1. The hamiltonian, $H=\alpha_{i} p_{i}+\beta m$, must be hermitian to give real eigenvalues. Thus, $H=H^{\dagger}=$ $p_{i}{ }^{\dagger} \alpha_{i}{ }^{\dagger}+\beta^{\dagger} m$. From non-relativistic quantum mechanics we know that $p_{i}=p_{i}{ }^{\dagger}$. In addition, $\left[\alpha_{i}, p_{j}\right]=0$ because we impose that the α, β operators act on the spinor indices while p_{i} act on the coordinates of the wave function itself. With these conditions we may proceed:

$$
\begin{equation*}
p_{i} \alpha_{i}^{\dagger}+\beta^{\dagger} m=\alpha_{i} p_{i}+\beta m \tag{1}
\end{equation*}
$$

yields

$$
\begin{equation*}
\alpha_{i}^{\dagger} p_{i}+\beta^{\dagger} m=a_{i} p_{i}+\beta m \tag{2}
\end{equation*}
$$

$\alpha_{i}^{\dagger}=\alpha_{i}, \beta^{\dagger}=\beta$. Thus α, β are hermitian operators.

To verify the other properties of the α, and β operators we compute

$$
\begin{align*}
H^{2} & =\left(\alpha_{i} p_{i}+\beta m\right)\left(\alpha_{j} p_{j}+\beta m\right) \\
& =\left(\alpha_{i}^{2} p_{i}^{2}+\frac{1}{2}\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) m+\beta^{2} m^{2}\right) \tag{3}
\end{align*}
$$

where for the second term $i \neq j$. Then imposing the relativistic energy relation, $E^{2}=|p|^{2}+m^{2}$, we obtain the anti-commutation relation

$$
\begin{equation*}
\left\{b_{i}, b_{j}\right\}=2 \delta_{\mathrm{ij}} \mathbb{1} \tag{4}
\end{equation*}
$$

where $b_{0}=\beta, b_{i}=\alpha_{i}$, and $\mathbb{1} \equiv n \times n$ idenitity matrix.
Using the anti-commutation relation and the fact that $b_{i}{ }^{2}=1$ we are able to find the trace of any b_{i}

$$
\begin{equation*}
\operatorname{Tr}\left(b_{i}\right)=\operatorname{Tr}\left(b_{j} b_{j} b_{i}\right), \quad(i \neq j) \tag{5}
\end{equation*}
$$

Recall that traces are invariant under permutations of the matrices and hence

$$
\begin{equation*}
\operatorname{Tr}\left(b_{i}\right)=\operatorname{Tr}\left(b_{j} b_{i} b_{j}\right)=\operatorname{Tr}\left(b_{j}\left(-b_{j} b_{i}\right)\right)=-\operatorname{Tr}\left(b_{i}\right) \tag{6}
\end{equation*}
$$

which implies $\operatorname{Tr}\left(b_{i}\right)=0$. In the second step of Eq. (6 we made use of $b_{i} b_{j}=-b_{j} b_{i}, i \neq j$

Now, using the anti-commutation relations, with the determinate leads to

$$
\begin{equation*}
\left|b_{i} b_{j}\right|=\left|-b_{j} b_{i}\right| \rightarrow\left|b_{i}\left\|b_{j}\left|=(-1)^{N}\right| b_{i}\right\| b_{j}\right| \tag{7}
\end{equation*}
$$

where N is the dimension of the b_{i} matrix and $i \neq j$. Then $1=(-1)^{N}$ which implies that N is an even number.

Finally, making use of $b_{i}{ }^{2}=1$ we can find the eigenvalues: $b_{i} u=\lambda u$ and $b_{i} b_{i} u=\lambda b_{i} u$, hence $u=\lambda^{2} u$ and $\lambda= \pm 1$.
2. We need to find the $\lambda=+1 / 2$ helicity eigenspinor for an electron with momentum $\vec{p}^{\prime}=(p \sin \theta, 0, p \cos \theta)$. The helicity operator is given by $\frac{1}{2} \sigma \cdot \hat{p}$, and the positive eigenvalue $\frac{1}{2}$ corresponds to u_{1} Dirac solution [see (1.5.98) in http://arXiv.org/abs/0906.1271]. Computing $\sigma \cdot \hat{p}$ we find that

$$
\begin{align*}
\boldsymbol{\sigma} \cdot \hat{p} & =\sigma_{1} \sin \theta+\sigma_{2} \cos \theta \\
& =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \sin \theta+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cos \theta \\
& =\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right) \tag{8}
\end{align*}
$$

