Homework #5

DUE: MAY 10, 2024

All manifolds are assumed to be smooth, connected, and complete.

1. Prove that if (M^n, g) has $\operatorname{Ric} \ge (n-1)k$, where k > 0, and $\operatorname{Vol}(M^n, g) > \frac{1}{2}\operatorname{Vol}\left(\mathbb{S}^n\left(\frac{1}{\sqrt{k}}\right)\right)$, then M is simply-connected. Give a counter-example if $\operatorname{Vol}(M^n, g) = \frac{1}{2}\operatorname{Vol}\left(\mathbb{S}^n\left(\frac{1}{\sqrt{k}}\right)\right)$.

HINT: Compute the volume of the universal covering of M.

Endow the universal covering \widetilde{M}^n of (M^n, g) with the pullback metric \widetilde{g} , which also has Ric $\geq (n-1)k$, where k > 0. By Myers' Theorem, \widetilde{M}^n is closed, $\pi_1(M)$ is finite, and

$$\operatorname{Vol}(\widetilde{M}^n, \widetilde{g}) = |\pi_1(M)| \operatorname{Vol}(M^n, g) > \frac{|\pi_1(M)|}{2} \operatorname{Vol}(\mathbb{S}^n(\frac{1}{\sqrt{k}})).$$

On the other hand, by Bishop Volume Comparison, $\operatorname{Vol}(\widetilde{M}^n, \widetilde{g}) \leq \operatorname{Vol}(\mathbb{S}^n(\frac{1}{\sqrt{k}}))$. Thus, $|\pi_1(M)| = 1$, i.e., $M = \widetilde{M}$ is simply-connected.

The conclusion becomes false if, instead, $\operatorname{Vol}(M^n, g) = \frac{1}{2}\operatorname{Vol}\left(\mathbb{S}^n\left(\frac{1}{\sqrt{k}}\right)\right)$, as exemplified by $\mathbb{R}P^n\left(\frac{1}{\sqrt{k}}\right) = \mathbb{S}^n\left(\frac{1}{\sqrt{k}}\right)/\mathbb{Z}_2$ with the "round" metric of sec $\equiv k$.

2. Suppose that (M^n, g) has sec ≥ 1 and $p, q \in M$ satisfy $\operatorname{dist}(p, q) = \operatorname{diam}(M, g) > \frac{\pi}{2}$. Prove that q is the *unique* point at maximal distance from p, i.e., if $x \in M$ is such that $\operatorname{dist}(p, x) \geq \operatorname{dist}(p, q)$, then x = q.

HINT: Use Toponogov's triangle comparison theorem with vertices p, q, x.

If $x \in M$ is such that $\operatorname{dist}(p, x) \geq \operatorname{dist}(p, q) = \operatorname{diam}(M, g)$, then $\operatorname{dist}(p, x) = \operatorname{dist}(p, q)$. Suppose $x \neq q$ and consider the geodesic triangle in M with vertices p, q, x. Build a comparison triangle on the sphere \mathbb{S}^2 with sec $\equiv 1$, with the vertex \overline{p} at the north pole.

Then, as the sides containing \overline{p} have length equal to diam $(M, g) > \frac{\pi}{2}$, the vertices $\overline{q}, \overline{x}$ lie in the southern hemisphere of \mathbb{S}^2 . Thus, any point \overline{y} in the minimizing geodesic of \mathbb{S}^2 joining \overline{q} and \overline{x} is farther away from \overline{p} than $\overline{q}, \overline{x}$. By Toponogov's triangle comparison

theorem, the corresponding point y along the minimizing geodesic in M joining q and x would satisfy

$$\operatorname{dist}(p, y) \ge \operatorname{dist}(\overline{p}, \overline{y}) > \operatorname{dist}(\overline{p}, \overline{q}) = \operatorname{diam}(M, g),$$

which is impossible, since diam(M, g) is the largest distance in (M, g). Thus, x = q.

- 3. About the Lie group $SU(2) \cong Sp(1) \cong S^3$:
 - a) Check that $\$^3 = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1\}$ endowed with the multiplication

$$(z_1, z_2) \cdot (w_1, w_2) := (z_1 w_1 - \overline{z_2} w_2, w_1 z_2 + \overline{z_1} w_2)$$

is a Lie group.

- b) Prove that $\varphi \colon \mathbb{S}^3 \to \mathsf{SU}(2), \ \varphi(z_1, z_2) = \begin{pmatrix} z_1 & -\overline{z_2} \\ z_2 & \overline{z_1} \end{pmatrix}$, is a Lie group isomorphism.
- c) Find a Lie group isomorphism $\psi \colon \mathsf{Sp}(1) \to \mathbb{S}^3$, where

$$\mathsf{Sp}(1) = \{a + b\,i + c\,j + d\,k \in \mathbb{H} : a^2 + b^2 + c^2 + d^2 = 1\}$$

is the group of unit quaternions.

