1. The hamiltonian, H = «;p; + fm, must be her-
mitian to give real eigenvalues. Thus, H = H' =
pita;T+BTm. From non-relativistic quantum mechanics
we know that p; = p;f. In addition, [a;,p;] = 0 because
we impose that the «, 0 operators act on the spinor in-
dices while p; act on the coordinates of the wave function
itself. With these conditions we may proceed:

yields
ai'pi+ fm = ap; + pm (2)
a;' = a;, 1 = B. Thus «, B8 are hermitian operators.

To verify the other properties of the «, and 3 operators

pici’ + BTm = ayp; + Bm (1)  we compute
|
H? = (aipi + Bm) (oypj + Pm)
1
= (041'21%‘2 + B (o + o) pipj + (6B + Bag) m + 527”2) ; (3)

where for the second term i # j.
relativistic energy relation, E? =
the anti-commutation relation

Then imposing the
Ip|? + m?, we obtain

{bi, b} = 2051, (4)

where by = 3, b; = a;, and 1 = n X n idenitity matrix.
Using the anti-commutation relation and the fact that
b;2 = 1 we are able to find the trace of any b;

(i #5) ()

Recall that traces are invariant under permutations of
the matrices and hence

Tr (b;) = Tr (b;b;b:)

Tr (bi) = Tr (bjbib;) = Tr (b (—bjb;)) = —Tr (b;) . (6)

which implies Tr (b;) = 0. In the second step of Eq. (6
we made use of b;b; = —b;b;,i # j

Now, using the anti-commutation relations, with the
determinate leads to

[bib;| = |=bjbi| — [b]bs| = (—1)™ [bs]|b,] (7)

where N is the dimension of the b; matrix and i # j. Then
1 = (—1)" which implies that N is an even number.

Finally, making use of b2 = 1 we can find the
eigenvalues: bju = Au and b;b;u = Abju, hence u = \u
and \ = +1.

2. We need to find the A = +1/2 helicity eigenspinor
for an electron with momentum ]5’/ = (psind, 0, pcosb).
The helicity operator is given by %U - p, and the posi-

tive eigenvalue

5 corresponds to u; Dirac solution [see
(1.5.98) in http://arXiv.org/abs/0906.1271]. Com-

puting o - p we find that

o-p = o18inf+ oy cosb

= ((1) é)sin@—i—((l)

_01 ) cosf

cosf sinf

sinf —cosf )’ (8)
This tells us that p = (psin®, 0, pcosf) is obtained
from p'= (0, 0, p) by a rotation around the y-axis. A ro-
tation through a finite angle # around the y-axis has asso-
ciated the unitary transformation cos(6/2) — ioq sin(6/2)
[see (1.3.21) in http://arXiv.org/abs/0906.1271], so
we can obtain the eigenspinor u(p /) by applying this uni-
tary transformation to the eigenspinor uq(p)




This is the A = +1/2 eigenspinor of the electron with where
momentum 7 .

L 0 o 1 0
3. (a) The Commutation of H with L. First, we check == (a 0 ) ’ B = ( 0 -1 ) ) (11)
[H, L], where
H=a P+ pBm, (10)  and
|
L=rx P = (T2P3 — T3P2) .’f} —+ (T3P1 — Tlpg) ’g —+ (T1P2 — TQPl) 2, (12)

[H,L] can determined by evaluating explicit components:

[H,Li] = [H,
a-P+ Bm,roPs — r3Ps]

a-P roPs —r3Po] + [Bm,ro Py — 3P

a-P roPs —r3Ps]

- P,Tgpg] — [a . P,T3P2]

a1 Py + as Py 4+ ag Ps, T‘2P3] — [alPl + ao Py + a3 Ps, 1o Ps, T‘3P2]

a1 P, o P3| + [ag P, ro P3| + (a3 Ps, 1o P3| — (a1 Pr, 13 Pa] — [aa P, 13 Pa] — [ P, 13 P

a1 Py, ro) P34 1o [ Py, P3| + [aa Po, 2] Ps + 1o [aa Pa, P3] + [a3 Ps, 2] Ps + 1o [z P3, Ps]

a1 Py, r3) Py — 13 [0 Py, Po] — [aaPa, 73] Py — 13 (a2 Po, Po] — [a3 P, 73] Py — 13 [z P3, ]

= 04+0—iasP3+04+04+0—-0—-0—0—0+4+ia3P>, —0

= —1 (Oégpg — Oéng) . (13)

[
[
[
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Two techniques were employed along the way: between the 7*" and the 8" line of Eq. (13) we used [4, BO|=[A, B]C +
B[A, C], and between the 8 and the 9" we used [P;, z;]= —[z;, Pj]= —id;;. The same strategy can be adopted to
solve for [H, Ly] and [H, L3]:

[H, Ly] = i(oaPs —ash) (14)
[H,Ls] = —i(a1P —axhy). (15)

Thus, [H,L] can be determined to be:
[HvL] = [HaLl]i—’— [H7L2] y + [H7L3]’2
= — (a2P3 — a3P2) T + 7 (CY1P3 — 043P1) :l;l + —1 (ang — Oégpl) z
= —i(axP). (16)

So L is not conserved.