This tells us that $\vec{p}^{\prime}=(p \sin \theta, 0, p \cos \theta)$ is obtained from $\vec{p}=(0,0, p)$ by a rotation around the y-axis. A rotation through a finite angle θ around the y-axis has associated the unitary transformation $\cos (\theta / 2)-i \sigma_{2} \sin (\theta / 2)$ [see (1.3.21) in http://arXiv.org/abs/0906.1271], so we can obtain the eigenspinor $u\left(\vec{p}^{\prime}\right)$ by applying this unitary transformation to the eigenspinor $u_{1}(\vec{p})$

This is the $\lambda=+1 / 2$ eigenspinor of the electron with momentum \vec{p}^{\prime}.
3. (a) The Commutation of H with L. First, we check [H, \mathbf{L}], where

$$
\begin{equation*}
H=\boldsymbol{\alpha} \cdot \mathbf{P}+\boldsymbol{\beta} m \tag{10}
\end{equation*}
$$

where

$$
\vec{\alpha} \equiv \boldsymbol{\alpha}=\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \tag{11}\\
\boldsymbol{\sigma} & 0
\end{array}\right), \quad \boldsymbol{\beta}=\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right)
$$

and

$$
\begin{equation*}
\mathbf{L}=\mathbf{r} \times \mathbf{P}=\left(r_{2} P_{3}-r_{3} P_{2}\right) \hat{\boldsymbol{x}}+\left(r_{3} P_{1}-r_{1} P_{3}\right) \hat{\boldsymbol{y}}+\left(r_{1} P_{2}-r_{2} P_{1}\right) \hat{\boldsymbol{z}} \tag{12}
\end{equation*}
$$

$[H, \mathbf{L}]$ can determined by evaluating explicit components:

$$
\begin{align*}
{\left[H, L_{1}\right] } & =\left[H, r_{2} P_{3}-r_{3} P_{2}\right] \\
& =\left[\boldsymbol{\alpha} \cdot \mathbf{P}+\boldsymbol{\beta} m, r_{2} P_{3}-r_{3} P_{2}\right] \\
& =\left[\boldsymbol{\alpha} \cdot \mathbf{P}, r_{2} P_{3}-r_{3} P_{2}\right]+\left[\boldsymbol{\beta} m, r_{2} P_{3}-r_{3} P_{2}\right] \\
& =\left[\boldsymbol{\alpha} \cdot \mathbf{P}, r_{2} P_{3}-r_{3} P_{2}\right] \\
& =\left[\boldsymbol{\alpha} \cdot \mathbf{P}, r_{2} P_{3}\right]-\left[\boldsymbol{\alpha} \cdot \mathbf{P}, r_{3} P_{2}\right] \\
& =\left[\alpha_{1} P_{1}+\alpha_{2} P_{2}+\alpha_{3} P_{3}, r_{2} P_{3}\right]-\left[\alpha_{1} P_{1}+\alpha_{2} P_{2}+\alpha_{3} P_{3}, r_{2} P_{3}, r_{3} P_{2}\right] \\
& =\left[\alpha_{1} P_{1}, r_{2} P_{3}\right]+\left[\alpha_{2} P_{2}, r_{2} P_{3}\right]+\left[\alpha_{3} P_{3}, r_{2} P_{3}\right]-\left[\alpha_{1} P_{1}, r_{3} P_{2}\right]-\left[\alpha_{2} P_{2}, r_{3} P_{2}\right]-\left[\alpha_{3} P_{3}, r_{3} P_{2}\right] \\
& =\left[\alpha_{1} P_{1}, r_{2}\right] P_{3}+r_{2}\left[\alpha_{1} P_{1}, P_{3}\right]+\left[\alpha_{2} P_{2}, r_{2}\right] P_{3}+r_{2}\left[\alpha_{2} P_{2}, P_{3}\right]+\left[\alpha_{3} P_{3}, r_{2}\right] P_{3}+r_{2}\left[\alpha_{3} P_{3}, P_{3}\right] \\
& -\left[\alpha_{1} P_{1}, r_{3}\right] P_{2}-r_{3}\left[\alpha_{1} P_{1}, P_{2}\right]-\left[\alpha_{2} P_{2}, r_{3}\right] P_{2}-r_{3}\left[\alpha_{2} P_{2}, P_{2}\right]-\left[\alpha_{3} P_{3}, r_{3}\right] P_{2}-r_{3}\left[\alpha_{3} P_{3}, P_{2}\right] \\
& =0+0-i \alpha_{2} P_{3}+0+0+0-0-0-0-0+i \alpha_{3} P_{2}-0 \\
& =-i\left(\alpha_{2} P_{3}-\alpha_{3} P_{2}\right) . \tag{13}
\end{align*}
$$

