
MATH71000, Spring 2024 Renato Ghini Bettiol

Homework #5

Due: May 10, 2024

All manifolds are assumed to be smooth, connected, and complete.

1. Prove that if (Mn, g) has Ric ≥ (n−1)k, where k > 0, and Vol(Mn, g) > 1
2Vol

(
Sn
(

1√
k

))
,

then M is simply-connected. Give a counter-example if Vol(Mn, g) = 1
2Vol

(
Sn
(

1√
k

))
.

Hint: Compute the volume of the universal covering of M .

Endow the universal covering M̃n of (Mn, g) with the pullback metric g̃, which also has

Ric ≥ (n− 1)k, where k > 0. By Myers’ Theorem, M̃n is closed, π1(M) is finite, and

Vol
(
M̃n, g̃

)
= |π1(M)|Vol(Mn, g) >

|π1(M)|
2

Vol
(
Sn
(

1√
k

))
.

On the other hand, by Bishop Volume Comparison, Vol
(
M̃n, g̃

)
≤ Vol

(
Sn
(

1√
k

))
. Thus,

|π1(M)| = 1, i.e., M = M̃ is simply-connected.

The conclusion becomes false if, instead, Vol(Mn, g) = 1
2Vol

(
Sn
(

1√
k

))
, as exemplified

by RPn( 1√
k

)
= Sn

(
1√
k

)
/Z2 with the “round” metric of sec ≡ k.

2. Suppose that (Mn, g) has sec ≥ 1 and p, q ∈ M satisfy dist(p, q) = diam(M, g) > π
2 .

Prove that q is the unique point at maximal distance from p, i.e., if x ∈M is such that
dist(p, x) ≥ dist(p, q), then x = q.

Hint: Use Toponogov’s triangle comparison theorem with vertices p, q, x.

If x ∈ M is such that dist(p, x) ≥ dist(p, q) = diam(M, g), then dist(p, x) = dist(p, q).
Suppose x 6= q and consider the geodesic triangle in M with vertices p, q, x. Build a
comparison triangle on the sphere S2 with sec ≡ 1, with the vertex p at the north pole.

p

xq y

Then, as the sides containing p have length equal to diam(M, g) > π
2 , the vertices q, x

lie in the southern hemisphere of S2. Thus, any point y in the minimizing geodesic of S2

joining q and x is farther away from p than q, x. By Toponogov’s triangle comparison



theorem, the corresponding point y along the minimizing geodesic in M joining q and
x would satisfy

dist(p, y) ≥ dist(p, y) > dist(p, q) = diam(M, g),

which is impossible, since diam(M, g) is the largest distance in (M, g). Thus, x = q.

3. About the Lie group SU(2) ∼= Sp(1) ∼= S3:

a) Check that S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} endowed with the multiplication

(z1, z2) · (w1, w2) :=
(
z1w1 − z2w2, w1z2 + z1w2

)
is a Lie group.

b) Prove that ϕ : S3 → SU(2), ϕ(z1, z2) =

(
z1 −z2
z2 z1

)
, is a Lie group isomorphism.

c) Find a Lie group isomorphism ψ : Sp(1)→ S3, where

Sp(1) = {a+ b i+ c j + d k ∈ H : a2 + b2 + c2 + d2 = 1}

is the group of unit quaternions.

a) The given multiplication is a polynomial map, hence smooth. Note that this
choice of multiplication identifies C2 with C ⊕ jC ∼= H as a real algebra; e.g.,
(i, 0) · (0, 1) = (0,−i) in C2 corresponds to i · j = k in H.

b) Note that ϕ : S3 → SU(2) is a smooth homomorphism, hence it is a Lie group
homomorphism. Since kerϕ = {(1, 0)} and ϕ(S3) = SU(2), it is an isomorphism.

c) Let ψ : Sp(1) → S3 be given by ψ(a + b i + c j + d k) = (a + b i, c − d i). Note
that ψ is well-defined and it is a group homomorphism. Indeed, ψ(1) = (1, 0),
ψ(i) = (i, 0), ψ(j) = (0, 1), ψ(k) = (0,−i) satisfy the same multiplication table in
S3 as the quaternionic imaginary units {1, i, j, k} in Sp(1), since C ⊕ jC ∼= H as
real algebras: (a + b i) + j(c − d i) = a + b i + c j + d k. The homomorphism ψ is
clearly smooth and injective, hence it is a Lie group isomorphism.

