Final Exam

DUE: MAY 17, 2024

The exam contains 6 problems, each is worth 2.5 points, but the maximum grade is 10/10. Please indicate which 5 problems you would like to be graded, the problem with the lowest score will be discarded.

1. Consider the Lie group

$$\mathsf{G} = \left\{ \begin{pmatrix} x & y & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \mathsf{GL}(3, \mathbb{R}) : x > 0, \, y, z \in \mathbb{R} \right\},\$$

whose Lie algebra, endowed with the Lie bracket [A, B] = AB - BA from $\mathfrak{gl}(3, \mathbb{R})$, is

$$\mathfrak{g} = \operatorname{span} \left\{ X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \, Y = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \, Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \subset \mathfrak{gl}(3, \mathbb{R}).$$

- a) Compute the Lie brackets [X, Y], [Y, Z], [X, Z] of the basis elements of \mathfrak{g} , and write them in terms of X, Y, Z.
- b) Let g be the left-invariant Riemannian metric on G that at $\mathrm{Id} \in \mathsf{G}$ coincides with the inner product on \mathfrak{g} for which $\{X, Y, Z\}$ is an orthonormal basis. Denote by $X, Y, Z \in \mathfrak{X}(\mathsf{G})$ the left-invariant vector fields corresponding to $X, Y, Z \in \mathfrak{g}$. Use the Koszul formula and a) to compute the the Levi-Civita connection ∇ of (G, g) ,

$$\nabla_X X = \nabla_X Y = \nabla_X Z =
\nabla_Y X = \nabla_Y Y = \nabla_Y Z =
\nabla_Z X = \nabla_Z Y = \nabla_Z Z =$$

(To avoid unnecessary computations, recall that $\nabla_A B - \nabla_B A = [A, B]$.)

- c) Show that the curvature operator $R: \wedge^2 \mathfrak{g} \to \wedge^2 \mathfrak{g}$ is R = -Id. Conclude that g is not a bi-invariant metric, and that (G, g) is isometric to hyperbolic 3-space.
- d) On a matrix Lie group, such as G, the adjoint action is given by conjugation, i.e., Ad $(A)B = ABA^{-1}$, for all $A \in G$ and $B \in \mathfrak{g}$. Show that

if
$$A = \begin{pmatrix} x & y & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, then $\operatorname{Ad}(A)X = X - yY - zZ$,
Ad $(A)Y = xY$,
Ad $(A)Z = xZ$,

and use the matrix that represents $\operatorname{Ad}(A) \colon \mathfrak{g} \to \mathfrak{g}$ in the basis $\{X, Y, Z\}$ to compute the eigenvalues of $\operatorname{Ad}(A)$. Conclude that G does not admit bi-invariant metrics.

2. Let (M^4, g) be a closed Riemannian 4-manifold. The conformal metric $h = u^2 g$, where $u: M^4 \to \mathbb{R}$ is a positive smooth function, has scalar curvature given by:

$$\operatorname{scal}_{h} = (-6\Delta u + u \operatorname{scal}_{g}) u^{-3},$$

where $\Delta u = \text{tr Hess } u$. Suppose $\text{scal}_{g} \equiv \kappa$ and $\text{scal}_{h} \equiv \kappa$ are both constant and equal.

- a) Prove that if $\kappa \neq 0$, then either $u \equiv 1$, or there exist points $p, q \in M$ such that u(p) < 1 < u(q).
- b) Prove that if $\kappa < 0$, then h = g. What happens if $\kappa = 0$?
- 3. Let K^2 be the Klein bottle, and recall that it is double-covered by the 2-torus T^2 . Provide either a construction (just a brief outline of the curvature computations is fine) or a topological obstruction (quoting a theorem) as answer to the following questions:
 - a) Does $K^2 \times S^1$ admit a Riemannian metric with sec ≤ 0 ? How about sec < 0?
 - b) Does $K^2 \times \mathbb{R}P^2$ admit a Riemannian metric with Ric > 0? How about Ric ≥ 0 ?
 - c) Does $\mathbb{C}P^n$ admit a Riemannian metric with sec ≤ 0 ? How about sec ≥ 10 ?
 - d) Does $\mathbb{S}^3/\mathbb{Z}_3 \times \mathbb{S}^3/\mathbb{Z}_5$ admit a metric with sec > 0? How about scal $\equiv k > 0$?
- 4. Let (M, g) be a connected compact Riemannian manifold with $\sec_M \ge 0$ and compact boundary $\partial M \ne \emptyset$. Suppose ∂M is convex, i.e., for all $p \in \partial M$, the shape operator $(S_{\vec{n}})_p: T_p \partial M \rightarrow T_p \partial M$, given by $S_{\vec{n}}(X) = -\nabla_X \vec{n}$, is positive-definite, where \vec{n} is the inward-pointing unit normal of ∂M .
 - a) Does ∂M have to be connected? If yes, give a proof; if no, give a counter-example.
 - b) Prove that $\pi_1(M, \partial M) = \{1\}$, hence the inclusion $\partial M \hookrightarrow M$ induces a surjective homomorphism $\pi_1(\partial M) \to \pi_1(M)$. You may use (without proof) the fact that minimizing length in a nontrivial free homotopy class of curves in M with endpoints in ∂M yields a geodesic in M with endpoints in ∂M .
 - c) Give two examples of the above situation, to show that $\pi_1(\partial M) \to \pi_1(M)$ may or may not be injective.
- 5. Recall from Problem 6 in the Midterm that if (M, g) is a complete noncompact manifold and $p \in M$, then there exists a unit speed geodesic $\gamma \colon \mathbb{R} \to M$ such that $\gamma(0) = p$ and $\operatorname{dist}(\gamma(t), \gamma(s)) = |t - s|$ for all $t, s \geq 0$. Assume, moreover, that (M^n, g) has $\operatorname{Ric} \geq 0$.
 - a) Fix a > 0, and use Bishop Volume Comparison to show that, for all t > a,