Two techniques were employed along the way: between the $7^{\text {th }}$ and the $8^{\text {th }}$ line of Eq. (13) we used $[A, B C]=[A, B] C+$ $B[A, C]$, and between the $8^{\text {th }}$ and the $9^{\text {th }}$ we used $\left[P_{j}, x_{i}\right]=-\left[x_{i}, P_{j}\right]=-i \delta_{i j}$. The same strategy can be adopted to solve for $\left[H, L_{2}\right]$ and $\left[H, L_{3}\right]$:

$$
\begin{align*}
{\left[H, L_{2}\right] } & =i\left(\alpha_{1} P_{3}-\alpha_{3} P_{1}\right) \tag{14}\\
{\left[H, L_{3}\right] } & =-i\left(\alpha_{1} P_{2}-\alpha_{2} P_{1}\right) \tag{15}
\end{align*}
$$

Thus, $[H, \mathbf{L}]$ can be determined to be:

$$
\begin{align*}
{[H, \mathbf{L}] } & =\left[H, L_{1}\right] \hat{\boldsymbol{x}}+\left[H, L_{2}\right] \hat{\boldsymbol{y}}+\left[H, L_{3}\right] \hat{\boldsymbol{z}} \\
& =-i\left(\alpha_{2} P_{3}-\alpha_{3} P_{2}\right) \hat{\boldsymbol{x}}+i\left(\alpha_{1} P_{3}-\alpha_{3} P_{1}\right) \hat{\boldsymbol{y}}+-i\left(\alpha_{1} P_{2}-\alpha_{2} P_{1}\right) \hat{\boldsymbol{z}} \\
& =-i(\boldsymbol{\alpha} \times \mathbf{P}) \tag{16}
\end{align*}
$$

So \mathbf{L} is not conserved.
(b) The Commutation of H with $\boldsymbol{\Sigma}$. Next, we check $[H, \boldsymbol{\Sigma}]$, where

$$
\boldsymbol{\Sigma}=\frac{1}{2}\left(\begin{array}{cc}
\boldsymbol{\sigma} & 0 \tag{17}\\
0 & \boldsymbol{\sigma}
\end{array}\right)
$$

Again, $[H, \boldsymbol{\Sigma}]$ can be determined via matrix multiplication and evaluation of explicit components:

$$
\begin{align*}
{\left[H, \Sigma_{1}\right] } & =\left[\boldsymbol{\alpha} \cdot \mathbf{P}+\boldsymbol{\beta} m, \Sigma_{1}\right] \\
& =\left[\boldsymbol{\alpha} \cdot \mathbf{P}, \Sigma_{1}\right]+\left[\boldsymbol{\beta} m, \Sigma_{1}\right] \\
& =\left[\boldsymbol{\alpha} \cdot \mathbf{P}, \Sigma_{1}\right] \\
& =(\boldsymbol{\alpha} \cdot \mathbf{P}) \Sigma_{1}-\Sigma_{1}(\boldsymbol{\alpha} \cdot \mathbf{P}) \\
& =\frac{1}{2}\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \cdot \mathbf{P} \\
\boldsymbol{\sigma} \cdot \mathbf{P} & 0
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{1}
\end{array}\right)-\frac{1}{2}\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{1}
\end{array}\right)\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \cdot \mathbf{P} \\
\boldsymbol{\sigma} \cdot \mathbf{P} & 0
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
0 & (\boldsymbol{\sigma} \cdot \mathbf{P}) \sigma_{1} \\
(\boldsymbol{\sigma} \cdot \mathbf{P}) \sigma_{1} & 0
\end{array}\right)-\frac{1}{2}\left(\begin{array}{cc}
0 & \sigma_{1}(\boldsymbol{\sigma} \cdot \mathbf{P}) \\
\sigma_{1}(\boldsymbol{\sigma} \cdot \mathbf{P}) & 0
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
0 & {\left[\boldsymbol{\sigma} \cdot \mathbf{P}, \sigma_{1}\right]} \\
{\left[\boldsymbol{\sigma} \cdot \mathbf{P}, \sigma_{1}\right]} & 0
\end{array}\right) . \tag{18}
\end{align*}
$$

