Final Exam

Due: May 17, 2024
The exam contains 6 problems, each is worth 2.5 points, but the maximum grade is 10/10. Please indicate which 5 problems you would like to be graded, the problem with the lowest score will be discarded.

1. Consider the Lie group

$$
\mathrm{G}=\left\{\left(\begin{array}{lll}
x & y & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \in \mathrm{GL}(3, \mathbb{R}): x>0, y, z \in \mathbb{R}\right\}
$$

whose Lie algebra, endowed with the Lie bracket $[A, B]=A B-B A$ from $\mathfrak{g l}(3, \mathbb{R})$, is

$$
\mathfrak{g}=\operatorname{span}\left\{X=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), Y=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), Z=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\} \subset \mathfrak{g l}(3, \mathbb{R}) .
$$

a) Compute the Lie brackets $[X, Y],[Y, Z],[X, Z]$ of the basis elements of \mathfrak{g}, and write them in terms of X, Y, Z.
b) Let g be the left-invariant Riemannian metric on G that at $\mathrm{Id} \in \mathrm{G}$ coincides with the inner product on \mathfrak{g} for which $\{X, Y, Z\}$ is an orthonormal basis. Denote by $X, Y, Z \in \mathfrak{X}(\mathrm{G})$ the left-invariant vector fields corresponding to $X, Y, Z \in \mathfrak{g}$. Use the Koszul formula and a) to compute the the Levi-Civita connection ∇ of (G, g),

$$
\begin{array}{lll}
\nabla_{X} X= & \nabla_{X} Y= & \nabla_{X} Z= \\
\nabla_{Y} X= & \nabla_{Y} Y= & \nabla_{Y} Z= \\
\nabla_{Z} X= & \nabla_{Z} Y= & \nabla_{Z} Z=
\end{array}
$$

(To avoid unnecessary computations, recall that $\nabla_{A} B-\nabla_{B} A=[A, B]$.)
c) Show that the curvature operator $R: \wedge^{2} \mathfrak{g} \rightarrow \wedge^{2} \mathfrak{g}$ is $R=-\mathrm{Id}$. Conclude that g is not a bi-invariant metric, and that (G, g) is isometric to hyperbolic 3 -space.
d) On a matrix Lie group, such as G , the adjoint action is given by conjugation, i.e., $\operatorname{Ad}(A) B=A B A^{-1}$, for all $A \in \mathrm{G}$ and $B \in \mathfrak{g}$. Show that

$$
\text { if } A=\left(\begin{array}{lll}
x & y & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \text { then } \begin{aligned}
& \operatorname{Ad}(A) X=X-y Y-z Z \\
& \operatorname{Ad}(A) Y=x Y \\
& \operatorname{Ad}(A) Z=x Z
\end{aligned}
$$

and use the matrix that represents $\operatorname{Ad}(A): \mathfrak{g} \rightarrow \mathfrak{g}$ in the basis $\{X, Y, Z\}$ to compute the eigenvalues of $\operatorname{Ad}(A)$. Conclude that G does not admit bi-invariant metrics.
2. Let $\left(M^{4}, \mathrm{~g}\right)$ be a closed Riemannian 4-manifold. The conformal metric $\mathrm{h}=u^{2} \mathrm{~g}$, where $u: M^{4} \rightarrow \mathbb{R}$ is a positive smooth function, has scalar curvature given by:

$$
\operatorname{scal}_{\mathrm{h}}=\left(-6 \Delta u+u \text { scalg }_{\mathrm{g}}\right) u^{-3}
$$

where $\Delta u=\operatorname{tr}$ Hess u. Suppose scalg $\equiv \kappa$ and $\operatorname{scal}_{h} \equiv \kappa$ are both constant and equal.
a) Prove that if $\kappa \neq 0$, then either $u \equiv 1$, or there exist points $p, q \in M$ such that $u(p)<1<u(q)$.
b) Prove that if $\kappa<0$, then $\mathrm{h}=\mathrm{g}$. What happens if $\kappa=0$?
3. Let K^{2} be the Klein bottle, and recall that it is double-covered by the 2 -torus T^{2}. Provide either a construction (just a brief outline of the curvature computations is fine) or a topological obstruction (quoting a theorem) as answer to the following questions:
a) Does $K^{2} \times S^{1}$ admit a Riemannian metric with sec ≤ 0 ? How about sec <0 ?
b) Does $K^{2} \times \mathbb{R} P^{2}$ admit a Riemannian metric with Ric >0 ? How about Ric ≥ 0 ?
c) Does $\mathbb{C} P^{n}$ admit a Riemannian metric with sec ≤ 0 ? How about $\mathrm{sec} \geq 10$?
d) Does $\mathbb{S}^{3} / \mathbb{Z}_{3} \times \mathbb{S}^{3} / \mathbb{Z}_{5}$ admit a metric with sec >0 ? How about scal $\equiv k>0$?
4. Let ($M, \mathrm{~g}$) be a connected compact Riemannian manifold with $\sec _{M} \geq 0$ and compact boundary $\partial M \neq \emptyset$. Suppose ∂M is convex, i.e., for all $p \in \partial M$, the shape operator $\left(S_{\vec{n}}\right)_{p}: T_{p} \partial M \rightarrow T_{p} \partial M$, given by $S_{\vec{n}}(X)=-\nabla_{X} \vec{n}$, is positive-definite, where \vec{n} is the inward-pointing unit normal of ∂M.
a) Does ∂M have to be connected? If yes, give a proof; if no, give a counter-example.
b) Prove that $\pi_{1}(M, \partial M)=\{1\}$, hence the inclusion $\partial M \hookrightarrow M$ induces a surjective homomorphism $\pi_{1}(\partial M) \rightarrow \pi_{1}(M)$. You may use (without proof) the fact that minimizing length in a nontrivial free homotopy class of curves in M with endpoints in ∂M yields a geodesic in M with endpoints in ∂M.
c) Give two examples of the above situation, to show that $\pi_{1}(\partial M) \rightarrow \pi_{1}(M)$ may or may not be injective.
5. Recall from Problem 6 in the Midterm that if $(M, \mathrm{~g})$ is a complete noncompact manifold and $p \in M$, then there exists a unit speed geodesic $\gamma: \mathbb{R} \rightarrow M$ such that $\gamma(0)=p$ and $\operatorname{dist}(\gamma(t), \gamma(s))=|t-s|$ for all $t, s \geq 0$. Assume, moreover, that $\left(M^{n}, \mathrm{~g}\right)$ has Ric ≥ 0.
a) Fix $a>0$, and use Bishop Volume Comparison to show that, for all $t>a$,