(b) The Commutation of H with 3. Next, we check [H, 3], where

2:%(32). (17)



Again, [H, X] can be determined via matrix multiplication and evaluation of explicit components:

[H,%] = [a-P+Bm, %]
<P, Y1) + [Bm, 3]
P, %]

P)S, - % (a-P)

(o'p 77 )(5 0)-2(5 a) (o7 707

((a-op)a1 (U.OP)Ul)_%<01(2-P) Ul(%'P)>

([0'-](?)’,01] ["'E"’l]) (18)

[’
RN

D)

N —= N = N =

Remember that
01 0 —1 1 0
0'1=<10> U2:(i 0) 0'3=<0_1>. (19)
To proceed, multiply out [o - P, o1]:
[O'-P,Ul] = (O"P)Ul — 01 (O'P)
= (01Pr +02Ps + 03P3) 01 — 01 (01 Py + 02 P> + 03P3)

= 01P101 + 0901 + 03P301 — 0101 P1 — 0109 P — 0103P3

: K“")(i’é)—(i’é><?‘o"ﬂ%{(éf’l)(?é)—(?é)(é—“1)}
= l(08) -G )L l(he) ()

(7 3)n(

(5 2)-um )

= —2iP2<(1) 01>+22P3<0_Oi)

= 2 (PgO’Q —P20'3). (20)
Therefore, The same strategy can be used to solve for [H,Xs] and
1 0 [ p ] [Ha 23]:
_ g - , 01
[H,El] - 2 ( [0’ P70,1] O )
o 1 0 21 (PgUQ —P20'3)
9 21 (PgUQ — P20'3) 0
. 0 Pog\ . 0 Pos [H, %] = _Z (P —ash) (22)
~ "\ Poy 0 Pyoz 0 [H,¥3] = i(aaP2—azPy). (23)

o 0 () . 0 g3

—ZP3(2 O>_ZP2(O'3 O)

= Z (PgO[Q — PQOLg)

= i(aaPs —asPy). (21)  Thus, [H,L] can be determined to be:



[H, %]

i(laxP).

So X is not conserved.

(¢) The Commutation of H with J. While L and X
are not conserved, it is easy to see that the combination
L + X is conserved, namely

[H,L + X [H,L] + [H, X]
—i(axP)+i(axP)

0. (25)

Thus, Dirac equation provides a description of “intrin-
si¢” angular momentum (= spin)—% elementary particles.

[H,°] = Hy’ =~°H
= (@-p+pm)y° =" (@ - F+ Bm)
(0 o-F\[(01 1 0 0
_<a-ﬁ 0 )(11 0)*’”(0—]1)(]1
_(o-p O 01\ (o-p O
_( 0 a-ﬁ)+m<—]l o) ( 0 o
B 0 2

Therefore, if m # 0, handedness does not commute with
the Hamiltonian, which means handedness cannot be a
good quantum number for massive particles. It’s also
useful to note the following relationship which shows that
handedness does not commute with the Hamiltonian,

P

[H, %] & + [H,X:] g + [H,X3] 2
i(OZQPg — O[gPQ) .’f} — Z (O[1P3 — O[gpl) g + Z (O[1P2 — O[QPl) 2

4. (a) Handedness. To show that handedness is not a
good quantum number, show that 4° does not commute
with the Hamiltonian. Recall, the Hamiltonian is given
by H = (& - p)+m, where & and [ are given in Eq. (11),
and handedness is given by

-

The commutator of H and +° is

01

10 (26)

$)-(10) () (1) (5 %)
) (i)

mute with the Hamiltonian, which means that helicity
is a conserved quantity. Recall the definition of helicity,
h=p- 3. Choosing the x3-axis along the direction of
momentum p, helicity reduces to

71 g3 0
(@ 7+ Gm,o?] = [pra-g—Gm] . (29) h‘i( 0 ag>' (29)
(b)Helicity. Now let’s show that helicity, h, does com- Now to compute the commutator of H and h,
J
- 1 S5 g3 O 1 g3 O JER
] = gl om) (B0 )3 (50 ) @ i om)
71 0 o3pP3 o3 0 +@ 1 0 o3 0 _l o3 0 0 o3p3
2\ o3ps O 0 o3 2 \0 -1 0 o3 2\ 0 o3 osps 0
. m o3 0 1 0
2 0 o3 0 -1
_ l 0 03P303 _l 0 0303P3 (30)
2 \ ospsos 0 2 \ oso3ps 0 '



If o3pso3 = o303p3, then helicity commutes with the
Hamiltonian, and therefore helicity is a conserved quan-
tity. Let’s verify that ospsos = o303ps,

10 10

03P303 = 0 —1 p3 0 —1
(s 0 N[(1 0

o 0 —P3 0 —1

(52w

1 0 1 0
0303P3 = 0 —1 0 —1 p3

and

Finally, to show that helicity is frame dependent return
to the original definition of helicity,

h=p- 3. (33)

Since p is frame dependent and Y is not, the net result
is that h is frame dependent. When the particle is over-
taken, p’ = —p, making

W=—p-3. (34)

In other words, helicity is reversed by overtaking the par-
ticle.