Remember that

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \tag{19}\\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

To proceed, multiply out $\left[\boldsymbol{\sigma} \cdot \mathbf{P}, \sigma_{1}\right]$:

$$
\begin{align*}
{\left[\boldsymbol{\sigma} \cdot \mathbf{P}, \sigma_{1}\right] } & =(\boldsymbol{\sigma} \cdot \mathbf{P}) \sigma_{1}-\sigma_{1}(\boldsymbol{\sigma} \cdot \mathbf{P}) \\
& =\left(\sigma_{1} P_{1}+\sigma_{2} P_{2}+\sigma_{3} P_{3}\right) \sigma_{1}-\sigma_{1}\left(\sigma_{1} P_{1}+\sigma_{2} P_{2}+\sigma_{3} P_{3}\right) \\
& =\sigma_{1} P_{1} \sigma_{1}+\sigma_{2} P_{2} \sigma_{1}+\sigma_{3} P_{3} \sigma_{1}-\sigma_{1} \sigma_{1} P_{1}-\sigma_{1} \sigma_{2} P_{2}-\sigma_{1} \sigma_{3} P_{3} \\
& =P_{2}\left(\sigma_{2} \sigma_{1}-\sigma_{1} \sigma_{2}\right)+P_{3}\left(\sigma_{3} \sigma_{1}-\sigma_{1} \sigma_{3}\right) \\
& =P_{2}\left[\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\right]+P_{3}\left[\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right] \\
& =P_{2}\left[\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)-\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)\right]+P_{3}\left[\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right] \\
& =P_{2}\left(\begin{array}{cc}
-2 i & 0 \\
0 & 2 i
\end{array}\right)+P_{3}\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right) \\
& =2 P_{2}\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)-2 i P_{3}\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \\
& =-2 i P_{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+2 i P_{3}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& =2 i\left(P_{3} \sigma_{2}-P_{2} \sigma_{3}\right) . \tag{20}
\end{align*}
$$

Therefore,

$$
\begin{align*}
{\left[H, \Sigma_{1}\right] } & =\frac{1}{2}\left(\begin{array}{cc}
0 & {\left[\boldsymbol{\sigma} \cdot \mathbf{P}, \sigma_{1}\right]} \\
{\left[\boldsymbol{\sigma} \cdot \mathbf{P}, \sigma_{1}\right]} & 0
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
0 & 2 i\left(P_{3} \sigma_{2}-P_{2} \sigma_{3}\right) \\
2 i\left(P_{3} \sigma_{2}-P_{2} \sigma_{3}\right) & 0
\end{array}\right) \\
& =i\left(\begin{array}{cc}
0 & P_{3} \sigma_{2} \\
P_{3} \sigma_{2} & 0
\end{array}\right)-i\left(\begin{array}{cc}
0 & P_{2} \sigma_{3} \\
P_{2} \sigma_{3} & 0
\end{array}\right) \\
& =i P_{3}\left(\begin{array}{cc}
0 & \sigma_{2} \\
\sigma_{2} & 0
\end{array}\right)-i P_{2}\left(\begin{array}{cc}
0 & \sigma_{3} \\
\sigma_{3} & 0
\end{array}\right) \\
& =i\left(P_{3} \alpha_{2}-P_{2} \alpha_{3}\right) \\
& =i\left(\alpha_{2} P_{3}-\alpha_{3} P_{2}\right) \tag{21}
\end{align*}
$$