$$
\frac{\operatorname{Vol}\left(B_{t+a}(\gamma(t))\right)}{\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)} \leq \frac{(t+a)^{n}}{(t-a)^{n}}
$$

b) Show that $B_{a}(p) \subset B_{t+a}(\gamma(t)) \backslash B_{t-a}(\gamma(t))$, and conclude that, given $t>t_{0}>a$,

$$
\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right) \geq c\left(n, t_{0}\right) \operatorname{Vol}\left(B_{a}(p)\right) t
$$

where $c\left(n, t_{0}\right)=\inf _{t \in\left[t_{0},+\infty\right)} \frac{1}{t} \frac{(t-a)^{n}}{(t+a)^{n}-(t-a)^{n}}>0$.
c) Show that $B_{\frac{r+a}{2}-a}\left(\gamma\left(\frac{r+a}{2}\right)\right) \subset B_{r}(p)$ and conclude that, for all $r>2 t_{0}-a$,

$$
c r \leq \operatorname{Vol}\left(B_{r}(p)\right) \leq C r^{n},
$$

where $c, C>0$ are constants. In particular, $\left(M^{n}, \mathrm{~g}\right)$ has infinite volume.
d) For each $1 \leq k \leq n$, give an example of a complete noncompact Riemannian manifold $\left(M^{n}, \mathrm{~g}\right)$ with Ric ≥ 0 for which $\operatorname{Vol}\left(B_{r}(p)\right)=O\left(r^{k}\right)$ as $r \nearrow+\infty$.
6. Consider the unit sphere $\mathbb{S}^{5} \subset \mathbb{R}^{6}$ and let $M=\mathbb{S}^{5} \cap\left(\mathbb{R}^{3} \oplus\{0\}\right)$ and $N=\mathbb{S}^{5} \cap\left(\{0\} \oplus \mathbb{R}^{3}\right)$, which are isometric copies of the unit sphere \mathbb{S}^{2} sitting in \mathbb{S}^{5}.
a) Verify that M and N are totally geodesic in \mathbb{S}^{5}.
b) Given a unit vector $x \in \mathbb{R}^{3}$, identify $T_{(x, 0)} M$ with a subspace of $T_{(x, 0)} \mathbb{S}^{5}$, and let $T_{(x, 0)} M^{\perp} \subset T_{(x, 0)} \mathbb{S}^{5}$ be its orthogonal complement. If $v \in T_{(x, 0)} M^{\perp}$ is a unit vector, find an explicit formula for the geodesic $\gamma(t)=\exp _{(x, 0)}$ tv on $\mathbb{S}^{5} \subset \mathbb{R}^{6}$.
c) Let $T M^{\perp}=\bigcup_{x \in M} T_{(x, 0)} M^{\perp}$ be the normal bundle of $M \subset \mathbb{S}^{5}$, which is a trivial bundle $T M^{\perp} \cong M \times \mathbb{R}^{3}$. We write $(x, t, v) \in T M^{\perp}$, where $t \geq 0$ and $v \in T_{(x, 0)} M^{\perp}$ is a unit vector. Show that the restriction of $f: T M^{\perp} \rightarrow \mathbb{S}^{5}, f(x, t, v)=\exp _{(x, 0)} t v$, to $\left\{(x, t, v) \in T M^{\perp}: 0 \leq t<\frac{\pi}{2}\right\}$ is a diffeomorphism onto its image $\mathbb{S}^{5} \backslash N$.
d) Show that, for each $(x, 0) \in M$, the map $\phi_{x}: \mathbb{S}^{2} \subset T_{(x, 0)} M^{\perp} \rightarrow N$ given by $\phi_{x}(v)=f\left(x, \frac{\pi}{2}, v\right)$ is an isometry.
e) Show that $M, N \subset \mathbb{S}^{5}$ are subsets at maximal distance $\operatorname{dist}_{\mathrm{g}}(M, N)=\pi / 2$, i.e., the function $M \ni x \mapsto \operatorname{dist}_{g}(x, N)=\inf \left\{\operatorname{dist}_{g}(x, y): y \in N\right\}$ is constant and equal to $\pi / 2$, and for any subset $P \subset \mathbb{S}^{5}, P \not \subset N$, one has $\operatorname{dist}_{\mathrm{g}}(x, P)<\frac{\pi}{2}$ for some $x \in M$.