- a) The given multiplication is a polynomial map, hence smooth. Note that this choice of multiplication identifies \mathbb{C}^2 with $\mathbb{C} \oplus j\mathbb{C} \cong \mathbb{H}$ as a real algebra; e.g., $(i,0) \cdot (0,1) = (0,-i)$ in \mathbb{C}^2 corresponds to $i \cdot j = k$ in \mathbb{H} .
- b) Note that $\varphi \colon \mathbb{S}^3 \to \mathsf{SU}(2)$ is a smooth homomorphism, hence it is a Lie group homomorphism. Since ker $\varphi = \{(1,0)\}$ and $\varphi(\mathbb{S}^3) = \mathsf{SU}(2)$, it is an isomorphism.
- c) Let $\psi: \mathsf{Sp}(1) \to \mathbb{S}^3$ be given by $\psi(a + bi + cj + dk) = (a + bi, c di)$. Note that ψ is well-defined and it is a group homomorphism. Indeed, $\psi(1) = (1,0)$, $\psi(i) = (i,0), \psi(j) = (0,1), \psi(k) = (0,-i)$ satisfy the same multiplication table in \mathbb{S}^3 as the quaternionic imaginary units $\{1, i, j, k\}$ in $\mathsf{Sp}(1)$, since $\mathbb{C} \oplus j\mathbb{C} \cong \mathbb{H}$ as real algebras: (a + bi) + j(c di) = a + bi + cj + dk. The homomorphism ψ is clearly smooth and injective, hence it is a Lie group isomorphism.
- 4. About the Lie algebra $\mathfrak{so}(3) \cong (\mathbb{R}^3, \times)$:
 - a) Show that $\mathfrak{so}(3) = \{A \in \mathfrak{gl}(3, \mathbb{R}) : A^T + A = 0\}$ is a Lie algebra, with Lie bracket given by the matrix commutator

b) Given
$$u = (u_1, u_2, u_3) \in \mathbb{R}^3$$
, let $A_u = \begin{pmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{pmatrix}$. Show that $A_u v = u \times v$ for all $v \in \mathbb{R}^3$.

- c) Show that $A_{u \times v} = [A_u, A_v]$. Conclude that the map $\phi : (\mathbb{R}^3, \times) \to \mathfrak{so}(3)$, given by $\phi(u) = A_u$, is a Lie algebra isomorphism.
- a) The Lie bracket [A, B] = AB BA clearly satisfies the Jacobi identity. If $A^T = -A$ and $B^T = -B$, then $[A, B]^T = (AB - BA)^T = B^T A^T - A^T B^T = -[A, B]$, so $\mathfrak{so}(3)$ is closed under this bracket and is hence a Lie algebra.

$$A_{u}v = \begin{pmatrix} 0 & -u_{3} & u_{2} \\ u_{3} & 0 & -u_{1} \\ -u_{2} & u_{1} & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} = \begin{pmatrix} u_{2}v_{3} - u_{3}v_{2} \\ u_{3}v_{1} - u_{1}v_{3} \\ u_{1}v_{2} - u_{2}v_{1} \end{pmatrix} = u \times v$$

c)

$$[A_u, A_v] = A_u A_v - A_v A_u = = \begin{pmatrix} 0 & -u_1 v_2 + u_2 v_1 & u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 & 0 & -u_2 v_3 + u_3 v_2 \\ -u_3 v_1 + u_1 v_3 & u_2 v_3 - u_3 v_2 & 0 \end{pmatrix} = A_{u \times v}$$

The map $\phi: (\mathbb{R}^3, \times) \to \mathfrak{so}(3), \ \phi(u) = A_u$, is clearly linear, and, by the above, satisfies $[\phi(u), \phi(v)] = \phi(u \times v)$ for all $u, v \in \mathbb{R}^3$, hence it is a Lie algebra homomorphism. Since ker $\phi = \{0\}$ and $\phi(\mathbb{R}^3) = \mathfrak{so}(3)$, it is a Lie algebra isomorphism.

- 5. Prove that SU(2) is the universal covering of SO(3) via the following steps:
 - a) Decompose quaternions into real and imaginary part $q \in \mathbb{H} \cong \operatorname{Re} \mathbb{H} \oplus \operatorname{Im} \mathbb{H}$, where $\operatorname{Im} q = b \, i + c \, j + d \, k \in \operatorname{Im} \mathbb{H}$ is identified with the vector $\operatorname{Im} q = (b, c, d) \in \mathbb{R}^3$, so that quaternion multiplication can be written as:

$$\begin{aligned} &\operatorname{Re}(\operatorname{Re} q_1 + \operatorname{Im} q_1)(\operatorname{Re} q_2 + \operatorname{Im} q_2) = \operatorname{Re} q_1 \operatorname{Re} q_2 - \langle \operatorname{Im} q_1, \operatorname{Im} q_2 \rangle \\ &\operatorname{Im}(\operatorname{Re} q_1 + \operatorname{Im} q_1)(\operatorname{Re} q_2 + \operatorname{Im} q_2) = \operatorname{Re} q_2 \operatorname{Im} q_1 + \operatorname{Re} q_1 \operatorname{Im} q_2 + \operatorname{Im} q_1 \times \operatorname{Im} q_2) \end{aligned}$$