The same strategy can be used to solve for $\left[H, \Sigma_{2}\right]$ and $\left[H, \Sigma_{3}\right]$:

$$
\begin{align*}
{\left[H, \Sigma_{2}\right] } & =-i\left(\alpha_{1} P_{3}-\alpha_{3} P_{1}\right) \tag{22}\\
{\left[H, \Sigma_{3}\right] } & =i\left(\alpha_{1} P_{2}-\alpha_{2} P_{1}\right) \tag{23}
\end{align*}
$$

Thus, $[H, \mathbf{L}]$ can be determined to be:

$$
\begin{align*}
{[H, \boldsymbol{\Sigma}] } & =\left[H, \Sigma_{1}\right] \hat{\boldsymbol{x}}+\left[H, \Sigma_{2}\right] \hat{\boldsymbol{y}}+\left[H, \Sigma_{3}\right] \hat{\boldsymbol{z}} \\
& =i\left(\alpha_{2} P_{3}-\alpha_{3} P_{2}\right) \hat{\boldsymbol{x}}-i\left(\alpha_{1} P_{3}-\alpha_{3} P_{1}\right) \hat{\boldsymbol{y}}+i\left(\alpha_{1} P_{2}-\alpha_{2} P_{1}\right) \hat{\boldsymbol{z}} \\
& =i(\boldsymbol{\alpha} \times \mathbf{P}) \tag{24}
\end{align*}
$$

So $\boldsymbol{\Sigma}$ is not conserved.
(c) The Commutation of H with J. While \mathbf{L} and $\boldsymbol{\Sigma}$ are not conserved, it is easy to see that the combination $\mathbf{L}+\boldsymbol{\Sigma}$ is conserved, namely

$$
\begin{align*}
{[H, \mathbf{L}+\boldsymbol{\Sigma}] } & =[H, \mathbf{L}]+[H, \boldsymbol{\Sigma}] \\
& =-i(\boldsymbol{\alpha} \times \mathbf{P})+i(\boldsymbol{\alpha} \times \mathbf{P}) \\
& =0 \tag{25}
\end{align*}
$$

Thus, Dirac equation provides a description of "intrinsic" angular momentum (\equiv spin) $-\frac{1}{2}$ elementary particles.
4. (a) Handedness. To show that handedness is not a good quantum number, show that γ^{5} does not commute with the Hamiltonian. Recall, the Hamiltonian is given by $H=(\vec{\alpha} \cdot \vec{p})+\beta m$, where $\vec{\alpha}$ and β are given in Eq. (11), and handedness is given by

$$
\gamma^{5}=\left(\begin{array}{ll}
0 & \mathbb{1} \tag{26}\\
\mathbb{1} & 0
\end{array}\right)
$$

The commutator of H and γ^{5} is

$$
\begin{align*}
{\left[H, \gamma^{5}\right] } & =H \gamma^{5}-\gamma^{5} H \\
& =(\vec{\alpha} \cdot \vec{p}+\beta m) \gamma^{5}-\gamma^{5}(\vec{\alpha} \cdot \vec{p}+\beta m) \\
& =\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \cdot \vec{p} \\
\boldsymbol{\sigma} \cdot \vec{p} & 0
\end{array}\right)\left(\begin{array}{ll}
0 & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right)+m\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right)\left(\begin{array}{cc}
0 & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \boldsymbol{\sigma} \cdot \vec{p} \\
\boldsymbol{\sigma} \cdot \vec{p} & 0
\end{array}\right)-m\left(\begin{array}{cc}
0 & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right)\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\boldsymbol{\sigma} \cdot \vec{p} & 0 \\
0 & \boldsymbol{\sigma} \cdot \vec{p}
\end{array}\right)+m\left(\begin{array}{cc}
0 & \mathbb{1} \\
-\mathbb{1} & 0
\end{array}\right)-\left(\begin{array}{cc}
\boldsymbol{\sigma} \cdot \vec{p} & 0 \\
0 & \boldsymbol{\sigma} \cdot \vec{p}
\end{array}\right)-m\left(\begin{array}{cc}
0 & -\mathbb{1} \\
\mathbb{1} & 0
\end{array}\right) \\
& =m\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right) . \tag{27}
\end{align*}
$$

