfy dist(p,q) = diam(M,g) > 7.
Prove that ¢ is the unique point at maximal distance from p, i.e., if x € M is such that
dist(p, z) > dist(p, q), then z = q.

HinT: Use Toponogov’s triangle comparison theorem with vertices p, ¢, x.

If © € M is such that dist(p,z) > dist(p, ¢) = diam(M, g), then dist(p, z) = dist(p, q).
Suppose x # ¢ and consider the geodesic triangle in M with vertices p,q,x. Build a
comparison triangle on the sphere $? with sec = 1, with the vertex p at the north pole.
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Then, as the sides containing p have length equal to diam(M,g) > 7, the vertices q,T
lie in the southern hemisphere of $2. Thus, any point 7 in the minimizing geodesic of $2
joining g and T is farther away from p than g,7. By Toponogov’s triangle comparison



theorem, the corresponding point y along the minimizing geodesic in M joining ¢ and
x would satisfy

dist(p,y) > dist(p,y) > dist(p, q) = diam(M, g),

which is impossible, since diam(M, g) is the largest distance in (M, g). Thus, x = q.

3. About the Lie group SU(2) = Sp(1) = $:
a) Check that $3 = {(21, 20) € C? : |21]? +|22|?> = 1} endowed with the multiplication
(21, 22) - (w1, w2) := (z1w1 — Zaws, w129 + ZTW2)

is a Lie group.
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b) Prove that ¢: $3 — SU(2), (21, 22) = <z -
2 21

), is a Lie group isomorphism.
¢) Find a Lie group isomorphism ¢: Sp(1) — $3, where
Sp(l)={a+bitcj+dkecH:a®>+b*+c*+d* =1}

is the group of unit quaternions.

a) The given multiplication is a polynomial map, hence smooth. Note that this
choice of multiplication identifies C? with C @ jC = H as a real algebra; e.g.,
(4,0) - (0,1) = (0, —i) in C? corresponds to i - j = k in H.

b) Note that ¢: $ — SU(2) is a smooth homomorphism, hence it is a Lie group
homomorphism. Since ker ¢ = {(1,0)} and ($%) = SU(2), it is an isomorphism.

c) Let 1: Sp(1) — $3 be given by ¥(a + bi + cj + dk) = (a + bi,c — di). Note
that v is well-defined and it is a group homomorphism. Indeed, ¥ (1) = (1,0),
P(i) = (4,0), ¥(j) = (0,1), ¥(k) = (0, —i) satisfy the same multiplication table in
$3 as the quaternionic imaginary units {1,4,,k} in Sp(1), since C @ jC = H as
real algebras: (a+bi) + j(c —di) = a+bi+ cj+ dk. The homomorphism ) is
clearly smooth and injective, hence it is a Lie group isomorphism.

4. About the Lie algebra s0(3) = (R3, x):

a) Show that s0(3) = {A € gl(3,R) : AT + A =0} is a Lie algebra, with Lie bracket
given by the matrix commutator

0 —us us
b) Given u = (u1,uz,u3) € R3, let A, = [ us 0 —wuq |. Show that A,v = uxwv
—Uu9 Ul 0

for all v € R3.



c¢) Show that Ayx, = [Ay, Ay]. Conclude that the map ¢: (R3, x) — s0(3), given by

¢(u) = Ay, is a Lie algebra isomorphism.

a) The Lie bracket [A, B] = AB— BA clearly satisfies the Jacobi identity. If AT = —A

and BT = —B, then [A, B]T = (AB— BA)T = BT AT — ATBT = —[A, B], so 50(3)
is closed under this bracket and is hence a Lie algebra.

0 —us u9 V1 U2V3 — U3V
A= us 0 —u ve | = | ugvy —uvg | = u X v
—Uu9 (75} 0 V3 U1V — UV1

[Aua Av] = AuAU - AUAu -

0 —U1V9 + U201 U3V — U1V3
= | wv2 —ugu; 0 —ugv3 + uzv2 | = Auxw
—U3v1 + U1V3  UV3 — U3V2 0

The map ¢: (R, x) — s0(3), ¢(u) = A,, is clearly linear, and, by the above,
satisfies [p(u), p(v)] = ¢(u x v) for all u,v € R3, hence it is a Lie algebra homo-
morphism. Since ker ¢ = {0} and ¢(IR?) = s0(3), it is a Lie algebra isomorphism.

5. Prove that SU(2) is the universal covering of SO(3) via the following steps:

a) Decompose quaternions into real and imaginary part ¢ € H = Re H® Im H, where

Img=bi+cj+dk € ImH is identified with the vector Im¢q = (b, c,d) € R?, so
that quaternion multiplication can be written as:

Re(Req; +Imgqi)(Reqga + Imgy) = Reqs Rega — (Imgp, Im ¢2)
Im(Req: + Img1)(Rega +Im¢qa) = RegaImq; + Reqi Imga + Im gy x Im g

If ¢ € Sp(1), let u = (u1, ug,u3) € $2 C R?® = Im H be a unit vector and 6 € [0, 27],
such that Req = cosf and Imq = (sinf)u. Prove that T,: R® — R? given by
quaternionic conjugation T,(v) = gvg~! is the orthogonal linear transformation

0 —us u9
T, = ¥4 €S0(3), where A, = | us 0 —up | €s0(3).
—Uu9 (75} 0

HinT: Compute %Tcos(ta)%in(te)u(v)} 1o using the Leibniz rule.

Prove that ¢: Sp(1) — SO(3), ¢(q) = Ty, is a double covering map. In particular,
m1(SO(3)) = Zo



a)

1 1

If ¢ € Sp(1), we have ¢~ = ¢, in particular Img~" = —Img. Thus, the formulas
for quaternionic multiplication imply that if Rev = 0, then Requg™" = 0, so
quaternionic conjugation by ¢ defines a linear transformation T}, of Im H = R3.
This linear transformation is orthogonal because |T,(v)| = |g||v||q| ! = |v] for all
ve€ImH = R3. Thus, T, € SO(3) for all ¢ € Sp(1).

Let q(t) = cos(t0) + sin(t0) u, t € R, so that q(0) = 1 and q(1) = ¢. Note that
q(t) is a 1-parameter subgroup of Sp(1) and q'(0) = fu € T3Sp(1) = sp(1), so
q(t) € Sp(1) is the 1-parameter subgroup q(t) = exp tfu. By the Leibniz rule:

%Tq(t) (U)}t:O = %q(t) Uq(t)_l‘tzo

= §rat)],_ova(0)™" +a(0) Gv[,_ya(0) " +a(0) v Fa®) 7|,
=0uv +0+v(—0u)

=0(uv —vu)

=0(uxv—uvXu)

=20uxv

=20 A,v.

Clearly, t — Ty is a 1-parameter subgroup of SO(3). By the above, Ty ;) is the

1-parameter subgroup g ;) = exp t(20A,). Setting t = 1, we have T, = 20 Au

The map ¢: Sp(1) — SO(3), ¢(q) = T, is clearly a continuous group homomor-
phism, hence a Lie group homomorphism. Moreover, setting 6 = 1 in the above
computation, we find dp(1)u = 24, for all u € $2 C R? = sp(1). Thus, dp(1) is
an isomorphism and hence ¢ is a covering map (by Prop. 1.24 in Chapter 1).

Moreover, if p(q) = e?4« = Id, since u € $°, we must have § = 0 or § = 7, i.e.,

ker p = {1,—1} =& Zy. Thus, ¢ is a double covering. Since Sp(1) = $3 is simply-
connected, it is the universal covering of SO(3). In particular, m (SO(3)) = Z»