If $q \in \mathsf{Sp}(1)$, let $u = (u_1, u_2, u_3) \in \mathbb{S}^2 \subset \mathbb{R}^3 \cong \operatorname{Im} \mathbb{H}$ be a unit vector and $\theta \in [0, 2\pi]$, such that $\operatorname{Re} q = \cos \theta$ and $\operatorname{Im} q = (\sin \theta)u$. Prove that $T_q \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by quaternionic conjugation $T_q(v) = q v q^{-1}$ is the orthogonal linear transformation

$$T_q = e^{2\theta A_u} \in \mathsf{SO}(3), \text{ where } A_u = \begin{pmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{pmatrix} \in \mathfrak{so}(3).$$

HINT: Compute $\frac{d}{dt}T_{\cos(t\theta)+\sin(t\theta)u}(v)\Big|_{t=0}$ using the Leibniz rule.

b) Prove that $\varphi \colon \mathsf{Sp}(1) \to \mathsf{SO}(3), \, \varphi(q) = T_q$, is a double covering map. In particular, $\pi_1(\mathsf{SO}(3)) \cong \mathbb{Z}_2$

a) If $q \in \mathsf{Sp}(1)$, we have $q^{-1} = \overline{q}$, in particular $\operatorname{Im} q^{-1} = -\operatorname{Im} q$. Thus, the formulas for quaternionic multiplication imply that if $\operatorname{Re} v = 0$, then $\operatorname{Re} q v q^{-1} = 0$, so quaternionic conjugation by q defines a linear transformation T_q of $\operatorname{Im} \mathbb{H} \cong \mathbb{R}^3$. This linear transformation is orthogonal because $|T_q(v)| = |q||v||q|^{-1} = |v|$ for all $v \in \operatorname{Im} \mathbb{H} \cong \mathbb{R}^3$. Thus, $T_q \in \operatorname{SO}(3)$ for all $q \in \operatorname{Sp}(1)$. Let $\mathbf{q}(t) = \cos(t\theta) + \sin(t\theta) u$, $t \in \mathbb{R}$, so that $\mathbf{q}(0) = 1$ and $\mathbf{q}(1) = q$. Note that

Let $\mathbf{q}(t) = \cos(t\theta) + \sin(t\theta)u$, $t \in \mathbb{R}$, so that $\mathbf{q}(0) = 1$ and $\mathbf{q}(1) = q$. Note that $\mathbf{q}(t)$ is a 1-parameter subgroup of $\mathsf{Sp}(1)$ and $\mathbf{q}'(0) = \theta u \in T_1\mathsf{Sp}(1) \cong \mathfrak{sp}(1)$, so $\mathbf{q}(t) \in \mathsf{Sp}(1)$ is the 1-parameter subgroup $\mathbf{q}(t) = \exp t\theta u$. By the Leibniz rule:

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} T_{\mathbf{q}(t)}(v) \big|_{t=0} &= \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{q}(t) v \mathbf{q}(t)^{-1} \big|_{t=0} \\ &= \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{q}(t) \big|_{t=0} v \mathbf{q}(0)^{-1} + \mathbf{q}(0) \frac{\mathrm{d}}{\mathrm{d}t} v \big|_{t=0} \mathbf{q}(0)^{-1} + \mathbf{q}(0) v \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{q}(t)^{-1} \big|_{t=0} \\ &= \theta u v + 0 + v (-\theta u) \\ &= \theta (u v - v u) \\ &= \theta (u \times v - v \times u) \\ &= 2\theta u \times v \\ &= 2\theta A_u v. \end{aligned}$$

Clearly, $t \mapsto T_{\mathbf{q}(t)}$ is a 1-parameter subgroup of SO(3). By the above, $T_{\mathbf{q}(t)}$ is the 1-parameter subgroup $T_{\mathbf{q}(t)} = \exp t(2\theta A_u)$. Setting t = 1, we have $T_q = e^{2\theta A_u}$.

b) The map $\varphi \colon \mathsf{Sp}(1) \to \mathsf{SO}(3), \varphi(q) = T_q$, is clearly a continuous group homomorphism, hence a Lie group homomorphism. Moreover, setting $\theta = 1$ in the above computation, we find $d\varphi(1)u = 2A_u$ for all $u \in \mathbb{S}^2 \subset \mathbb{R}^3 \cong \mathfrak{sp}(1)$. Thus, $d\varphi(1)$ is an isomorphism and hence φ is a covering map (by Prop. 1.24 in Chapter 1). Moreover, if $\varphi(q) = e^{2\theta A_u} = \mathrm{Id}$, since $u \in \mathbb{S}^2$, we must have $\theta = 0$ or $\theta = \pi$, i.e., $\ker \varphi = \{1, -1\} \cong \mathbb{Z}_2$. Thus, φ is a double covering. Since $\mathsf{Sp}(1) \cong \mathbb{S}^3$ is simply-connected, it is the universal covering of $\mathsf{SO}(3)$. In particular, $\pi_1(\mathsf{SO}(3)) \cong \mathbb{Z}_2$