Therefore, if $m \neq 0$, handedness does not commute with the Hamiltonian, which means handedness cannot be a good quantum number for massive particles. It's also useful to note the following relationship which shows that handedness does not commute with the Hamiltonian,

$$
\begin{equation*}
\left[\vec{\alpha} \cdot \vec{p}+\vec{\beta} m, \gamma^{5}\right]=\left[\gamma^{5}, \vec{\alpha} \cdot \vec{p}-\vec{\beta} m\right] . \tag{28}
\end{equation*}
$$

(b)Helicity. Now let's show that helicity, h, does com-
mute with the Hamiltonian, which means that helicity is a conserved quantity. Recall the definition of helicity, $h=\hat{p} \cdot \vec{\Sigma}$. Choosing the x_{3}-axis along the direction of momentum \vec{p}, helicity reduces to

$$
h=\frac{1}{2}\left(\begin{array}{cc}
\sigma_{3} & 0 \tag{29}\\
0 & \sigma_{3}
\end{array}\right) .
$$

Now to compute the commutator of H and h,

$$
\begin{align*}
{[H, h] } & =\frac{1}{2}(\vec{\alpha} \cdot \vec{p}+\beta m)\left(\begin{array}{cc}
\sigma_{3} & 0 \\
0 & \sigma_{3}
\end{array}\right)-\frac{1}{2}\left(\begin{array}{cc}
\sigma_{3} & 0 \\
0 & \sigma_{3}
\end{array}\right)(\vec{\alpha} \cdot \vec{p}+\beta m) \\
& =\frac{1}{2}\left(\begin{array}{cc}
0 & \sigma_{3} p_{3} \\
\sigma_{3} p_{3} & 0
\end{array}\right)\left(\begin{array}{cc}
\sigma_{3} & 0 \\
0 & \sigma_{3}
\end{array}\right)+\frac{m}{2}\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right)\left(\begin{array}{cc}
\sigma_{3} & 0 \\
0 & \sigma_{3}
\end{array}\right)-\frac{1}{2}\left(\begin{array}{cc}
\sigma_{3} & 0 \\
0 & \sigma_{3}
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{3} p_{3} \\
\sigma_{3} p_{3} & 0
\end{array}\right) \\
& -\frac{m}{2}\left(\begin{array}{cc}
\sigma_{3} & 0 \\
0 & \sigma_{3}
\end{array}\right)\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
0 & \sigma_{3} p_{3} \sigma_{3} \\
\sigma_{3} p_{3} \sigma_{3} & 0
\end{array}\right)-\frac{1}{2}\left(\begin{array}{cc}
0 & \sigma_{3} \sigma_{3} p_{3} \\
\sigma_{3} \sigma_{3} p_{3} & 0
\end{array}\right) . \tag{30}
\end{align*}
$$

If $\sigma_{3} p_{3} \sigma_{3}=\sigma_{3} \sigma_{3} p_{3}$, then helicity commutes with the Hamiltonian, and therefore helicity is a conserved quantity. Let's verify that $\sigma_{3} p_{3} \sigma_{3}=\sigma_{3} \sigma_{3} p_{3}$,

$$
\begin{align*}
\sigma_{3} p_{3} \sigma_{3} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) p_{3}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
p_{3} & 0 \\
0 & -p_{3}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
p_{3} & 0 \\
0 & p_{3}
\end{array}\right) \tag{31}
\end{align*}
$$

and

$$
\begin{align*}
\sigma_{3} \sigma_{3} p_{3} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) p_{3} \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) p_{3} \\
& =\left(\begin{array}{cc}
p_{3} & 0 \\
0 & p_{3}
\end{array}\right) . \tag{32}
\end{align*}
$$

Finally, to show that helicity is frame dependent return to the original definition of helicity,

$$
\begin{equation*}
h=\hat{p} \cdot \vec{\Sigma} \tag{33}
\end{equation*}
$$

Since \hat{p} is frame dependent and $\vec{\Sigma}$ is not, the net result is that h is frame dependent. When the particle is overtaken, $\hat{p}^{\prime}=-\hat{p}$, making

$$
\begin{equation*}
h^{\prime}=-\hat{p} \cdot \vec{\Sigma} \tag{34}
\end{equation*}
$$

In other words, helicity is reversed by overtaking the particle.