$$\frac{\operatorname{Vol}\left(B_{t+a}(\gamma(t))\right)}{\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right)} \le \frac{(t+a)^n}{(t-a)^n}$$

b) Show that $B_a(p) \subset B_{t+a}(\gamma(t)) \setminus B_{t-a}(\gamma(t))$, and conclude that, given $t > t_0 > a$,

$$\operatorname{Vol}\left(B_{t-a}(\gamma(t))\right) \ge c(n, t_0) \operatorname{Vol}(B_a(p)) t,$$

where $c(n, t_0) = \inf_{t \in [t_0, +\infty)} \frac{1}{t} \frac{(t-a)^n}{(t+a)^n - (t-a)^n} > 0.$

c) Show that $B_{\frac{r+a}{2}-a}\left(\gamma\left(\frac{r+a}{2}\right)\right) \subset B_r(p)$ and conclude that, for all $r > 2t_0 - a$,

$$c r \leq \operatorname{Vol}(B_r(p)) \leq C r^n,$$

where c, C > 0 are constants. In particular, (M^n, g) has infinite volume.

- d) For each $1 \leq k \leq n$, give an example of a complete noncompact Riemannian manifold (M^n, g) with Ric ≥ 0 for which $\operatorname{Vol}(B_r(p)) = O(r^k)$ as $r \nearrow +\infty$.
- 6. Consider the unit sphere $\mathbb{S}^5 \subset \mathbb{R}^6$ and let $M = \mathbb{S}^5 \cap (\mathbb{R}^3 \oplus \{0\})$ and $N = \mathbb{S}^5 \cap (\{0\} \oplus \mathbb{R}^3)$, which are isometric copies of the unit sphere \mathbb{S}^2 sitting in \mathbb{S}^5 .
 - a) Verify that M and N are totally geodesic in \mathbb{S}^5 .
 - b) Given a unit vector $x \in \mathbb{R}^3$, identify $T_{(x,0)}M$ with a subspace of $T_{(x,0)}\mathbb{S}^5$, and let $T_{(x,0)}M^{\perp} \subset T_{(x,0)}\mathbb{S}^5$ be its orthogonal complement. If $v \in T_{(x,0)}M^{\perp}$ is a unit vector, find an explicit formula for the geodesic $\gamma(t) = \exp_{(x,0)} tv$ on $\mathbb{S}^5 \subset \mathbb{R}^6$.
 - c) Let $TM^{\perp} = \bigcup_{x \in M} T_{(x,0)}M^{\perp}$ be the normal bundle of $M \subset \mathbb{S}^5$, which is a trivial bundle $TM^{\perp} \cong M \times \mathbb{R}^3$. We write $(x, t, v) \in TM^{\perp}$, where $t \ge 0$ and $v \in T_{(x,0)}M^{\perp}$ is a unit vector. Show that the restriction of $f: TM^{\perp} \to \mathbb{S}^5$, $f(x, t, v) = \exp_{(x,0)} tv$, to $\{(x, t, v) \in TM^{\perp} : 0 \le t < \frac{\pi}{2}\}$ is a diffeomorphism onto its image $\mathbb{S}^5 \setminus N$.
 - d) Show that, for each $(x,0) \in M$, the map $\phi_x \colon \mathbb{S}^2 \subset T_{(x,0)}M^{\perp} \to N$ given by $\phi_x(v) = f(x, \frac{\pi}{2}, v)$ is an isometry.
 - e) Show that $M, N \subset \mathbb{S}^5$ are subsets at maximal distance $\operatorname{dist}_{\mathrm{g}}(M, N) = \pi/2$, i.e., the function $M \ni x \mapsto \operatorname{dist}_{\mathrm{g}}(x, N) = \inf \{ \operatorname{dist}_{\mathrm{g}}(x, y) : y \in N \}$ is constant and equal to $\pi/2$, and for any subset $P \subset \mathbb{S}^5$, $P \not\subset N$, one has $\operatorname{dist}_{\mathrm{g}}(x, P) < \frac{\pi}{2}$ for some $x \in M$.