4. About the Lie algebra so(3) ∼= (R3,×):

a) Show that so(3) = {A ∈ gl(3,R) : AT + A = 0} is a Lie algebra, with Lie bracket
given by the matrix commutator

b) Given u = (u1, u2, u3) ∈ R3, let Au =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

. Show that Auv = u×v

for all v ∈ R3.
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c) Show that Au×v = [Au, Av]. Conclude that the map φ : (R3,×)→ so(3), given by
φ(u) = Au, is a Lie algebra isomorphism.

a) The Lie bracket [A,B] = AB−BA clearly satisfies the Jacobi identity. If AT = −A
and BT = −B, then [A,B]T = (AB−BA)T = BTAT −ATBT = −[A,B], so so(3)
is closed under this bracket and is hence a Lie algebra.

b)

Auv =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

v1v2
v3

 =

u2v3 − u3v2u3v1 − u1v3
u1v2 − u2v1

 = u× v

c)

[Au, Av] = AuAv −AvAu =

=

 0 −u1v2 + u2v1 u3v1 − u1v3
u1v2 − u2v1 0 −u2v3 + u3v2
−u3v1 + u1v3 u2v3 − u3v2 0

 = Au×v

The map φ : (R3,×) → so(3), φ(u) = Au, is clearly linear, and, by the above,
satisfies [φ(u), φ(v)] = φ(u × v) for all u, v ∈ R3, hence it is a Lie algebra homo-
morphism. Since kerφ = {0} and φ(R3) = so(3), it is a Lie algebra isomorphism.

5. Prove that SU(2) is the universal covering of SO(3) via the following steps:

a) Decompose quaternions into real and imaginary part q ∈ H ∼= ReH⊕ ImH, where
Im q = b i + c j + d k ∈ ImH is identified with the vector Im q = (b, c, d) ∈ R3, so
that quaternion multiplication can be written as:

Re(Re q1 + Im q1)(Re q2 + Im q2) = Re q1 Re q2 − 〈Im q1, Im q2〉
Im(Re q1 + Im q1)(Re q2 + Im q2) = Re q2 Im q1 + Re q1 Im q2 + Im q1 × Im q2

If q ∈ Sp(1), let u = (u1, u2, u3) ∈ S2 ⊂ R3 ∼= ImH be a unit vector and θ ∈ [0, 2π],
such that Re q = cos θ and Im q = (sin θ)u. Prove that Tq : R3 → R3 given by
quaternionic conjugation Tq(v) = q v q−1 is the orthogonal linear transformation

Tq = e2θAu ∈ SO(3), where Au =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 ∈ so(3).

Hint: Compute d
dtTcos(tθ)+sin(tθ)u(v)

∣∣
t=0

using the Leibniz rule.

b) Prove that ϕ : Sp(1)→ SO(3), ϕ(q) = Tq, is a double covering map. In particular,
π1(SO(3)) ∼= Z2
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a) If q ∈ Sp(1), we have q−1 = q, in particular Im q−1 = − Im q. Thus, the formulas
for quaternionic multiplication imply that if Re v = 0, then Re q v q−1 = 0, so
quaternionic conjugation by q defines a linear transformation Tq of ImH ∼= R3.
This linear transformation is orthogonal because |Tq(v)| = |q||v||q|−1 = |v| for all
v ∈ ImH ∼= R3. Thus, Tq ∈ SO(3) for all q ∈ Sp(1).

Let q(t) = cos(tθ) + sin(tθ)u, t ∈ R, so that q(0) = 1 and q(1) = q. Note that
q(t) is a 1-parameter subgroup of Sp(1) and q′(0) = θu ∈ T1Sp(1) ∼= sp(1), so
q(t) ∈ Sp(1) is the 1-parameter subgroup q(t) = exp tθu. By the Leibniz rule:

d
dtTq(t)(v)

∣∣
t=0

= d
dtq(t) v q(t)−1

∣∣
t=0

= d
dtq(t)

∣∣
t=0

v q(0)−1 + q(0) d
dtv
∣∣
t=0

q(0)−1 + q(0) v d
dtq(t)−1

∣∣
t=0

= θu v + 0 + v (−θu)

= θ(u v − v u)

= θ(u× v − v × u)

= 2θ u× v
= 2θ Auv.

Clearly, t 7→ Tq(t) is a 1-parameter subgroup of SO(3). By the above, Tq(t) is the

1-parameter subgroup Tq(t) = exp t(2θAu). Setting t = 1, we have Tq = e2θ Au .

b) The map ϕ : Sp(1) → SO(3), ϕ(q) = Tq, is clearly a continuous group homomor-
phism, hence a Lie group homomorphism. Moreover, setting θ = 1 in the above
computation, we find dϕ(1)u = 2Au for all u ∈ S2 ⊂ R3 ∼= sp(1). Thus, dϕ(1) is
an isomorphism and hence ϕ is a covering map (by Prop. 1.24 in Chapter 1).

Moreover, if ϕ(q) = e2θAu = Id, since u ∈ S2, we must have θ = 0 or θ = π, i.e.,
kerϕ = {1,−1} ∼= Z2. Thus, ϕ is a double covering. Since Sp(1) ∼= S3 is simply-
connected, it is the universal covering of SO(3). In particular, π1(SO(3)) ∼= Z2
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